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1. Algebras, sigma algebras, and measures

We begin by defining an algebra. This could also be called “an algebra of sets.” Below we use
the notation

P (X) = the set of all subsets of X.

Definition 1.1. Let X be a set. A subset A ⊂ P (X) is called an algebra if

(1) X ∈ A
(2) Y ∈ A =⇒ X \ Y =: Y c ∈ A
(3) A, B ∈ A =⇒ A ∪B ∈ A

A is a σ-algebra if in addition

{An}n∈N ⊂ A =⇒
⋃
n∈N

An ∈ A.

Remark 1. First, note that since X ⊂ A, and algebras are closed under complementation, (yes
it is a real word), one always has

∅ = Xc ∈ A.
Moreover, we note that algebras are always closed under intersections, since for A,B ∈ A,

A ∩B = (Ac ∪Bc)c ∈ A,
since algebras are closed under complements and unions. Consequently, σ-algebras are closed
under countable intersections.

We will often use the symbol σ in describing countably-infinite properties.

Exercise 1. What is the smallest possible algebra? What is the next-smallest algebra? Continue
building up algebras. Now, let X be a topological space. The Borel σ-algebra is defined to be the
smallest σ-algebra which contains all open sets. What other kinds of sets are contained in the
Borel σ-algebra?
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With the notion of σ-algebra, we can define a measure.

Definition 1.2. Let X be a set and A ⊂ P (X) a σ-algebra. A measure µ is a countably
additive, set function which is defined on the σ-algebra, A, such that µ(∅) = 0. The elements
of A are known as measurable sets. We will only work with non-negative measures, but there
is such a thing as a signed measure. Just so you know those beasties are out there. Countably
additive means that for a countable disjoint collection of sets in the σ-algebra

{An} ⊂ A such that An ∩Am = ∅∀n 6= m =⇒ µ
(⋃

An

)
=
∑

µ(An).

We shall refer to (X,A, µ) as a measure space. What this means is that a measure space is
comprised of a big set, X, and a certain collection of subsets of X, which is the σ-algebra, A.
Moreover, there is a measure, µ, which is a countably additive set function that is defined on
all elements of A.

Proposition 1.3 (Measures are monotone). Let (X,A, µ) be a measure space. Then µ is
finitely additive, that is if A ∩B = ∅ for two elements A, B ∈ A, we have

µ(A ∪B) = µ(A) + µ(B).

Moreover, µ is monotone, that is for any A ⊂ B which are both elements of A we have

µ(A) ≤ µ(B).

Proof: First we make the rather trivial observation that if A and B are two elements of A
with empty intersection, then

A ∪B = ∪Aj , A1 = A, A2 = B, Aj = ∅∀j ≥ 3.

Then we have

µ(A ∪B) = µ(∪Aj) =
∑
j

µ(Aj) = µ(A) + µ(B),

since µ(∅) = 0. For the monotonicity, if A ⊂ B are two elements of A, then

µ(B) = µ(B \A ∪A) = µ(B \A) + µ(A) ≥ µ(A),

since µ ≥ 0.
So, in layman’s terms, when we’ve got a measure space, we have a big set, X, together with
a collection of subsets of X (note that X is a subset of itself, albeit not a proper subset), for
which we have a notion of size. This size is the value of the function µ. So, if Y ∈ A, then
µ(Y ) is the measure of Y . Roughly speaking, µ(Y ) tells us how much space within X the set
Y is occupying. For the case of the Lebesgue measure on Rn, and the n-dimensional Hausdorff
measure, we shall see that measure coincides with our usual notion of n-dimensional volume.

Proposition 1.4 (How to disjointify sets and countable sub-additivity). If {An} ⊂ A is a
countable collection of sets, then we can find a disjoint collection {Bn} ⊂ A such that

∪An = ∪Bn.

Let µ be a measure defined on the σ-algebra, A. Then countable sub-additivity holds for not-
necessarily-disjoint countable collections of sets, which means that for all such {An} as above,

µ(∪An) ≤
∑

µ(An).

Proof: We do this by setting

B1 := A1, Bn := An \ ∪n−1
k=1Bk, n ≥ 2.

Then for m > n, note that

Bm ∩Bn =
(
Am \ ∪m−1

k=1 Bk
)
∩Bn = ∅
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since

Bn ⊂ ∪m−1
k=1 Bk,

since n ≤ m− 1. Thus they are in fact disjoint. Moreover,

B1 = A1, B2 ∪B1 = A2 \A1 ∪A1 = A2 ∪A1.

Similarly, by induction, assuming that

∪nk=1Bk = ∪nk=1Ak,

we have

∪n+1
k=1Bk = Bn+1 ∪ ∪nk=1Bk = An+1 ∪ ∪nk=1Bk = An+1 ∪ ∪nk=1An

where in the last equality we used the induction hypothesis. Thus,

∪n≥1Bn = ∪n≥1An.

Moreover, the way we have defined Bn together with the definition of the σ-algebra, A, shows
that Bn ∈ A for all n. By the monotonicity of µ,

Bn ⊂ An∀n =⇒ µ(Bn) ≤ µ(An).

By the countable additivity for the disjoint sets, {Bn}, and since ∪Bn = ∪An

µ(∪An) = µ(∪Bn) =
∑

µ(Bn) ≤
∑

µ(An).

So, for not-necessarily disjoint sets, we have countable subadditivity, which means that

µ(∪An) ≤
∑

µ(An),

for all countable collections of sets {An} ⊂ A.

Definition 1.5. A measure space (X,A, µ) is σ-finite if there exists a collection of sets {An} ⊂
A such that

X = ∪An, and µ(An) <∞ ∀n.

Exercise 2. What are some examples of σ-finite measure spaces? What are some examples of
measure spaces which are not σ-finite?

One unfortunate fact about measures is that they’re not defined on arbitrary sets, only on
measurable sets (remember, those are the ones in the associated σ algebra). However, there is
a way to define a set function which is almost like a measure and is defined for every imaginable
or unimaginable set. This thing is called an outer measure.

Definition 1.6. Let X be a set. An outer measure µ∗ on X is a map from P (X) → [0,∞]
such that

µ∗(∅) = 0, A ⊂ B =⇒ µ∗(A) ≤ µ∗(B),

and

µ∗(∪An) ≤
∑

µ∗(An).

Whenever things are indexed with n or some other letter and are not obviously indicated to be
uncountable or finite, we implicitly are referring to a set indexed by the natural numbers.
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1.1. Carathéodory’s outer measures. We will require techniques from a great French math-
ematician, Carathéodory.

Proposition 1.7 (Outer Measures). Let E ⊂ P (X) such that ∅ ∈ E. Let ρ be a map from
elements of E to [0,∞] such that ρ(∅) = 0. Then we can define for every element A ∈ P (X)

ρ∗(A) := inf
{∑

ρ(Ej) : Ej ∈ E,A ⊂ ∪Ej
}
,

where we assume that inf{∅} =∞, so that if it is impossible to cover a set A by elements of E
then ρ∗(A) :=∞. So defined, ρ∗ is an outer measure.

Proof: Note that ρ∗ is defined for every set. Now since ∅ ⊂ ∅ = ∪Ej , taking all Ej = ∅ ∈ E
we have the cover for ∅ given by this particular choice of {Ej} ⊂ E. Therefore, since ρ ≥ 0, we
have that ρ∗ ≥ 0, and on the other hand since it is an infimum,

0 ≤ ρ∗(∅) ≤
∑
j

ρ(∅) = 0 =⇒ ρ∗(∅) = 0.

This is the first condition an outer measure must satisfy.
Next, let’s assume A ⊂ B. (By ⊂ we always mean ⊆). Then, since any covering of B by elements
of E is also a covering of A by elements of E, it follows that the infimum over coverings of A
is an infimum over a potentially larger set of objects (namely coverings) as compared with the
infimum over coverings of B. Hence we have

ρ∗(A) = inf{
∑

ρ(Ej) : Ej ∈ E,A ∈ ∪Ej} ≤ inf{
∑

ρ(Ej) : Ej ∈ E,B ∈ ∪Ej} = ρ∗(B).

This is the second condition.
Finally, we must show that ρ∗ is countably subadditive. So, let {An} be a collection of sets in
P (X). If for any n we have no cover of An by elements of E, then since

An ⊂ ∪kAk,
there is no cover of ∪kAk by elements of E either. Hence we have

ρ∗(∪An) =∞, ρ∗(An) =∞ ≤
∑

ρ∗(Ak) =⇒ ρ∗(∪An) =∞ =
∑

ρ∗(An).

Thus countable subadditivity is verified in this case.
So, to complete the proof, we assume that each An admits at least one covering by elements of
E. Let ε > 0. Since the definition of ρ∗ is by means of an infimum, for each j ∈ N there exists
a countable collection of sets {Ekj }∞k=1 where each Ekj ∈ E, such that

ρ∗(Aj) ≥
∑
k≥1

ρ(Ekj )− ε

2j
=⇒ ρ∗(Aj) +

ε

2j
≥
∑
k≥1

ρ(Ekj ).

Well then, the collection {Ekj } is a countable collections of elements of E which covers

∪Aj .
Therefore by the definition of ρ∗ as the infimum over such covers, we have

ρ∗(∪Aj) ≤
∑
j,k≥1

ρ(Ekj ).

Since for each Ekj we have

ρ∗(Aj) +
ε

2j
≥
∑
k≥1

ρ(Ekj ),

summing over k we have∑
j,k≥1

ρ(Ekj ) ≤
∑
j≥1

ρ∗(Aj) +
ε

2j
= ε+

∑
j≥1

ρ∗(Aj).

Thus following all the inequalities we have

ρ∗(∪Aj) ≤ ε+
∑
j

ρ∗(Aj).
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Since this inequality holds for arbitrary ε > 0, we may let ε→ 0, and the inequality also holds
without that pesky ε. Hence we have verified countable subadditivity in this last case as well.

For each measure space, there is a canonically associated outer measure.

Corollary 1.8. Let (X,A, µ) be a measure space. Then, there is a canonically associated outer
measure induced by µ defined by

µ∗(A) := inf{
∑

µ(Ej), {Ej} ⊂ A, A ⊂ ∪Ej}.

Proof: By the definition of measure space, we have that ∅ ∈ A, and µ(∅) = 0. Moreover,
µ : A → [0,∞]. Finally, we note that since for any A ∈ P (X), A ⊂ X ∈ A, we can always
find a covering of such A by elements of A. (In particular, one covering is to take Ej = X
for all j). Thus, µ∗ is defined for all A ∈ P (X). Moreover, µ and A satisfy the hypotheses
of the preceding proposition. Therefore, since µ∗ is defined in an analogous way to ρ∗, by the

preceding proposition we also have that µ∗ is an outer measure.

Remark 2. For a measure space (X,A, µ), we shall use µ∗ to denote the canonically associated
outer measure, which is defined according to the corollary. One of the reasons we require the
notion of an outer measure is because it is used to define what it means for a measure space to
be complete.

Exercise 3. For those of you who have taken integration theory, what is the difference between
the Lebesgue sigma algebra and the Borel sigma algebra? What is the definition of a measurable
function f : R→ R?

1.2. Completeness. If our notion of size (volume) defined in terms of the measure of sets
belonging to a sigma algebra is a good notion, then if a certain set has size zero, anything
contained within that set ought to also have size zero. Eller hur? It is precisely this observation
that motivates the definition of a complete measure, which can be formulated in two different
but equivalent ways.

Proposition 1.9 (Completeness Proposition). The following are equivalent for a measure space
(X,M, µ). If either of these hold, then µ is called complete.

(1) If there exists N ∈M with µ(N) = 0, and Y ⊂ N , then Y ∈M.
(2) If µ∗(Y ) = 0 then Y ∈M.

Proof:
First let us assume (1) holds. Then if Y ⊂ X with µ∗(Y ) = 0, by the definition of µ∗ for each
k ∈ N there exists

{Ekn}n≥1 ⊂M, Y ⊂ ∪nEkn,
∑
n

µ(Ekn) < 2−k.

Well, then

Y ⊂ N := ∩k ∪n Ekn ∈M,

where the containment holds because M is a σ-algebra. Since N ⊂ ∪nEkn for each k ∈ N, by
monotonicity of the measure

µ(N) ≤ µ(∪nEkn) < 2−k∀k ∈ N =⇒ µ(N) = 0.

By the assumption of (1) since Y ⊂ N ∈ M and µ(N) = 0, it follows that Y ∈ M. So, every
set with outer measure zero is measurable (that’s what (2) says!)
Next, we assume (2) holds. Then if there exists N ∈M with µ(N) = 0 and Y ⊂ N , then

Y ⊂ ∪Aj , A1 := N, Aj = ∅∀j ≥ 2,
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and {Aj} ⊂ M. So, by definition of outer measure,

0 ≤ µ∗(Y ) = inf . . . ≤
∑

µ(Aj) = µ(N) = 0.

Consequently µ∗(Y ) = 0, and by the assumption (2), Y ∈ M. This shows that (2) =⇒ (1).

Hence, they are equivalent.

1.3. Homework: Measure theory basics.

(1) Let X be a finite set. How many elements does P (X) contain? Prove your answer!
(2) Given a measure space (X,A, µ) and E ∈ A, define

µE(A) = µ(A ∩ E)

for A ∈ A. Prove that µE is a measure.
(3) Prove that the intersection of arbitrarily many σ-algebras is again a σ-algebra. Does

the same hold for unions?
(4) Let A be an infinite σ-algebra. Prove that A contains uncountably many elements.
(5) Let X = N, and define the algebra A = P (X). Prove that all elements of A are either

countably infinite, finite, or empty. Define the measure to be 1 on a single element of
N and 0 on the empty set. Prove that this satisfies the definition of a measure space.
Will it also work to take X = R, and let A = P (R), using the same definition of the
measure? Do we get a measure space? Why or why not?

2. Completion of a measure, creating a measure from an outer measure, and
pre-measures

Theorem 2.1 (Completion of a measure). Let (X,M, µ) be a measure space. Let N := {N ∈
M | µ(N) = 0} and

M̄ = {E ∪ F | E ∈M and F ⊂ N for some N ∈ N}.

Then M̄ is a σ-algebra and ∃! extension µ̄ of µ to a complete measure on M̄. Moreover, if
A is a σ-algebra which contains M, such that (X,A, ν) is a complete measure space, and ν
restricted to M is equal to µ, then A ⊃ M̄. In this sense, (X,M̄, µ̄) is the minimal complete
extension of (X,M, µ) to a complete measure space.

Proof: First we show that M is a σ-algebra. We observe that every element of M can be
written as itself union with ∅, and ∅ ⊂ ∅ ∈ N . So it follows that every element of M is an
element of M̄. Next, assume that {An} ⊂ M̄ and {En, Nn} ⊂ M such that

An = En ∪ Fn, Fn ⊂ Nn ∈ N .

Then

N := ∪Nn ∈M, and µ(∪Nn) ≤
∑

µ(Nn) = 0.

Since ∅ ⊂ N , we have by the monotonicity of µ that

0 = µ(∅) ≤ µ(N) ≤
∑

µ(Nn) = 0.

We also have that

E := ∪En ∈M.

Then, let us define F := ∪Fn ⊂ N . It follows that

∪An = E ∪ F ∈ M̄.

Consequently M̄ is closed under countable unions. What about complements? If A = E ∪F ∈
M̄ with F ⊂ N ∈ N then note that

(E ∪ F )c = Ec ∩ F c = ((Ec ∩N) ∪ (Ec ∩N c)) ∩ F c,
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and since F ⊂ N =⇒ F c ⊃ N c, the intersection of the last two terms is just Ec ∩N c, so

(E ∪ F )c = (Ec ∩N ∩ F c) ∪ (Ec ∩N c).

Since E,N ∈M =⇒ Ec∩N c ∈M, and Ec∩N ∩F c ⊂ N ∈ N we see that (E∪F )c ∈ M̄. So,
M̄ is closed under complements. Hence, we have shown that M̄ is a σ-algebra which contains
M.
Next, we must demonstrate that µ̄ is a well-defined, complete, and unique extension of µ. It is
natural to ignore the subset of the zero-measure set, so we define

µ̄(E ∪ F ) := µ(E).

If we have another representation of E ∪ F = G ∪ H with G ∈ M and F,H ⊂ N,M ∈ N ,
respectively, then

µ̄(E ∪ F ) = µ(E).

Since E ⊂ E ∪ F = G ∪H ⊂ G ∪M , with G ∪M ∈M, we have by the monotonicity of µ,

µ(E) ≤ µ(G ∪M) ≤ µ(G) + µ(M) = µ(G).

Above, we have used countable subadditivity and the fact that M ∈ N . Then, we note that

µ̄(G ∪H) = µ(G),

as we have defined µ̄. So, following the equalities and inequalities, we have

µ̄(E ∪ F ) = µ(E) ≤ µ(G) = µ̄(G ∪H).

To complete the argument, we use the Shakespeare technique: what is in a name? Would not
a rose by any other name smell as sweet? Simply repeat the same argument above, replacing
E by G and F by H, that is we do the same mathematical argument but we simply swap the
names. Then we obtain

µ̄(G ∪H) ≤ µ̄(E ∪ F ).

Hence we have shown that
µ̄(E ∪ F ) = µ̄(G ∪H).

We conclude that µ̄ is well-defined.
Now, let’s show that µ̄ is a measure which extends µ. By definition, for E ⊂M

µ̄(E) = µ̄(E ∪ ∅) = µ(E).

So, this shows that
µ̄|M = µ.

We also observe that since
∅ ∈ M =⇒ µ̄(∅) = µ(∅) = 0.

Next we wish to show monotonicity. If

A = E ∪ F, E ∈M, F ⊂ N ∈ N ,
and

A ⊂ B = G ∪H, G ∈M, H ⊂M ∈ N ,
then we have

E ⊂ A ⊂ B = G ∪H ⊂ G ∪M =⇒
µ̄(A) = µ(E) ≤ µ(G ∪M) ≤ µ(G) + µ(M) = µ(G) = µ̄(B).

We therefore have shown that µ̄ is monotone.
Next we wish to show that µ̄ is countably additive. Assume that {An} = {En ∪ Fn} ⊂ M̄ are
disjoint. Then

An ∩Am = En ∪ Fn ∩ (Em ∪ Fm) ⊃ En ∩ Em,
which shows that

En ∩ Em = ∅, ∀n 6= m.

Consequently,

µ̄(∪An) = µ(∪En) =
∑

µ(En) =
∑

µ̄(An).
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So, µ̄ is countably additive. We have therefore proven that µ̄ is a measure on M̄.
Let’s show that µ̄ is complete. Assume that Y ∈ M̄ with µ̄(Y ) = 0. Then we can write

Y = E ∪ F, E ∈ N , F ⊂ N ∈ N .
Hence, in particular,

Y ⊂ E ∪N ∈ N .
Therefore Z ⊂ Y ⊂ N . We can therefore write Z as

Z = ∅ ∪ Z, ∅ ∈ M, Z ⊂ N ∈ N .
It follows from the definition of M that Z ∈ M̄. Thus, any subset of a M̄ measurable set
which has µ̄ measure zero is also an element of M̄, which is the first of the equivalent conditions
required to be a complete measure.
Finally the uniqueness. Let’s assume ν also extends µ to a complete measure on M. This
means that

ν|M = µ̄|M = µ.

For Y = E ∪ F ∈ M̄, we also have Y ⊂ E ∪N , so by countable subadditivity,

ν(Y ) ≤ ν(E) + ν(N) = µ(E) + µ(N) = µ(E) = µ̄(Y ).

Conversely
µ̄(Y ) = µ(E) = ν(E) ≤ ν(E ∪ F ) = ν(Y ).

So, we’ve got equality all across, and in particular, ν(Y ) = µ̄(Y ).
Finally, let us assume that there is some other extension, ϕ, of µ to a complete measure on
some σ-algebra A which contains M. Thus, (X,A, ϕ) is a complete measure space, and

ϕ|M = µ.

Then
ϕ(N) = 0 ∀N ∈ N .

Now, let E ∪ F ∈ M. Then E ∈ M, and thus E ∈ A is also true. Moreover, F ⊂ N ∈ N , and
so

N ∈ A, ϕ(N) = µ(N) = 0.

Since A is complete, by the completeness proposition, we have that

F ∈ A =⇒ E ∪ F ∈ A.

We have therefore proven that M̄ ⊂ A.

Proposition 2.2 (Null Set Proposition). Let (X,M, µ) be a non-trivial measure space, meaning
there exist measurable subsets of positive measure. Then

N := {Y ∈M : µ(Y ) = 0}
is not a σ-algebra, but it is closed under countable unions.

Proof: If {Nn} ⊂ N is a countable collection, then since M is a σ-algebra,

∪Nn ∈M.

Moreover, we have

µ(∪Nn) ≤
∑

µ(Nn) = 0 =⇒ µ(∪Nn) = 0.

This shows that N is closed under countable unions. Why is it however, not a σ-algebra? It’s
not even an algebra! This is because it is not closed under complements. What is always an
element of N ? The ∅ is always measurable and has measure zero. Hence ∅ ∈ N . What about
its complement? This is where the non-triviality hypothesis plays a role. There is some Y ∈M
such that µ(Y ) > 0. Since Y ⊂ X, by monotonicity

µ(X) ≥ µ(Y ) > 0 =⇒ X = ∅c /∈ N .
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We shall now see that once we have an outer measure, we can build a sigma algebra and a
measure, and obtain a complete measure space!

Theorem 2.3 (Carathéodory: creating a measure from an outer measure). Let µ∗ be an outer
measure on X. A set A ⊂ X is called measurable with respect to µ∗ ⇔ ∀ E ⊂ X the following
equation holds:

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac). (∗)
Then M := {A ⊂ X|A is µ∗ measurable} is a σ-algebra and µ∗

∣∣
M is a complete measure.

Proof: Note that A ∈M⇒ Ac ∈M because (*) is symmetric in A and Ac. Since µ∗(∅) = 0,
we have

µ∗(E ∩ ∅) + µ∗(E ∩ ∅c) = µ∗(∅) + µ∗(E ∩X) = 0 + µ∗(E) = µ∗(E).

Consequently, ∅ ∈ M.
Next we will show that M is closed under finite unions of sets. For A,B ∈ M and E ⊂ X we
get, by multiple use of (*):

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗((E ∩A) ∩B) + µ∗((E ∩A) ∩Bc)
+ µ∗((E ∩Ac) ∩B) + µ∗((E ∩Ac) ∩Bc).

Furthermore, we can write A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B), so that

E ∩ (A ∪B) = (E ∩ (A ∩B)) ∪ (E ∩ (A ∩Bc)) ∪ (E ∩ (Ac ∩B)),

so by countable subadditivity of outer measures, we have

µ∗(E ∩A ∩B) + µ∗(E ∩Ac ∩B) + µ∗(E ∩A ∩Bc) ≥ µ∗(E ∩ (A ∪B))

Since E ∩Ac ∩Bc = E ∩ (A ∪B)c, using this inequality in the above equation gives us:

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c).

Moreover, by countable subadditivity of outer measures,

µ∗(E) = µ∗[(E ∩ (A ∪B)) ∪ (E ∩ (A ∪B)c)] ≤ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)).

So the inequality is actually an equality, since we have shown that

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c) ≥ µ∗(E).

Hence A ∪B ∈M.
Next we show that µ∗ is finitely-additive:

∀A,B ∈M, A∩B = ∅ ⇒ µ∗(A∪B) = µ∗((A∪B)∩A) + µ∗((A∪B)∩Ac) = µ∗(A) + µ∗(B).

Now we will show that M is actually a σ-algebra: For {Aj}j∈N ⊂M we can define a sequence
of disjoint sets {Bj}j∈N ⊂M fulfilling

⋃
j∈NAj =

⋃
j∈NBj by:

B1 := A1, Bn := An \ ∪n−1
k=1Bk, n ≥ 2.

Let us also define

B̃n :=

n⋃
j=1

Bj .

Then sinceM is closed under finite unions of sets and also closed under complementation, both

B̃n ∈M, Bn ∈M.

So, we need to show that ⋃
j∈N

An =
⋃
j∈N

Bj ∈M.
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For E ⊂ X, since Bn ∈M,

µ∗(E ∩ B̃n)
(∗)
= µ∗(E ∩ B̃n ∩ Bn) + µ∗(E ∩ B̃n ∩ Bnc) = µ∗(E ∩ Bn) + µ∗(E ∩ B̃n−1)

Thus µ∗(E ∩ B̃n) = µ∗(E ∩ Bn) + µ∗(E ∩ B̃n−1). Repeating this argument, we have µ∗(E ∩
B̃n−1) = µ∗(E ∩Bn−1) + µ∗(E ∩ B̃n−2). Continuing inductively, we have:

µ∗(E ∩ B̃n) = µ∗(E ∩Bn) + µ∗(E ∩Bn−1) + µ∗(E ∩ B̃n−2) = ... =

n∑
k=1

µ∗(E ∩Bk)

Using this result together with the fact that B̃n ∈M, we get:

µ∗(E) = µ∗(E ∩ B̃n) + µ∗(E ∩ B̃cn) =

n∑
k=1

µ∗(E ∩Bk) + µ∗(E ∩ B̃cn)

≥
n∑
k=1

µ∗(E ∩Bk) + µ∗(E \ (

∞⋃
k=1

Bk))

Above, we have used that

E ∩ B̃cn = E ∩ (∪nk=1Bn)c = E \ ∪nk=1Bn ⊃ E \
∞⋃
k=1

Bk,

together with the fact that outer measures are monotone. This inequality holds for any n ∈ N,
so we obtain

(∗∗) µ∗(E) ≥
∞∑
k=1

µ∗(E ∩Bk) + µ∗(E \ (

∞⋃
k=1

Bk)).

Since

E ∩ (∪∞k=1Bk) = ∪∞k=1E ∩Bk,
by countable subadditivity of out measures,

µ∗(E ∩ (

∞⋃
k=1

Bk)) ≤
∞∑
k=1

µ∗(E ∩Bk).

We therefore obtain, combining this with the above inequality

µ∗(E) ≥ µ∗(E ∩ (

∞⋃
k=1

Bk)) + µ∗(E \ (

∞⋃
k=1

Bk)) = µ∗(E ∩ (

∞⋃
k=1

Bk)) + µ∗(E ∩ (

∞⋃
k=1

Bk)c).

Since E ⊂ (E ∩Y )∪ (E ∩Y c), by countable subadditivity of outer measures, for any Y we have

µ∗(E) ≤ µ∗(E ∩ Y ) + µ∗(E ∩ Y c).

We therefore also have the inequality

µ∗(E) ≤ µ∗(E ∩ (

∞⋃
k=1

Bk)) + µ∗(E ∩ (

∞⋃
k=1

Bk)c).

Combining with the reverse inequality we demonstrated above, we obtain

µ∗(E) = µ∗(E ∩ (

∞⋃
k=1

Bk)) + µ∗(E ∩ (

∞⋃
k=1

Bk)c).

This shows that ∪Bk satisfies the definition of M, so we have
∞⋃
k=1

Ak =

∞⋃
k=1

Bk ∈M.

Hence M is a σ-algebra.



12 FRACTALS

Now we want to show that µ∗
∣∣
M is a measure. First we note that since µ∗ is an outer measure,

we have µ∗(∅) = 0. Moreover, outer measures are also monotone, so µ∗ is monotone. Thus,
we only need to show that µ∗ restricted to M is countably additive. Let {Bk}k∈N ⊂ M be
pairwise disjoint sets. Defining E :=

⋃∞
k=1Bk and using (**), we get

µ∗(

∞⋃
k=1

Bk) = µ∗(E)
(∗∗)
≥

∞∑
k=1

µ∗(E ∩Bk) + µ∗(∅) =

∞∑
k=1

µ∗(Bk) ≥ µ∗(
∞⋃
k=1

Bk)

=⇒ µ∗(

∞⋃
k=1

Bk) =

∞∑
k=1

µ∗(Bk)

So µ∗
∣∣
M is a measure.

Finally, we show that it is a complete measure: For Y ⊂ X such that µ∗(Y ) = 0, and for
arbitrary E ⊂ X we have by countable subadditivity of outer measures

µ∗(E) ≤ µ∗(E ∩ Y ) + µ∗(E ∩ Y c) ≤ µ∗(Y ) + µ∗(E) = µ∗(E)

Therefore Y ∈M.

Remark 3. We briefly discussed the proof of completion, and I shall add a remark here. Tech-
nically speaking, we should be considering

µ∗∗ : P (X)→ [0,∞], µ∗∗(A) = inf{
∑
j≥1

µ∗(Ej) : A ⊂ ∪j≥1Ej , Ej ∈M}.

If some set has µ∗∗(Y ) = 0, then for each k ∈ N there exists {Ekj } ∈ M such that

Y ⊂ ∪j≥1E
k
j ,

∑
j≥1

µ∗(Ekj ) < 2−k.

Since M is a σ-algebra,

Ak := ∪j≥1E
k
j ∈M,

and

µ∗(Ak) ≤
∑
j≥1

µ∗(Ekj ) < 2−k.

Moreover, since Y ⊂ Ak for all k, we have

Y ⊂ ∩k≥1Ak,

and we also have that since M is a σ-algebra

∩k≥1Ak ∈M.

Since

∩k≥1Ak ⊂ An ∀n ∈ N,
by monotonicity,

µ∗(Y ) ≤ µ∗(∩k≥1Ak) ≤ 2−n ∀n ∈ N.
This shows that µ∗(Y ) = 0. It is pretty straightforward to show that the converse holds as well,
that is if µ∗(Z) = 0 then µ∗∗(Z) = 0. So, by the completeness proposition, our µ∗ is complete!

Another important concept in measure theory is that of a pre-measure.

Definition 2.4. Let A ⊂ P (X) be an algebra. A function µ0 : A → [0,∞] is called a pre-
measure if

(1) µ0(∅) = 0
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(2) If {Aj} is a countable collection of disjoint elements of A such that

∪Aj ∈ A,

then

µ0(∪Aj) =
∑

µ0(Aj).

Exercise 4. We have shown how, given a measure space (X,M, µ), we can obtain a minimal
complete measure space, (X,M̄, µ̄). We have also shown how, given a measure, µ, we can
canonically construct an outer measure, µ∗.

(1) Using the canonically associated outer measure, µ∗, determine whether or not the set

A := {A ∈ P (X) : µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) holds true for all E ⊂ X}

is equal to the set

M̄ := {E ∪ F : E ∈M, and F ⊂ N ∈ N},

where again N is the set of elements of M which have µ-measure zero.
(2) In this way, determine whether or not the spaces

(X,A, µ∗)

and

(X,M̄, µ̄)

are the same? My sneaking suspicion is that they are the same, but I shall not spoil
your fun in investigating this question.

2.1. Homework: Constructing the Lebesgue measure. The n-dimensional Lebesgue
measure is the unique, complete measure which agrees with our intuitive notion of n-dimensional
volume. To make this precise, first we define a generalized interval and our notion of intuitive
volume.

Definition 2.5. A generalized interval in Rn is a set for which there exist real numbers ak ≤ bk
for k = 1, . . . n, such that this set has the form

I = {x ∈ Rn, x =
∑

xkek, ak < or ≤ xk < or ≤ bk, k = 1, . . . , n}.

Above we are using ek to denote the standard unit vectors for Rn. The intuitive volume function
on Rn is defined on such a set to be

vn(I) =
∏

(bk − ak).

Next we can extend our intuitive notion of volume to elementary sets.

Definition 2.6. An elementary subset of Rn is a set which can be expressed as a finite disjoint
union of generalized intervals. The collection of all of these is denoted by En.

Exercise 1. Prove that vn is well-defined on En.

Exercise 2. To make an algebra containing En, in particular the smallest algebra containing
En, it is necessary to include compliments. Define

A := {Y ⊆ Rn | Y ∈ εn or ∃Z ∈ εn s.t. Y = Zc}
Prove that A is an algebra.

Exercise 3. Show that νn is well-defined on A where

νn(

n∏
Iai, αiI) :=

{
0, if ai = αi for some i∏

(αi − ai), else

Exercise 4. Show that νn is a pre-measure on A.
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2.2. Hints.

(1) ∅ =
∏

Ix, xI for x ∈ Rn. Notation: we use Ia, bI to denote either ]a, b[, [a, b], ]a, b] or
[a, b[. Notation which is unnecessary shall be simplified when possible.

(2) Show that A is closed under compliments
(3) Let A,B ∈ A. If A,B ∈ εn then first consider the case where A,B are each single

intervals i.e. A =
∏

Iai, αiI, B =
∏

Ibi, βiI for ai ≤ αi, bi ≤ βi. For each i, if
Ibi, βiI ⊂ Iai, αiI then note that

Iai, αiI\Ibi, βiI = Iai, biI ∪ Iβi, αiI

If Ibi, βiI 6⊂ Iai, αiI, then either Ibi, βiI ∩ Iai, αiI = ∅ in which case Iai, αiI\Ibi, βiI =
Iai, αiI, or Ibi, βiI ∩ Iai, αiI 6= ∅ so that

Iai, αiI\Ibi, βiI =

{
Iai, biI if bi ≤ αi(⇒ βi > αi)

Iβi, αiI if ai ≤ betai(⇒ bi < ai)

In both cases Iai, αiI\Ibi, βiI is the disjoint union of intervals. Repeating for each
i = 1, ..., n gives A\B ∈ εn, and similarly B\A ∈ εn. Note that A ∩ B =

∏
Ixi, yiI

with xi = max{ai, bi}, yi = min{αi, βi} (and should xi ≥ yi then it is understood that
Ixi, yiI = ∅. Therefore,

A ∪B = (A\B) ∪ (B\A) ∪ (A ∩B) ∈ εn.
In fact, for A =

∏
Iai, αiI ∈ εn note that

Ac =Rn\A

=
∏

I−∞, aiI ∪
∏

Iαi,∞I

Allowing the endpoints xi and/or yi of Ixi, yiI to be ±∞, the same arguments for
A,B as above show that Ac ∪B and Ac ∪Bc are elements of A.

More generally, for A =
k⋃
j=1

Ij ∈ εn with Ij ∩
k 6=j

Ik = ∅ and B =
m⋃
l=1

Jl ∈ εn with

Jl ∩
m6=l

Jm = ∅ with end points possibly ±∞, repeated application of the above arguments

shows that I1 ∪ J1 ∈ εn, (I1 ∪ J1)∪ I2 ∈ εn, and so forth. Therefore, A∪B ∈ εn. So A
is closed under finite unions and hence A is an algebra.

(4) To show that νn is well-defined on A and that it is a pre-measure, first show that
νn(∅) = 0.

(5) Next, let {Am}m≥1 ⊂ A such that ∪
m≥1

Am ∈ A, Am ∩
k 6=m

Ak = ∅ then ∃{Ij}kj=1 disjoint

in A such that
k⋃
j=1

Ij =
∞⋃
m=1

Am.

By definition, νn(
M⋃
m=1

Am) =
M∑
m=1

vn(Am) ≤ νn(
k⋃
j=1

Ij) =
k∑
j=1

vn(Ij)

∀M ∈ N,
M∑
m=1

vn(Am) ≤
k∑
j=1

vn(Ij) = νn(
∞⋃
m=1

Am) ≤
M∑
m=1

vn(Am)

⇒ νn(
∞⋃
m=1

Am) =
M∑
m=1

vn(Am)

3. Pre-measure extension theorem and metric outer measures

The name pre-measure is appropriate because it’s almost a measure, it’s just possibly not
countably additive for every disjoint countable union, since these need not always be contained
in a mere algebra (which is not necessarily a σ-algebra). However, Carathéodory can help us
to extend pre-measures to measures. First, we require the following.

Proposition 3.1. Let µ0 be a pre-measure on the algebra A ⊂ P (X), and define

µ∗(Y ) := inf{
∑
j

µ0(Aj) : Aj ∈ A∀j, Y ⊂ ∪jAj},
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where the infimum is taken to be ∞ if there is no such cover of Y . Then we have:

(1) µ∗ is an outer measure.
(2) µ∗(A) = µ0(A)∀A ∈ A.
(3) Every set in A is µ∗ measurable in the same sense as above, being that for arbitrary

E ⊂ X, for A ∈ A,

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac).

Proof: First, note that ∅ ∈ A since A is an algebra. Moreover, the map µ0 is defined on A,
with µ0 : A → [0,∞], and has µ0(∅) = 0. Therefore by the Outer Measure Proposition, as we
have defined µ∗, it is an outer measure.
Next, we wish to show that µ∗ and µ0 are the same when we restrict to the algebra, A. To do
this we will show that (1) pre-measures are finitely additive and (2) pre-measures are monotone.
Finite additivity of pre-measures: Next, we show that pre-measures are by definition
finitely additive since for A,B ∈ A with A ∩B = ∅, then

A ∪B = ∪Aj , A1 = A,A2 = B,Aj = ∅∀j > 2,

gives

µ0(A ∪B) = µ0(∪Aj) =
∑

µ0(Aj) = µ0(A) + µ0(B).

Monotonicity of pre-measures: Assume that A ⊂ B are both elements of A. Then B \A =
B ∩Ac ∈ A, so finite additivity gives

µ0(B) = µ0(B \A) + µ0(A) =⇒ µ0(A) = µ0(B)− µ0(B \A) ≤ µ0(B).

Showing that µ∗ = µ0 on A: Now, let E ∈ A. If E ⊂ ∪Aj with Aj ∈ A ∀j, then let

Bn := E ∩ (An \ ∪n−1
1 Aj).

Then
Bn ∈ A∀n, Bn ∩Bm = ∅∀n 6= m.

The union

∪Bn = ∪E ∩ (An \ ∪n−1
1 Aj) = E ∩ ∪(An \ ∪n−1

1 Aj) = E ∩ ∪An = E ∈ A.
So by definition of pre-measure,

µ0(E) = µ0(∪Bn) =
∑

µ0(Bn) ≤
∑

µ0(An),

since Bn ⊂ An∀n. Taking the infimum over all such covers of E comprised of elements of A,
we have

µ0(E) ≤ µ∗(E).

On the other hand, E ⊂ ∪Aj with A1 = E ∈ A, and Aj = ∅∀j > 1. Then, this collection is
considered in the infimum defining µ∗, so

µ∗(E) ≤
∑

µ0(Aj) = µ0(E).

We’ve shown the inequality is true in both directions, hence µ∗(E) = µ0(E) for any E ∈ A.
Showing that A sets are µ∗ measurable: Let A ∈ A, E ⊂ X, and ε > 0. Since we always
have by countable subadditivity

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac),
if µ∗(E) =∞, then we also have

∞ ≤ µ∗(E ∩A) + µ∗(E ∩Ac) =⇒ µ∗(E ∩A) + µ∗(E ∩Ac) =∞,
so the equality holds. Now, let us assume that µ∗(E) <∞. Then, by its definition, there exists
{Bj} ⊂ A with E ⊂ ∪Bj and ∑

µ0(Bj) ≤ µ∗(E) + ε.

Since µ0 is additive on A,

µ∗(E)+ε ≥
∑

µ0(Bj∩A)+µ0(Bj∩Ac) =
∑

µ0(Bj∩A)+
∑

µ0(Bj∩Ac) ≥ µ∗(E∩A)+µ∗(E∩Ac).
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Above we have used the definition of µ∗ as an infimum, together with the fact that since A ∈ A
and Bj ∈ A for all j, we have Bj ∩A ∈ A and Bj ∩Ac ∈ A for all j, and we also have

E ∩A ⊂ ∪Bj ∩A, E ∩Ac ⊂ ∪Bj ∩Ac.
This is true for any ε > 0, so we have

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac) ≥ µ∗(E).

So, these are all equal, which shows that A satisfies the definition of being µ∗ measurable since

E was arbitrary.
Now we will prove that we can always extend a pre-measure to a measure. You will use this in
the first exercise to complete the construction of the Lebesgue measure.

Theorem 3.2 (Pre-measure extension theorem). Let A ⊂ P (X) be an algebra, µ0 a pre-
measure on A, and M the smallest σ-algebra generated by A. Then there exists a measure µ
on M which extends µ0, namely

µ := µ∗ restricted to M.

If ν also extends µ0 then ν(E) ≤ µ(E)∀E ∈M with equality when µ(E) <∞. If µ0 is σ-finite,
then ν ≡ µ on M, so µ is the unique extension.

Proof: By its very definition, M is a σ-algebra, and all elements of A are contained in M.
Moreover, by the proposition,

µ∗(A) = µ0(A), ∀A ∈ A.
Since ∅ ∈ A, we have

µ∗(∅) = 0.

Moreover, since µ∗ is an outer measure, by the proposition, it is monotone. Consider the set

{A ⊂ X|µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) holds true for all E ⊂ X}.
By the preceding proposition, this set contains all elements of A. Moreover, since µ∗ is an outer
measure, in Caratheodory’s Theorem, we proved that this set is a σ algebra, and µ∗ restricted
to this set is a measure. Hence, since it is a σ algebra which contains A, it also contains M.
Therefore, µ∗ restricted to M is countably additive, since µ∗ on this larger (Carathéodory-
Theorem-σ-algebra-set) is countably additive. Hence µ is a measure.
So, we only need to consider the statements about a possibly different extension ν which
coincides with µ0 on A and is a measure on M. If E ∈M and

E ⊂ ∪Aj , Aj ∈ A∀j,
then

ν(E) ≤
∑

ν(Aj) =
∑

µ0(Aj).

This holds for any such covering of E by elements of A, so taking the infimum we have

ν(E) ≤ µ∗(E) = µ(E) since E ∈M.

If µ(E) < ∞, let ε > 0. Then we may choose {Aj} ⊂ A which are WLOG (without loss of
generality) disjoint (why/how can we do this?) such that

E ⊂ ∪Aj , µ(∪Aj) =
∑

µ0(Aj) < µ∗(E) + ε = µ(E) + ε,

since E ∈M. Note that E ∈M, {Aj} ⊂ A, andM is a σ algebra containing A. We therefore
have

A := ∪Aj ∈M.

Then, we also have

ν(A) = lim
n→∞

ν(∪n1Aj) = lim
n→∞

n∑
1

ν(Aj) = lim
n→∞

n∑
1

µ0(Aj) = µ(A).
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Then we have since E ∈ M, and {Aj} ⊂ A, and M is a σ algebra containing A that A ∈ M.
By countable additivity of the measure µ, we have

µ(∪Aj) = µ(A) = µ(A ∩ E) + µ(A \ E) = µ(E) + µ(A \ E) < µ(E) + ε

which shows that

µ(A \ E) < ε.

Consequently, using monotonicity, the fact that µ(A) = ν(A), the additivity of ν, and the fact
that ν ≤ µ, we obtain

µ(E) ≤ µ(A) = ν(A) = ν(E ∩A) + ν(A \ E) ≤ ν(E) + µ(A \ E) < ν(E) + ε.

This holds for all ε > 0, so

µ(E) ≤ ν(E).

Consequently in this case µ(E) = ν(E), whenever these are finite.
Finally, if X = ∪Aj with Aj ∈ A, µ0(Aj) <∞∀j, we may WLOG assume the Aj are disjoint.
Then for E ∈M,

E = ∪(E ∩Aj),
which is a disjoint union of elements of M. So by countable additivity

µ(E) = µ(∪E ∩Aj) =
∑

µ(E ∩Aj) =
∑

ν(E ∩Aj) = ν(∪E ∩Aj) = ν(E),

since E∩Aj ⊂ Aj shows that µ(E∩Aj) ≤ µ(Aj) <∞, so µ(E∩Aj) = ν(E∩Aj).

3.1. Introducing metric outer measures. To define the Hausdorff measure, we will intro-
duce metric outer measures. A metric outer measure requires an addition type of structure on
the big set X: we need a notion of distance between points. Thus, metric outer measures are
only defined when the set X also carries along a distance, d, also known as a metric. So, for a
metric space (X, d) and for A,B ⊂ X define

dist(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}.

Define also the diameter of a set A ⊂ X

diam(A) := sup{d(x, y) : x, y ∈ A},diam(∅) := 0.

Definition 3.3. Let µ∗ be an outer measure defined on a metric space, (X, d). Then µ∗ is
called metric outer measure iff for each A,B ⊂ X we have

dist(A,B) > 0⇒ µ∗(A ∪B) = µ∗(A) + µ∗(B).

Recall: A ⊂ X is µ∗-measurable iff for each E ⊂ X

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩AC).

Denote by M(µ∗) the µ∗-measurable subsets. Recall that the Borel sets B(X) is the smallest
σ-algebra generated by the topology of X (induced by the metric). In other words, it is the
smallest σ-algebra which contains all open sets. We note that ∅ is both open and closed. A
non-empty subset, U , of a metric space (X, d) is defined to be open precisely when

∀x ∈ U∃δ > 0 such that Bδ(x) ⊂ U,

where

Bδ(x) = {y ∈ X|d(x, y) < δ}.
A subset of X is said to be closed precisely when its complement is open. We now prove a
Theorem due to Carathéodory which states that the Borel sets in X are contained in M(µ∗).

Theorem 3.4 (Carathéodory). Let µ∗ be a metric outer measure on (X, d). Then we have
B(X) ⊂M(µ∗).
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Exercise 5. Show that µ∗ is a measure on B(X). Denote by µ the restriction of µ∗ to B(X).
Let A be defined as in the completion theorem, that is:

A = {E ∪ F : E ∈ B(X), F ⊂ N ∈ B(X), µ∗(N) = 0}.
Define as in the completion µ̄(E ∪F ) = µ(E). Is it true that M(µ∗) = A? Prove your answer.

3.2. Homework: properties of the Lebesgue σ-algebra.

(1) In the previous homework, we proved that νn is a pre-measure on the algebra A.
Note by the definition of A, it is the smallest algebra which contains εn. By the pre-
measure extension theorem, since νn is σ-finite on A, there exists a unique extension
of νn to a measure M̄ on the smallest σ-algebra containing εn. It is unique, because
Rn = ∪

m≥1
[−M,M ]n = ∪

m≥1
IM and νm(IM ) = (2M)n < ∞ for each M . Canonically

completing this measure toM by applying the completion theorem yields the Lebesgue
measure and the Lebesgue σ-algebra, the smallest σ-algebra generated by εn such that
the extension of νn to a measure with respect to this σ-algebra is complete. This is
the construction of the Lebesgue measure. In this exercise, the task is to review the
construction of the Lebesgue measure step-by-step, and make sure it makes sense to
you.

(2) Prove that Borel sets are Lebesgue measurable.
(3) Prove B (M
(4) It is difficult to construct sets 6⊂ M, but actually there are many natural examples...

Exercise: Construct a subset of Rn which is not measurable. Recall that f : Rn → Rm
is “measurable” usually is understood to mean that ∀B ∈ Bm, f−1(B) ∈ Mn. More
precisely, f is (Rn,Bn), (Rm,Bm) measurable. In general, f : X → Y is (X,A), (Y,B)
measurable if ∀B ∈ B, f−1(B) ∈ A, where A and B are σ-algebras.

(5) Prove that all n− 1 dimensional sets have Ln measure 0.

3.3. Hints.

(1) To prove that Borel sets are Lebesgue measurable, it suffices to show that open sets are
Lebesgue measurable. So, let O ⊂ Rn be open. Then we will show that O ∈M.

First consider O =
∏

]ai, αi[∈ εn ⊂M. For an arbitrary open set O, for each x ∈ O
there exists ε ∈ Q, ε > 0 such that x ∈

∏
]qm − ε, qm + ε[⊂ O, qm ∈ Q, m = 1, ..., n.

Taking the union of all such intervals, namely those contained in O such that end-
points are rational is a countable union. Countability of course follows since Qn ⊂ Rn is
countable and Q is countable so a union of intervals with endpoints in Qn is countable.
Therefore, O ∈M.

4. Metric outer measures

Theorem 4.1 (Carathéodory). Let µ∗ be a metric outer measure on (X, d). Then we have
B(X) ⊂M(µ∗).

Proof:
Note that sinceM(µ∗) is a σ-algebra (by Thm. 2.3) it is enough to prove that every closed set
is µ∗-measurable. (why does this suffice?) So let F ⊂ X be a closed subset. Since the reverse
inequality always holds, it will be enough to prove that for any set A we have

µ∗(A) ≥ µ∗(A ∩ F ) + µ∗(A \ F ).

Define the sets

Ak :=

{
x ∈ A : dist(x, F ) ≥ 1

k

}
.

Then dist(Ak, A ∩ F ) ≥ 1
k , so since µ∗ is a metric outer measure we have

µ∗(A ∩ F ) + µ∗(Ak) = µ∗((A ∩ F ) ∪Ak)︸ ︷︷ ︸
⊂A

≤ µ∗(A).(+)
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Let x ∈ A \ F = A ∩ F c. Since F c is open, there exists δ > 0 such that Bδ(x) ⊂ F c. Hence
d(x, F ) ≥ δ. So, in general, for all x ∈ A \ F , we have

dist(x, F ) > 0.

Consequently, we have

A \ F =
⋃
Ak.

The main and last step in the proof is to calculate the limit in (+) as k → ∞. If the limit is
infinity there is nothing to do, because it shows that

µ∗(A) =∞ ≥ anything we want, in particular ≥ µ∗(A ∩ F ) + µ∗(A ∩ F c).

So, let us assume that the limit in (+) is finite.
Note that A1 ⊂ A2 ⊂ A3 ⊂ . . ..
To get a bit of room between our sets, let us define

B1 := A1, Bn := An \An−1, n ≥ 2.

By definition, Ak ⊂ A, so we also have Bk ⊂ A for all A. By definition of Ak and Bk, for all
x ∈ Bk we have

1

k
≤ dist(x, F ) <

1

k − 1
,

where the second inequality follows since Bk = Ak \Ak−1. Therefore if j ≥ k+ 2, for all y ∈ Bj
we have

1

j
≤ dist(y, F ) <

1

j − 1
≤ 1

k + 1
<

1

k
≤ dist(x, F ).

Let ε > 0 such that
1

j − 1
+ ε <

1

k
.

By definition, there exists z ∈ F such that

d(y, z) ≤ dist(y, F ) + ε,

so

d(y, z) <
1

j − 1
+ ε <

1

k
≤ dist(x, F ) ≤ d(x, z).

We therefore have by the triangle inequality,

d(x, y) ≥ d(x, z)− d(z, y) ≥ 1

k
−
(

1

j − 1
+ ε

)
> 0.

Since x ∈ Bk and y ∈ Bj are arbitrary, and ε > 0 is fixed, we therefore have proven that
dist(Bj , Bk) > 0.
This means we can apply the metric outer measure property (for even and odd indices) and by
induction we conclude that

µ∗

(
n⋃
k=1

B2k−1

)
=

n∑
k=1

µ∗(B2k−1),

µ∗

(
n⋃
k=1

B2k

)
=

n∑
k=1

µ∗(B2k).

These unions are each contained in A2n, so we have the inequalities

µ∗

(
n⋃
k=1

B2k−1

)
=

n∑
k=1

µ∗(B2k−1) ≤ µ∗(A2n),

µ∗

(
n⋃
k=1

B2k

)
=

n∑
k=1

µ∗(B2k) ≤ µ∗(A2n).
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Since A1 ⊂ A2 ⊂ . . ., the values µ∗(A2n) are non-decreasing and by assumption bounded.
Hence both sums above, since they are comprised of non-negative terms, are convergent as
n→∞.
Therefore we conclude for any j

µ∗(A \ F ) = µ∗

(⋃
i

Ai

)

= µ∗

Aj ∪ ⋃
k≥j+1

Bk


≤ µ∗(Aj) +

∞∑
k=j+1

µ∗(Bk)

≤ lim
n→∞

µ∗(An) +

∞∑
k=j+1

µ∗(Bj)︸ ︷︷ ︸
→0,j→∞

.

The last term tends to zero because it is comprised of the tails of two convergent series.
Since the latter sum goes to 0 by convergence we obtain

µ∗(A \ F ) ≤ lim
n→∞

µ∗(An).

Together with (+) this yields

µ∗(A) ≥ lim
k→∞

µ∗(Ak) + µ∗(A ∩ F ) ≥ µ∗(A \ F ) + µ∗(A ∩ F )

which is the desired inequality.

Corollary 4.2. Let (X, d) be a metric space, and let µ∗ be a metric outer measure on X. Then
µ∗ restricted to the Borel sigma algebra is a measure, that is (X,B(X), µ∗) is a measure space.

Proof: By the theorem,M(µ∗) ⊃ B(X). In a previous theorem, we proved that µ∗ restricted
to M(µ∗) is a measure. Note that ∅ ∈ B(X) and µ∗(∅) = 0. If {Aj} ⊂ B(X) are pairwise
disjoint, then since they are also contained in M(µ∗) we have

µ∗(∪Aj) =
∑

µ∗(Aj).

Hence µ∗ vanishes on the empty set and is countably additive on B(X). Since µ∗ is defined on

B(X) which is a σ-algebra, we have that µ∗ restricted to B(X) is a measure.

4.1. General results which shall be used to obtain the Hausdorff measure. We shall
obtain the Hausdorff measure using results which can be applied much more generally to obtain
metric outer measures.

Definition 4.3 (Countable covers). Let C denote a collection of sets in X. Assume ∅ ∈ C.
Then for each A ⊂ X we denote by CC(A) the collection of sets in C such that there is an at
most countable sequence of sets {En}n∈N ∈ CC(A) such that

A ⊂
∞⋃
n=1

En.

These are the countable covers of A by sets belonging to C.
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Definition 4.4. With C a collection of sets in X, let ν : C → [0,∞] with ν(∅) = 0. We define
the following set function depending on C and ν

µ∗ν,C(A) := inf
D∈CC(A)

∑
D∈D

ν(D).(4.1)

If the infimum is empty, then we define µ∗ν,C(A) =∞.

Theorem 4.5. The set function given by (4.1), which for simplicity we denote here by µ∗, is
an outer measure µ∗ on X with

µ∗(A) ≤ ν(A), A ∈ C
For any other outer measure µ̃∗ on X with the above condition we have

µ̃∗(A) ≤ µ∗(A), A ⊂ X.
So in this sense, µ∗ is the unique maximal outer measure on X which satisfies µ∗(A) ≤ ν(A)
for all A ∈ C.

Proof: Let A ∈ C. Then, A covers itself, so we have by definition

µ∗(A) ≤ ν(A).

Next, we need to show that this µ∗ is an outer measure. We have basically already done this
in the Proposition on Outer Measures! Since ν ≥ 0, it follows that µ∗ ≥ 0. Moreover, since ∅
is a countable cover of itself, we have

0 ≤ µ∗(∅) ≤ ν(∅) = 0.

Hence µ(∅) = 0.
Monotonicity: Assume that A ⊂ B. Then, any countable cover of B is also a countable cover
of A. However, there could be covers of A which do not cover B. Hence, the set of countable
covers of A contains the set of countable covers of B, so the infimum over covers of A is smaller
than the infimum over covers of B, and therefore

µ∗(A) ≤ µ∗(B).

Countable sub-additivity: Let {Aj} be pairwise disjoint. We wish to show that

µ∗(∪Aj) ≤
∑

µ∗(Aj).

Note that if for any j we have µ∗(Aj) = ∞, we are immediately done. So, assume this is not
the case for any j. Let ε > 0. Then for each j there exists a countable cover {Dk

j } such that

Aj ⊂ ∪kDk
j , µ∗(Aj) +

ε

2j
≥
∑
k

ν(Dk
j ).

Hence, we also have

∪jAj ⊂ ∪j,kDk
j ,

and so

µ∗(∪Aj) = inf ... ≤
∑
j,k

ν(Dk
j ) ≤

∑
j

µ∗(Aj) +
ε

2j
= ε+

∑
j

µ∗(Aj).

Since this holds for any ε > 0, we obtain the desired inequality.
Another outer measure: Assume that µ̃∗ is another outer measure defined on X which has
µ̃∗(A) ≤ ν(A) for all A ∈ C. If µ∗(A) = ∞ there is nothing to prove. So assume that this is
not the case. Let ε > 0. Then there exists a countable cover {Dj} which contains A such that

µ∗(A) + ε ≥
∑
k

ν(Dk) =
∑
k

µ̃∗(Dk) ≥ µ̃∗(∪Dk) ≥ µ̃∗(A).

Above we have used that ν = µ̃∗ on the Dk, followed by countable sub-additivity of the outer
measure µ̃∗, followed by monotonicity of the outer measure µ̃∗. Since this inequality holds for
any ε > 0, we get that

µ∗(A) ≥ µ̃∗(A).
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Now, we shall specify to the case in which (X, d) is a metric space. For this, we recall that for
a non-empty set A ⊂ X we define its diameter,

diam(A) := sup{d(x, y) : x ∈ A, y ∈ A}.

With this in mind, we can define the countable covers of diameter less than ε.

Definition 4.6. Let C be as above. For ε > 0, define

Cε := {A ∈ C : diam(A) < ε}.

Now define the outer measure depending on this cover as a special case of (4.1), in particular
we set

µ∗ε (A) := µν,Cε(A).

If ε′ < ε, then all covers which have diameter less than ε′ also have diameter less than ε, so
Cε′ ⊂ Cε. Consequently, when we take the infimum to obtain µ∗ε and µ∗ε′ , there are more elements
considered in the infimum for Cε (i.e. more covers), so the infimum is smaller, and

µ∗ε (A) ≤ µ∗ε′(A).

The following theorem shows how, starting from any arbitrary set function ν which has ν(∅) = 0,
we can construct a “canonical metric outer measure.” We shall later see that for a particular
choice of ν, we obtain the Hausdorff measure.

Theorem 4.7 (A canonical metric outer measure). The limit µ∗0(A) := limε→0 µ
∗
ε (A), A ⊂ X

defines a metric outer measure.

4.2. Homework.

(1) Prove that for any interval I ⊂ Rn, there exists a series {Bj}j≥1 such that
(a) Each Bj is a ball in I.
(b) It is Bj ∩Bk = ∅ for all j 6= k.
(c) We have Ln(I \

⋃
Bj) = 0 (and therefore Ln(I) = Ln(

⋃
Bj)).

(2) Now for a bit of combinatorial fun... Let X be a non-empty set. Let {Aj}nj=1 be
distinct, non-empty, proper subsets of X. How many elements does A, the smallest
algebra which contains {Aj}nj=1, have?

4.3. Hints. First note that Ln(I \ I̊) = 0. So without loss of generality we can assume that I
is open. For x ∈ I, there is δ ∈ Q, δ > 0 such that Bδ(x) ⊂ I. Also there exists q ∈ Qn such
that |x− q| < δ · 10−6. This implies for every y with |y − q| < (1− 10−6)δ,

|y − x| ≤ |y − q|+ |x− q| < δ =⇒ y ∈ Bδ(x) ⊂ I.

So we have

B1 := B(1−10−6)δ(q) ⊂ I.

For N ≥ 1 and x ∈ I, it is either x ∈
⋃N
k=1Bk or not. We are assuming {Bk}N ⊂ I are disjoint

balls with rational radii and rational centers (centers are elements of Qn). If x ∈
⋃N
k=1Bk we

consider x ∈ I \
⋃N
k=1Bk. Note that this set is open. So, if there exists x ∈ I \

⋃N
k=1Bk, then

the same argument shows that there is a new ball,

x ∈ BN+1 ⊂ I \
N⋃
k=1

Bk

with the center and radius of BN+1 rational (same argument as above). Then we note further
that the set of balls

{Bδ(q) : δ ∈ Q, and q ∈ Qn}
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is countable. Consequently, we require at most countably many of these balls to ensure that

I ⊂
∞⋃
k=1

Bk and Ln(Bk \Bk) = 0 for all k ⇒ Ln(
⋃

(Bk \Bk)) = 0.

So we get

Ln(I) = Ln(I ∩
⋃
Bk) + Ln(I \

⋃
Bk) = Ln(

⋃
Bk) + Ln(

⋃
Bk \Bk) = Ln(

⋃
Bk).

5. Canonical metric outer measures and Hausdorff measure

Theorem 5.1 (A canonical metric outer measure). The limit µ∗0(A) := limε→0 µ
∗
ε (A), A ⊂ X

defines a metric outer measure.

Proof: Since µ∗ε is non-decreasing as ε ↓ 0, the limit exists (since we allow∞ as a limit value).
We have already proven that each µ∗ε is an outer measure.

Exercise 6. Prove that the outer measure property is preserved under the limit as ε → 0, to
show that µ∗0 is indeed an outer measure.

Metric outer measure: Let A,B ⊂ X be such that dist(A,B) > 0. Since µ∗ is an outer
measure, by countable subadditivity,

µ∗0(A ∪B) ≤ µ∗0(A) + µ∗0(B).

We would like to prove the reverse inequality. The idea is that since A and B are at a positive
distance away from each other, we can take ε small enough so that our µ∗ε cover of the union
splits into two disjoint covers. (Draw a picture!)
Let us make this precise. Since the distance between A and B is positive, there exists n0 ∈ N
such that

dist(A,B) >
1

n
, for n > n0.

Let δ > 0 be some arbitrary positive number (this is our fudge factor which we shall later
banish to zero). Then, cover the union A ∪B with sets Enk such that

µ∗1
n

(A ∪B) + δ ≥
∞∑
k=1

ν(Enk )

and such that for each k we have diam(Enk ) ≤ 1
n . Let us delete any Enk which has empty

intersection with A ∪ B, that is we delete any unneeded, extraneous, superfluous covers. Still
denote this set by Enk for notational simplicity. We then still have

µ∗1
n

(A ∪B) + δ ≥
∑
k

ν(Enk ).

Since the diameter of Enk is less than or equal to 1
n which is smaller than the distance between

A and B, we have that the Enk intersect either A or B and not both in the sense that

Enk ∩A 6= ∅ ⇒ Enk ∩B = ∅, Enk ∩B 6= ∅ ⇒ Enk ∩A = ∅.

To see this, draw a picture. If some Enk intersected both A and B, then it would have to
contain at least one point in A and at least one point in B. The distance between those points
is strictly greater than 1

n . Hence the diameter of such a set would need to exceed 1
n , which is

a contradiction.
So, with this consideration, let

En(A) := {Enk : Enk ∩A 6= ∅}, En(B) := {Enk : Enk ∩B 6= ∅}.

Then, En(A) and En(B) have no sets in common and together they yield the sequence (Enk )∞k=1.
Since

A ∪B ⊂ ∪Enk =⇒ A ⊂ ∪En(A), B ⊂ ∪En(B).
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We therefore have

µ∗1
n

(A) ≤
∑

Enk∈En(A)

ν(Enk ), µ∗1
n

(B) ≤
∑

Enk∈En(B)

ν(Enk ),

so the sum
µ∗1
n

(A) + µ∗1
n

(B) ≤
∑

Enk∈En(A)

ν(Enk ) +
∑

Enk∈En(B)

ν(Enk ).

Now, the sum on the right side is just∑
k

ν(Enk ) ≤ µ∗1
n

(A ∪B) + δ.

So, we have proven that
µ∗1
n

(A) + µ∗1
n

(B) ≤ µ∗1
n

(A ∪B) + δ.

This holds for all n ≥ n0. So, letting n→∞, we obtain

µ∗0(A) + µ∗0(B) ≤ µ∗0(A ∪B) + δ.

Finally, we let δ ↓ 0, which completes the proof that µ∗0 is a metric outer measure.

Remark 4. Making a special choice of the function ν, we shall obtain the Hausdorff measure,
below. However, our preceding results are super general. If you are so inclined, it could be pretty
interesting to play around with different functions, ν, satisfying the hypotheses, and thereby
obtain different metric outer measures according to the theorem above.... Once you’ve got a
metric outer measure, then you can use our results to obtain its sigma algebra of measurable
sets. Moreover, our results prove that this sigma algebra contains the Borel sigma algebra. Our
results also prove that this metric outer measure together with its sigma algebra of measurable
sets yields a complete measure. So, now you have quite a collection of tools to build all kinds
of different measures!

5.1. The Hausdorff measure. We shall use the general results from the preceding lecture to
obtain the Hausdorff measure.

Definition 5.2. Let (X, d) be a metric space, δ > 0 and t ∈ (0,∞). Then for S ⊂ X, define
the set function

Htδ(S) := inf

{ ∞∑
i=1

(diamUi)
t|S ⊂

∞⋃
i=1

Ui,diam(Ui) < δ

}
where the infimum is taken over all countable covers of S by sets Ui ⊂ X with diam(Ui) < δ.

Remark 5. In the definition if one requires the Ui’s to be closed in this definition, the result is
the same because

diam(Ui) = diam(Ui).

If one requires the Ui’s to be open, call the corresponding thing H̃tδ. Note that the infimum is

now taken over fewer covers, since the Ui need to be open. So á priori one has H̃tδ ≥ Htδ. For
S such that

Htδ(S) =∞,
then one also has

H̃tδ(S) =∞,
so there is nothing to do. Let us assume this is not the case. Fix η > 0. Let {Uj} be a cover
which has

Htδ(S) + η ≥
∑
j

diam(Uj)
t.

Then let
Bj = {x ∈ X : d(x, Uj) < εj2

−j−1},
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Choose εj > 0 so that the diameter of Bj , which is at most diam(Uj) + ε2−j is still less than δ.
Since the diameter of Uj is strictly less than δ this is always possible. Without loss of generality
assume that εj ≤ 1 for all j. Then the Bj are an open cover of S, with diameter less than δ, so
we have

H̃tδ(S) ≤
∑
j

(diam(Bj))
t ≤

∑
j

(diam(Uj) + εj2
−j)t.

As the εj → 0, the right side converges to
∑
j diam(Uj)

t. So, let this happen, to obtain

H̃tδ(S) ≤
∑
j

(diam(Uj))
t ≤ Htδ(S) + η.

Since η > 0 was arbitrary, letting now η → 0 we obtain that H̃tδ ≤ Htδ. So it’s still the same.
Thus, if it’s more convenient to consider (1) closed covers in definition of Hausdorff measure or
(2) open covers in definition of Hausdorff measure, DO IT! There is no loss of generality.

Corollary 5.3 (Hausdorff measure). The set function Htδ is an outer measure. Moreover,

Ht := lim
δ→0
Htδ

is a metric outer measure. All Borel sets are Ht measurable, and these sets form a σ-algebra.

Proof: First, set

ν(U) := diam(U)t.

Then note that

Htδ(S) = µ∗ν,Cδ(S)

is just a special case of the “canonical outer measure” theorem. By that theorem, we therefore
obtain that

Ht(S) := lim
δ→0
Htδ(S)

is a metric outer measure. By an earlier theorem (2.3, all the Borel sets are Ht-measurable.
These Borel sets are contained in the σ-algebra of “Ht-measurable sets from Theorem 5.1.

Moreover, by this same theorem, Ht on this σ-algebra is a complete measure.
We shall call Ht the t-dimensional Hausdorff measure. The reason for this is that if t ∈ N
and A is t-dimensional, then the amount of A contained in a region of diam = r” should be
proportional to rt. This is because a ball in t-dimensional space has volume proportional to rt.
What exactly is the volume of a ball in Rn anyways?

5.2. The volume of the unit ball in Rn.

Proposition 5.4. The volume of the unit ball in Rn is

wn = Vol (B1(0)) =
2π

n
2

n · Γ(n2 )

Proof: Our goal is to compute ∫
S1(0)

∫ 1

0

rn−1 drdσ.

For starters, we would like to compute

σn :=

∫
S1(0)

dσ,

that is the surface area of the unit ball. Let us start by computing a famous integral. Define

In :=

∫
Rn

e−π|x|
2

dx.
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Note that In = (I1)n by the Fubini-Tonelli theorem, since everything converges beautifully. So,
in particular,

In = (I2)2/n.

I2 is particularly lovely to compute:

I2 =

∫ 2π

0

∫ ∞
0

e−πr
2

r drdθ = 2π

∫ ∞
0

e−s
2 sds

π
=

∫ ∞
0

e−s
2

2sds

= −e−s
2
∣∣∣∞
0

= 1.

We have used the substitution s =
√
πr. So we see that Ik = 1 for all k ∈ N. Then, we can

apply this to compute σn.

1 =

∫
Rn

e−π|x|
2

dx =

∫
S1(0)

∞∫
0

e−πr
2

rn−1 drdσ = σn

∞∫
0

e−πr
2

rn−1 dr.

Well, the latter integral we may be able to compute, because it is one-dimensional. Let s = r2π.
Then ds = 2rπdr, so

rn−1dr =
( s
π

)(n−1)/2 ds

2π
√
s/π

=
sn/2−1

2πn/2
.

So,

1 =
σn

2πn/2

∫ ∞
0

e−ssn/2−1ds.

This looks familiar... Recall:

Γ(z) =

∞∫
0

sz−1e−sds, z ∈ C, <(z) > 1.

So,

σn =
2πn/2

Γ(n/2)
.

We compute using integration by parts:

Γ(s+ 1) =

∞∫
0

tse−tdt =
[
−tse−t

]
−
∞∫

0

−e−tsts−1dt = sΓ(s).

Exercise 7. Prove that the Γ function admits a meromorphic continuation to C which is
holomorphic with the exception of simple poles at 0 ∪ −N.

Finally, we compute the volume of the ball:∫
B1(0)

dx = Vol (B1(0)) =

∫
S1(0)

1∫
0

rn−1 drdσ = σn

1∫
0

rn−1 dr =

[
σn
rn

n

]1

0

=
σn
n

= wn

Therefore, we have wn = 2πn/2

n·Γ(n2 ) , which finishes our proof.

Corollary 5.5. ∀x ∈ Rn and r > 0, the area of Sr(x) is rn−1σn and Vol (Br(x)) = wnr
n.
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Proof:

∫
Sr(x)

dσ =

∫
Sr(0)

dσ =

∫
S1(0)

rn−1dσ = rn−1σn

Analogously for Br(x).

Exercise 8. Compute Γ(n/2) for n ∈ N.

5.3. Homework: Relationship between Lebesgue and Hausdorff measures. To un-
derstand the relationship between Lebesgue and Hausdorff measures, we require the notion of
absolute continuity of measures.

Definition 5.6. Let ν and µ be measures on (X,M). Then ν is absolutely continuous with
respect to µ and we write ν << µ if ν(Y ) = 0 ∀Y ∈ M with µ(Y ) = 0. We say that µ and
ν are mutually singular and write µν if there exists E,F ∈ M with E ∩ F = ∅, E ∪ F = X,
µ(E) = 0, ν(F ) = 0.

Exercise 5. Prove that Hn << Ln and Ln << Hn.

5.4. Hints. Showing that Hn << Ln: First, we consider I =
∏

Iai, biI, li := bi − ai. If any
li = 0 let’s WLOG assume that li, ..., lk are all non-zero and lk+1 = ... = ln = 0. Then ∀ε > 0,
we can cover an interval of length L by L

ε balls (one-dimensional) of radius ε. Similarly, we can

cover I by
k∏
i=1

li
ε balls of radius ε. It follows that

∀δ ≤ ε, Hnδ (I) ≤
k∏
i=1

li
δ

(2δ)n = δn−k2n
k∏
i=1

li,

δ → 0⇒ Hn(I) = 0.

If li = 0 for all i, then I is either a point or the empty set which both have Hn = 0. For a point,
this is because for any δ > 0, we can cover a point by a ball of radius δ/2, so that Hnδ (p) ≤ δn
holds for all δ, which letting δ ↓ 0 gives Hn(p) = 0.

Finally, if for all i, li 6= 0, then we can cover I by
n∏
i=1

li
ε balls of radius ε. Then

∀δ ≥ ε, Hn,δ(I) ≤
n∏
i=1

li
δ

(2δ)n = 2nLn(I).

Consequently, if Ln(I) = 0, then Hnδ (I) = 0 which implies that Hn(I) = 0.
If Ln(A) = 0, then ∃{Ij}j≥1 such that A ⊂ ∪

j≥1
Ij and, for a fixed ε > 0,

∑
j≥1

Ln(Ij) <
ε

2n . Then

Hn(A) ≤
∑
j≥1

Hn(Ij) ≤ 2n
∑
j≥1

Ln(Ij) < ε

Hence Hn(A) = 0. Therefore Hn << Ln.

Showing that Ln << Hn: Let A ⊂ Rn such that Hn(A) = 0, where A ∈ B. Then, since
Hnδ ≤ Hn,

Hnδ (A) = 0∀δ > 0

⇒ ∃ a sequence {Bj}j≥1, which is closed in Rn, such that A ⊂
∞⋃
j=1

Bj and
∑
j≥1

(diam(Bj))
n < ε,

where ε > 0. Note that for x ∈ Bj , ρ(x, y) ≤ δj = diam(Bj)∀x ∈ Bj . So we can fix xj ∈ Bj ,



28 FRACTALS

and we get Bj ⊆ B̄δj (xj).
So we have

Ln(Bj) ≤ Ln(Bδj (xj)) = wnδ
n
j

where wn = Vol (B1(0)) denotes the volume of the unit ball with radius 1 (around zero).
Alltogether, we get

ε >
∑
j≥1

diam(Bj)
n =

∑
j≥1

Ln(Bδj (xj))

wn
≥ 1

wn

∑
j≥1

Ln(Bj)

and since A ⊂
∞⋃
j=1

Bj we get

ε >
1

wn

∑
j≥1

Ln(Bj) ≥
1

wn
Ln(A)

Letting ε ↓ 0⇒ Ln(A) = 0.

6. Hausdorff dimension

If the notion of Hausdorff dimension is to be well-defined, then it should be invariant under
isometries. We prove that the Hausdorff measure is indeed invariant under isometries, and
therefore the Hausdorff dimension, which we shall define using the Hausdorff measure, will
similarly enjoy this invariance. Let Hp denote p-dimensional Hausdorff measure. We first prove
a more general fact. Before proceeding to that proof, there is an exercise which will allow us to
be a little sloppy (or for a more positive connotation, allow us to be a little more mellow and
groovy).

Exercise 9. Change the definition of Cε covers to require diameters less than or equal to ε.
Show that the corresponding µ∗0 remains unchanged. Thus, in the definition of Hausdorff outer
measure (and Hausdorff measure), it does not require if our Hpδ = µ∗δ,ν for ν(A) = diam(A)p

is for covers with diameter < δ or ≤ δ. Either way one obtains the same outer measure Hpδ .
Therefore, either way one also obtains the same Hp.

Proposition 6.1. Let (X, d) be a metric space, and f , g be maps from some set Y into X. If
f, g : Y → X satisfy d(f(y), f(z)) ≤ Cd(g(y), g(z)) ∀y, z ∈ Y , then Hp(f(A)) ≤ CpHp(g(A)).

Proof: Let ε > 0, A ⊂ Y . Then g(A) ⊂ X. If Hp(g(A)) =∞, there is nothing to prove. So,
we assume this is not the case. Then, for all δ > 0 small, we can find {Bj}j≥1 ⊂ X such that

g(A) ⊂
∞
∪
j=1

Bj , diam(Bj) <
δ

C
,

and ∑
j≥1

diam(Bj)
p ≤ Hp(g(A)) +

ε

Cp
.

Of course, the particular collection Bj does depend on the particular small value of δ, but we
shall suppress this dependence for notational convenience.
Let us define

B̃j := f(g−1(Bj)).

We claim that these are going to cover f(A). Let y ∈ A so that f(y) ∈ f(A). Then, since
y ∈ A, we also have g(y) ∈ g(A) ⊂ ∪Bj . So, in particular, g(y) ∈ Bj for some j. Hence

y ∈ g−1(Bj) = {z ∈ Y : g(z) ∈ Bj}.

Therefore f(y) ∈ f(g−1(Bj)) = B̃j .
We therefore have

f(A) ⊂ ∪∞j=1B̃j .
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Now, if f(y) and f(z) are both in B̃j = f(g−1(Bj)), this means that y and z are both in
g−1(Bj), so there exist x and x′ in Bj with g(y) = x ∈ Bj and g(z) = x′ ∈ Bj . Then

d(f(y), f(z)) ≤ Cd(g(y), g(z)) ≤ Cdiam(Bj) < C
δ

C
= δ.

Consequently diam(B̃j) < δ. So,

Hpδ(f(A)) ≤
∑
j≥1

diam(B̃j)
p.

Moreover, by the same calculation as above, we also see that

diam(B̃j) ≤ Cdiam(Bj) =⇒ diam(B̃j)
p ≤ Cpdiam(Bj)

p.

Consequently,

Hpδ(f(A)) ≤
∑
j≥1

diam(B̃j)
p ≤ Cp

∑
j≥1

(diam(Bj))
p ≤ CpHp(g(A)) + ε.

This holds for any ε > 0, so we obtain the desired result:

Hp(f(A)) ≤ CpHp(g(A)).

Corollary 6.2. Hp is invariant under isometries.

Proof: Let I : (X, d)→ X be an isometry. Let id : X → X be the identity map. Then since I
is an isometry, we have

d(I(x), I(z)) = d(x, z) = d(id(x), id(z)), ∀x, z ∈ X.
Hence the hypotheses of the proposition hold true taking X = Y , f = I, g = id, and C = 1.
So, we obtain

Hp(I(A)) ≤ Hp(id(A)) = Hp(A).

On the other hand, we also have

d(id(x), id(z)) = d(x, z) = d(I(x), I(z)) ≤ d(I(x), I(z)).

So, we apply the same proposition taking X = Y , f = id, g = I, and C = 1. We therefore
obtain

Hp(A) = Hp(id(A)) ≤ Hp(I(A)).

Thus, the inequality goes in both directions, and we have in fact an equality,

Hp(A) = Hp(I(A)).

Proposition 6.3 (Hausdorf dimension). If Hp(A) <∞, then Hq(A) = 0 ∀q > p. If Hq(A) > 0,
then Hp(A) =∞ ∀p < q.

Proof: For the first statement, assume Hp(A) < ∞. Then, for any sufficiently small δ > 0,
we can find a cover of A by {Bj}j≥1 with diam(Bj) < δ, and

Hpδ(A) ≤
∑
j≥1

diam(Bj)
p ≤ Hp(A) + 1.

If q > p, then

Hqδ(A) ≤
∑
j≥1

diam(Bj)
q =

∑
j≥1

diam(Bj)
p+q−p ≤

∑
j≥1

diam(Bj)
pδq−p



30 FRACTALS

= δq−p
∑
j≥1

diam(Bj)
p ≤ δq−p(Hp(A) + 1),

which tends to zero as δ → 0. Hence we can show that Hqδ(A) tends to zero as δ → 0, thus it
follows that Hq(A) = 0.
The second statement is the contrapositive. To see this let us first fix q > p. We shall write ? to
denote the statement Hp(A) <∞, and ♥ to denote the statement Hq(A) = 0. We have proven:
if ? then ♥. The contrapositive says: if not ♥ then not ?. It is well known from elementary
logic that a statement is true if and only if its contrapositive is true. In this case, not ♥ says
that Hq(A) 6= 0. Since Hq(A) ≥ 0, we have Hq(A) > 0. This should imply not ?. Not ? is the
statement that Hp(A) = ∞. Since the q > p was arbitrary, we have shown that if Hq(A) > 0,

then Hp(A) =∞ for any p < q.

Corollary 6.4 (Definition of Hausdorff dimension). Let A ⊂ X, where (X, d) is a metric space.
Then the following infimum and supremum are equal

δ = inf{p ≥ 0 | Hp(A) = 0} = sup{p ≥ 0 | Hp(A) =∞}
This is how we define the Hausdorff dimension of A, δ, denoted by dim(A). If for some p we
have

Hp(A) ∈ (0,∞)

then p = dim(A).

Proof: Let {pn} be a sequence which converges to the infimum on the left. Then, Hpn(A) = 0
for all n. Let {qn} be a sequence which converges to the supremum on the right. Then,
Hqn(A) =∞ for all n. By the second statement of the preceding proposition, since Hqn(A) > 0,
Hp(A) =∞ for all p < q. This shows that pn ≥ qm for all n and m. Therefore

lim inf pn ≥ lim sup qm.

Since in these cases the limits exist, we have

lim inf pn = lim pn, lim sup qm = lim qm.

This shows that
inf{p ≥ 0 | Hp(A) = 0} ≥ sup{p ≥ 0 | Hp(A) =∞}.

For the sake of contradiction, let us assume that this inequality is strict, so that

inf{p ≥ 0 | Hp(A) = 0} > sup{p ≥ 0 | Hp(A) =∞}.
Then, there is some number, x which lies precisely between these two values,

inf{p ≥ 0 | Hp(A) = 0} > x > sup{p ≥ 0 | Hp(A) =∞}.
Since x is less than the infimum, we cannot have Hx(A) = 0, (because then x would be included
in the infimum, so the infimum would be ≤ x which by assumption it is not). So we must have
Hx(A) > 0. By the proposition, it follows that Hp(A) =∞ for all p < x. Hence, the supremum
on the right side is taken over a set of p which contains all p < x. Therefore, by definition of
the supremum, the supremum is greater than or equal to x. This is a contradiction. Hence, we
cannot have

inf{p ≥ 0 | Hp(A) = 0} > sup{p ≥ 0 | Hp(A) =∞},
as it leads to a contradiction. Thus, since the infimum is greater than or equal to the supremum,
both sides must be equal.
Finally, assume that for some p we have Hp(A) ∈ (0,∞). Then, by the proposition, Hq(A) = 0
for all q > p. This shows that all q > p are considered in the infimum, hence the infimum must
be less than or equal to p. On the other hand, by the same proposition, Hq(A) = ∞ for all
q < p. Hence, the supremum is taken over a set which includes all q < p, hence the supremum
must be greater than or equal to p. So, we get inf ≤ p ≤ sup, but since the infimum and
supremum are equal, we have an equality all the way across.
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This shows that the supremum here is less than or equal to p. Since the supremum and infimum
equivalently define dim(A), we have dim(A) ≥ p and dim(A) ≤ p. Hence we have dim(A) = p.

If our notion of dimension is a good one, then it ought to be monotone. We see below that this
is the case.

Lemma 6.5 (Monotonicity of Hausdorff dimension). If A ⊂ B, then dim(A) ≤ dim(B).

Proof:
If A ⊂ B, and Hp(B) = 0, then Hp(A) = 0. This is because Hp is an outer measure, which we
proved, and outer measures are by definition monotone.
Therefore

dim(B) = inf{p ≥ 0|Hp(B) = 0} ≥ inf{p ≥ 0|Hp(A) = 0} = dim(A).

If our definition of dimension is a good one, then we know what the dimension of Rn should
be... To prove this, we shall prove a general fact about Hausdorff dimension.

Lemma 6.6. The dimension of a countable union of sets, Ej,

E = ∪Ej

is equal to

dim(E) = sup{dim(Ej}.

Proof: We note that

Ej ⊂ E∀j =⇒ dim(Ej) ≤ dim(E) ∀j,
so

sup{dim(Ej)} ≤ dim(E).

If the supremum on the left is infinite, there is nothing to prove, because both sides are therefore
infinite and equal. Let us assume that it is not infinite. So, let us call this supremum δ. By
the definition of dim(Ej) ≤ δ, we have

Hp(Ej) = 0 ∀p > δ.

Consequently, for all p > δ, we have by countable subadditivity of Hausdorff outer measure

0 ≤ Hp(E) ≤
∑
j

Hp(Ej) = 0.

Thus

Hp(E) = 0.

Since

dim(E) = inf{p ≥ 0|Hp(E) = 0},
and Hp(E) = 0 for all p > δ, we have

dim(E) ≤ δ.

Since dim(E) ≥ sup{dim(Ej)} = δ, we obtain the equality.
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6.1. Homework.

(1) Compute the Hausdorff measure of the curve {(x, sin(1/x)) : 0 < x < 1} ⊂ R2.
(2) Compute the Hausdorff measure of the curve {(x, sin(1/x)) : 1/2 < x < 1} ⊂ R2.
(3) Compute the Hausdorff measure of the unit sphere sitting in R3.
(4) We shall see that a set whose Hausdorff dimension is positive is uncountable. Is the con-

verse true, that is if the Hausdorff dimension of s set is zero, then is that set necessarily
countable? Prove or give a counter example.

(5) Is it always true that Hdim(A)(A) ∈ (0,∞)? Prove or a give a counter example. What
if you assume that dim(A) ∈ (0,∞), then is it always true that Hdim(A)(A) ∈ (0,∞)?

(6) How should one define the Hausdorff dimension of the empty set? Philosophically and
mathematically justify your answer.

(7) What is the Hausdorff dimension of a product of sets? How should this work? Figure
it out and rigorize your answer.

7. Properties of Hausdorff dimension

Any set with positive Hausdorff dimension is uncountable!

Corollary 7.1. Let E ⊂ X. If dim(E) > 0, then E is uncountable.

Proof: If E is countable, then E =
⋃
j

ej , where ej ∈ X is a point. Therefore, we have proven

that

0 ≤ dim(E) = sup dim({ej}).
Now let p > 0. Note that a single point is contained in a ball of radius δ for any δ > 0. Thus
by definition

Hpδ(ej) ≤ 2pδp.

Letting δ → 0, we obtain
Hp(ej) = 0.

Therefore the Hausdorff dimension of a point is equal to inf{p : p > 0} = 0. By the result we
proved, the dimension of E is the supremum over the dimension of ej , and this is the supremum

over zero, hence it is zero.

Corollary 7.2 (Hausdorff dimension of Rn). The Hausdorff dimension of Rn is n.

Proof: We can write the euclidian space Rn as Rn =
⋃
m≥1

Bm, where Bm are balls of radius m

centered at the origin. Here is where we are going to use some teamwork. In the exercises, you
have proven that

Hn(Bm) = cnLn(Bm) = cnm
nwn,

where cn is a constant that depends only on n, and wn is the volume of the unit ball in Rn,
and Ln is n-dimensional Lebesgue measure. (i.e. our usual human notion of n-dimensional
volume). By a corollary proven today, the Hausdorff dimension of a ball in Rn is equal to n,
since the Hausdorff measure of a ball of radius m is a positive, finite number. Moreover, a ball
is an open set, so it is therefore contained in the Borel sigma algebra which is contained in
the Hausdorff sigma algebra. So, since Rn is the union of these balls, and these balls are all
Hausdorff measurable sets, the dimension of Rn is equal to the supremum of the dimensions of
the balls. That is the supremum over the constant number n. Hence the supremum is n which

gives the dimension of Rn.

Corollary 7.3. For any A ⊂ Rn, we have dim(A) ≤ n.
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Proof: This follows immediately taking B = Rn in the lemma showing monotonicity of

Hausdorff dimension.

Lemma 7.4. Let E ⊂ Rn such that dim(E) < n. Then
◦
E = ∅.

Proof: If
◦
E 6= ∅, then there ∃r > 0 and x ∈ E such that Br(x) ⊂ E. ⇒ dim(E) ≥

dim(Br(x)) = n

So we get n ≥ dimE ≥ n⇒ dimE = n.

Remark 6. The Hausdorff Dimension of a subset E ⊂ Rn is the same if we consider E as a
subset of Rm for any m ≥ n via the canonical embedding, Rn 7→ Rn × {0}. In this sense, if
we have a set E which naturally lives in k-dimensions, if we view the set E as living in 10
zillion dimensions, the Hausdorff dimension of E remains the same. This is simply because
the Hausdorff dimension, which is determined by the Hausdorff (outer) measure is defined in
terms of diameter, and the diameter of sets does not change if we embed the sets into higher
dimensional Euclidean space. That is another reason the Hausdorff dimension is “a good notion
of dimension,” because it is invariant of the ambient space.

7.1. Similitudes. To study the relationship between fractals and Hausdorff dimension, we
shall use a notion of a similitude.

Definition 7.5. For r > 0, a similitude with scaling factor r is a map S : Rn → Rn of the form

S(x) = rO(x) + b,

where O is an orthogonal transformation (rotation, reflection, or composition of these), and
b ∈ Rn. If S = (S1, · · ·Sm) is a family of similitudes with common scaling factor r < 1, for
E ⊂ Rn we define

S0(E) = E, S(E) =

m⋃
j=1

Sj(E), Sk(E) = S(Sk−1(E)) for k > 1.

We say that E is invariant under S if S(E) = E.

Why is such a thing called a similitude? Indeed, this is aptly named if we ponder what a
similitude does. If we apply S to a set E, then first E undergoes some composition of rotations
and reflections. Next, it is scaled by the factor r. Finally, it is translated by b. So, the image
under S, that is S(E) is similar to E. It has just been reflected and/or rotated, shrunken or
stretched, depending if r < 1 or r > 1, and then translated.
Similitudes are maps of the form r ·O(x) + b, where O(x) is an orthogonal transformation, and
b is a vector in Rn. These are therefore affine linear maps. We would like to understand how
similitudes and invariant sets under similitudes relate to Hausdorff measure which motivates
the following.

Proposition 7.6. If k ≤ n, A ⊂ Rk and T : Rk → Rn is an affine linear map, then Hk(T (A)) =√
det(MTM)Hk(A), where Tx = Mx+ b.

Proof: First note that Hk is translation invariant because Hk(A+ b) = Hk(A) since

A ⊂
⋃
j

Ej ⇐⇒ A+ b ⊂
⋃

(Ej + b),

and diam(Ej) = diam(Ej + b). So, without loss of generality, we shall assume b = 0. First, we
consider the case n = k. Then, Tx = Mx, where M is an n × n matrix. Therefore, using the
relationship between Hausdorff and Lebesgue measures,

Hn(T (A)) = cnLn(T (A)) = cn

∫
T (A)

dLn = cn

∫
A

√
det(MTM)dLn = cn

√
det(MTM)Ln(A) =

√
det(MTM)Hn(A).
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If k < n, since T : Rk → Rn, the matrix M must have k columns and n rows, so the span of
the columns has dimension at most k, and therefore the image MRk has dimension at most
k. For this reason there exists an isometry R of Rn (a change of coordinates composed with a
translation) which maps T (Rk) to the canonical embedding of Rk in Rn (where the last n− k
components are taken to be zero). Let us call this isometry R, with

R : T (Rk)→ {y ∈ Rn|y =
∑

< yjej , yj = 0∀j > k}

Now, to reduce to the case in which we map between the same dimensional Euclidean space,
let Φ: Rn → Rk be the orthogonal projection,

Φ(

n∑
i

yiei) =

k∑
i

yiei.

Let

S := Φ ◦R ◦ T : Rk → Rk.

Note that the action of S is given by multiplication with a matrix, and so it is an affine linear
map. Indeed, each of these maps is given by matrix multiplication, so we abuse notation slightly
by identifying the maps with their matrices. We can therefore apply the first case:

Hk(S(A)) =
√

det(STS)Hk(A).

Then we have that √
det(STS) =

√
det(ΦRT )T (ΦRT ).

Since R is an isometry, and Φ is projection, all that remains is√
det(TTT ) =

√
det(MTM),

since M is the matrix giving the action of T .

7.2. Exercises.

(1) Prove that if f : X → f(X) is a Lipschitz map between metric spaces then the Hausdorff
dimension of f(X) does not exceed that of X.

(2) Prove that if the Hausdorff dimension of X is d, and the Hausdorff dimension of Y is
d′, then the Hausdorff dimension of the Cartesian product X×Y is at least d+d′. Can
it ever happen that the Hausdorff dimension of the product actually exceeds d + d′?
Prove or give a counter-example.

(3) Prove that any connected set (in a metric space) which contains more than one point
has Hausdorff dimension greater than or equal to one.

8. Similitudes, Hausdorff and Lebesgue measures, and Urysohn’s Lemma

Let us nail down the relationship between Hausdorff and Lebesgue measures once and for all.
First, let us define

H0(Z) = #Z = the number of elements of the set, Z.

Theorem 8.1 (Hausdorff and Lebesgue measures). For all n ∈ N we have

Hn =
2n

wn
Ln,

where wn is the n-dimensional volume of a unit ball in Rn.
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Proof: Let Br be a ball of radius r > 0. Fix ε > 0. Then, by the definition of the Lebesgue
measure (and outer measure), there exist countably many hypercubes, denoted by Rj such that

Br ⊂ ∪jRj ,

and

Ln(Br) + ε ≥
∑
j

Ln(Rj).

Next, fix δ > 0.

Claim 1. There exist countably many open balls {Bkj } which are disjoint, and satisfy

Ln(Rj \ ∪kBkj ) = 0.

Moreover, given δ > 0, we may choose these balls to have diameters at most equal to δ.

The proof of the claim is an exercise! From the claim it follows that Ln(Rj) = Ln(∪Bkj ).
Therefore we have the inequality

Ln(Br) + ε ≥
∑
j

Ln(Rj) =
∑
j,k

Ln(Bkj ) =
wn
2n

∑
j,k

diam(Bkj )n.

By the absolute continuity of Lebesgue and Hausdorff measures with respect to each other,

Hn(Rj \ ∪kBkj ) = 0 =⇒ Hnδ (Rj \ ∪kBkj = 0) ∀δ > 0.

This shows that

Hnδ (Rj) = Hnδ (∪kBkj ),

and

Hnδ (∪Rj) = Hnδ (∪j,kBkj ).

Then, we also have by monotonicity, since Br ⊂ ∪jRj ,

Hnδ (Br) ≤ Hnδ (∪Rj) = Hnδ (∪j,kBkj ).

Since ∪Bkj covers itself, by definition of Hausdorff measure

Hnδ (∪j,kBkj ) ≤
∑
j,k

diam(Bkj )n.

Thus we get

Hnδ (Br) ≤
∑
j,k

diam(Bkj )n =⇒ wn
2n
Hnδ (Br) ≤

wn
2n

∑
j,k

diam(Bkj )n ≤ Ln(Br) + ε.

Letting δ → 0, we get
wn
2n
Hn(Br) ≤ Ln(Br) + ε,

and then letting ε→ 0, we get
wn
2n
Hn(Br) ≤ Ln(Br).

To complete the proof, we just need to get a lower bound for the Hausdorff measure in terms
of the Lebesgue measure.
There is a nifty shortcut one can use here:

Proposition 8.2 (Isodiametric Inequality). For any A ⊂ Rn, one has

Ln(A) ≤ wndiam(A)n

2n
.
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Exercise 10. Locate a proof of this fact! Note that when A = Br the ball of radius r and hence
diameter 2r, the isodiametric inequality states that

Ln(Br) = wn
diam(Br)

n

2n
.

Thus in that case, equality holds. This is a geometric fact which says that the ball of a specified
diameter contains the largest volume amongst all sets of the same diameter. A proof can be
found in Lawrence Evans & Ronald Gariepy’s Measure theory and fine properties of functions,
or even earlier on p. 32 in Littlewood’s miscellany.

So, now let ε > 0. Then, there exists a cover of Br by {Bj} of diameter at most δ such that

Hn(Br) + ε ≥
∑
j

diam(Bj)
n.

Then, by the isodiametric inequality,

diam(Bj)
n ≥ Ln(Bj)

2n

wn
.

So, we have

Hn(Br) + ε ≥ 2n

wn

∑
Ln(Bj) ≥

2n

wn
Ln(Br),

where we have used in the last inequality the countable sub-additivity of the Lebesgue outer
measure, since the Bj cover Br. Since this can be done for any ε > 0, we obtain

Hn(Br) ≥
2n

wn
Ln(Br).

Combining with the reverse inequality, we get

Hn(Br) = 2nwnLn(Br).

Since this holds for all balls which generate the Borel sigma algebra, it holds for all Borel sets.
Then, the completion is the same in both cases, so we obtain both the equality of the Hausdorff
and Lebesgue sigma algebras, as well as the equality of the Hausdorff and Lebesgue measures.

8.1. Similitudes and Cantor sets. Let S be a set of similitudes.

Lemma 8.3. If S(E) = E, then Sk(E) = E for all k ≥ 0.

Proof:
It is S(E) =

⋃m
j=1 Sj(E) = E and also

S2(E) =

m⋃
j=1

Sj

 m⋃
j=1

Sj(E)

 =

m⋃
j=1

Sj(E) = E.

By induction we have Sk(E) = E for k ≥ 2.
What does that mean if S(E) = E? Especially, in the case that E 6= Rn and E 6= ∅? Well, the
scaling factor r is less than one, so applying each Sj spins/flips/shrinks and slides E. Hence
E looks like, for each k, mk copies of itself which are scaled down by a factor of rk. If these
copies are disjoint or have little (negligible) overlap, E is “self-similar.” So, in particular, if

S(E) = E =⇒ E = S1E ∪ S2E ∪ . . . ∪ SmE =: ∪mk=1Ek.

Each Ek is geometrically the same shape as E, it has just been shrunken by a factor of r,
orthogonally translated (i.e. rotated and or reflected), and then translated (i.e. slid to be
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sitting in some other spot in Rn). None of these procedures changes the shape of E. For this
reason, when S(E) = E, we may call E a self-similar set. Moreover, we can do this again, with

S2(E) = E =⇒ E = ∪mi1,i2=1Si1Si2(E) = ∪|J|=2EJ ,

where J is a multi-index of length two which each element in {1, 2, . . . ,m}. Similarly, we can
write

E = ∪|J|=NEJ ,
for any N ∈ N. Note that when we do this, there are mN elements in the union, and each EJ
is a copy of E at scale r|J|. Let’s recall a well-known example: generalized Cantor sets!

Example 8.4 (Generalized Cantor sets). Let β ∈ (0, 1), and I0 = [a, b] for some a < b. Define

β(a, b) =

(
a+ b

2
− β

(
b− a

2

)
,
a+ b

2
+ β

(
b− a

2

))
.

Let I1 := I0 \ βI̊0. This is closed and the union of two intervals, written I1 =
⋃2
j=1 I

1
j . Then

we define

I2 :=
2⋃
j=1

I1
j \ βI̊1

j ,

which is a union of two disjoint unions of two closed intervals. Again we write I2 =
⋃4
j=1 I

2
j .

In general we write and define

Ik =

2k⋃
j=1

Ikj and Ik+1 :=

2k⋃
j=1

Ikj \ βI̊kj

As defined note that

I0 ⊃ I1 ⊃ . . . ⊃ Ik ⊃ Ik+1

are a sequence of nested compact sets in R which is complete. Consequently,⋂
Ik = lim

k→∞
Ik =: Cβ

is a compact subset of R. Note that

L1(I0) = b−a, L1(I1) = (b−a)−β(b−a) = (1−β)(b−a) = (1−β)L1(I0), L1(Ik+1) = (1−β)L1(Ik),

and so

L1(Cβ) = (b− a) lim
k→∞

(1− β)k = 0,

since β ∈ (0, 1). Note that more generally, one can let β vary at each step, so that

I1 = I0 \ β0I0 =

2⋃
j=1

Ikj ,

and in general

Ik+1 =

2k⋃
j=1

Ikj \ βk I̊kj .

Similarly we have nested compact sets and so

C := lim
k→∞

Ik is a compact subset of R.

This is known as a generalized Cantor set. The Lebesgue measure

L1(C) = (b− a)
∏
k≥0

(1− βk).

Hence, if βk = β is fixed and lies in the open interval (0, 1), then

L1(C) = (b− a) lim
n→∞

(1− β)n = 0.
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So, we also have H1(C) = 0. However, we shall see that the Hausdorff dimension of such a
Cantor set is non-zero.
This is the usual way in which Cantor sets are described: by a procedure of cutting out the
middle bit of each remaining interval at each step. It is perhaps not totally obvious that we
can describe the Cantor set using the notion of similitudes and invariance under similitudes.
However, we can indeed do this.
Now, fix β ∈ (0, 1/2).

S := (S1, S2), S1(x) := βx, S2(x) = βx+ (1− β).

For the sake of simplicity, let us set I0 = [0, 1], that is take a = 0, b = 1, so that b+a
2 = 1

2 = b−a
2 .

We compute
S(I0) = S1(I0) ∪ S2(I0) = [0, β] ∪ [1− β, 1] = I1.

Similarly, we see that
S(I1) = I2 = S2(I0), Ik+1 = Sk+1(I0).

So, since each Si is continuous we have

S

(
lim
k→∞

Sk(I0)

)
= S(Cβ) = lim

k→∞
Sk+1(I0) = Cβ .

Consequently we see that Cβ is invariant under the family of similitudes S = (S1, S2).

8.2. Urysohn’s Lemma. The following lemma will be required to prove our results about the
dimension of iterated function system fractals as well as construct the invariant measure on
said fractals.

Lemma 8.5 (Urysohn-light). Let (X, d) be a complete metric space and A,B ⊂ X non-empty,
closed sets with A∩B = ∅. Assume that either A and B are both compact or that A and B are
at a positive distance apart. Then ∃f ∈ C(X) s.t.

f |A = 0 f |B = 1.

Proof: First we know that the distance between A and B is finite because ∃a ∈ A, b ∈
B d(A,B) 6 d(a, b) <∞.
In the case that A and B are compact, if they were at a distance of zero, then we would have
at least one sequence {an, bn} with an ∈ A, bn ∈ B, and

lim
n→∞

d(an, bn) = 0.

Since A is compact, the sequence {an} has a convergent subsequence. Let us pass to that
subsequence, but rename it {an} because we may as well have started the argument with it.
We then also rename the corresponding {bn} as well, so that we still have

d(an, bn)→ 0.

Now, however, we also have
an → a ∈ A.

Next, let us look at the sequence {bn} ⊂ B. Since B is compact, there exists a subsequence
of bn which converges to some b ∈ B. Oh, the abuse of notation, as we shall still call this
subsequence bn, and the corresponding terms an. Then, we still have an → a ∈ A, since these
are a subsequence. Now, however, we also have bn → b ∈ B. Then, we have

d(a, b) ≤ d(a, an) + d(an, bn) + d(bn, b)→ 0 as n→∞.
Thus,

d(a, b) = 0 =⇒ a = b =⇒ a = b ∈ A ∩B,
which contradicts A∩B = ∅. Thus it turns out that the first assumption, that A and B are both
compact, actually implies that they are at a positive distance apart. Hence, we only need to
consider the case in which A and B are closed (but not necessarily compact), and at a positive
distance apart, because it covers all the possibilities. Let

δ = d(A,B) > 0.
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Let

Ur := {x ∈ X| d(x,B) > (1− r)δ}, r ∈ (0, 1), U1 := X,

and

f(x) := inf{r ∈ (0, 1]| x ∈ Ur}.

Note that f(x) is well defined because it’s an infimum and defined ∀x ∈ X since every x ∈ U1.
If x ∈ B, then d(x,B) = 0, so we shall not be able to obtain x ∈ Ur for any r > 0 except for
x ∈ U1. Thus,

f(x) = 1 ∀x ∈ B.

If x ∈ A, then d(x,B) ≥ d(A,B) = δ. This shows that for every r > 0, we have d(x,B) ≥ δ ≥
(1− r)δ. So, x ∈ Ur for all r ∈ (0, 1], which shows that

f(x) = 0.

Since x ∈ A was arbitrary, we get

f(x) = 0 ∀x ∈ A.

The last thing to show is the continuity of the function f . Let x ∈ X, and xn → x. This is
equivalent to saying that d(xn, x)→ 0 as n→∞. Then, for any b ∈ B we have

d(x, b) ≤ d(x, xn) + d(xn, b).

Exercise 11. Show that f is continuous.

Now with our teamwork, the proof is done!
We require Urysohn’s Lemma (at least on metric spaces; it holds in the more general setting of
a normal topological space under the assumption that the sets are closed and disjoint) to prove
one of Riesz’s Representation Theorems. For this, we recall the definition of the dual space for
the continuous functions with compact support.

Definition 8.6. Let X be a Banach space. Let Cc(X) denote the set of functions from X → R
which are continuous and compactly supported. Compactly supported means that there exists
a compact set K ⊂ X such that

f(x) = 0∀x 6∈ K.

The dual of Cc(X) is the set of all bounded, (and thus continuous) linear functions from C(X)
to R. This dual space is denoted by Cc(X)′. In particular L ∈ Cc(X)′) if and only if L satisfies:

L(af + bg) = aL(f) + bL(g), ∀a, b ∈ R, f, g ∈ Cc(X),

and

|L(f)| ≤ ||L||||f ||∞, ∀f ∈ Cc(X),

for a finite, fixed constant ||L||. Above ||f ||∞ is the L∞ or supremum norm of f , which is
defined by

||f ||∞ = sup
x∈X
|f(x)|.

Theorem 8.7 (Riesz Representation for Cc(X)′). If 0 ≤ L ∈ Cc(X)′ ⇒ ∃ measure µ on X
s.t.

I(f) =

∫
X

f dµ

and Borel sets are µ measurable. Here by L ≥ 0 we mean that for all functions f ≥ 0 we have
L(f) ≥ 0.
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8.3. Exercises.

(1) Determine the Hausdorff measure and Hausdorff dimension of the standard Cantor set.
(2) Compute the Hausdorff dimension of a generalized Cantor set.
(3) Compute the Hausdorff dimension of the product of two Cantor sets.
(4) Show that every subset of Rn is measurable with respect to the 0-dimensional Hausdorff

outer measure.
(5) Construct a subset of R which has Hausdorff dimension one but has zero Lebesgue

measure. Note that since this will imply the set also has H1 measure zero, yet has
Hausdorff dimension equal to one, so it will be an example as we discussed in class.

8.4. Hints: continuity in Urysohn’s Lemma. Let x ∈ X with f(x) = r. First, consider
when f(x) = 1. This means that x ∈ U1 but not in Ur for any r < 1. Consequently, d(x,B) = 0.
(Why?) Therefore, since B is closed, x ∈ B. Assume that xn → x. Then, d(xn, B) → 0
as n → ∞. Consequently, letting rn = f(xn), we must have rn → 1 as n → ∞. Thus
f(xn)→ f(x).
Next, consider when f(x) < 1. Write r = f(x). Then, for r < r′ < 1, we have x ∈ Ur′ so that
d(x,B) ≥ (1− r′)δ. If xn → x, then d(xn, x)→ 0. Then, for any b ∈ B, we have

d(x, b)− d(x, xn) ≤ d(xn, b).

Since for all b ∈ B,

d(x,B) ≤ d(x, b)

we have

d(x,B)− d(x, xn) ≤ d(x, b)− d(x, xn) ≤ d(xn, b).

Taking the infimum now over all b on the right side, we get

d(x,B)− d(x, xn) ≤ d(xn, B).

Similarly,

d(xn, b)− d(xn, x) ≤ d(x, b).

So, taking the inf over all b ∈ B on the left (but not on the right), we first get that for any
particular b ∈ B,

d(xn, B)− d(xn, x) ≤ d(x, b).

Next, taking the infimum over all b on the right we get

d(xn, B)− d(xn, x) ≤ d(x,B).

Thus,

d(x,B) ≤ d(xn, B)+d(x, xn), d(xn, B) ≤ d(x,B)+d(x, xn) =⇒ |d(xn, B)−d(x,B)| ≤ d(x, xn).

Since d(x, xn) → 0 as n → ∞, we get that d(xn, B) → d(x,B) as n → ∞. It follows that
f(xn)→ f(x).

9. Similitudes and Iterated Function System Fractals

We shall begin by determining a sufficient condition to guarantee that a set of similitudes has
an associated non-empty, compact, invariant set. When such an invariant set exists, it is also
unique. It is known in this contact as an iterated function system fractal.

Proposition 9.1. Let S be a family of similarities with common scaling factor r ∈ (0, 1). If
there exists U open, non-empty and bounded such that S(U) ⊂ U , then S is said to satisfy the
open set condition. (OSC) Equivalently, one may say that S admits a separating set. When
this is the case, then there exists a unique X ⊂⊂ Rn such that S(X) = X 6= ∅. More generally,
if there exists X ⊂⊂ Rn such that S(X) = X, X 6= ∅, then the set, X, is unique.
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Proof: First we note that since U is non-empty and bounded, then Ū is closed and bounded
inside Rn and therefore compact. Moreover, we note that each similitude is an affine linear
function from Rn → Rn, and is therefore continuous. Consequently, the image of Ū under each
Si is compact. We also obtain by continuity that

Si(Ū) = Si(U), i = 1, . . . ,m, S(Ū) = S(U).

Consequently, since

S(U) ⊂ U =⇒ S(U) = S(Ū) ⊂ Ū .
Therefore, the sets

Sk(Ū), Sk+1(Ū) ⊂ Sk(Ū), k ≥ 0.

Moreover, these are each compact and non-empty since U is nonempty and open, which guar-
antees that Si(U) is non-empty and open for each i since Si is an affine linear transformation.
Thus S(Ū) ⊃ S(U) is also nonempty, and repeating the argument, since Sk(U) is non-empty
and open for each k ≥ 1, we have that

Sk(Ū)

is non-empty and compact for each k. It therefore follows that

X = ∩k≥0S
k(Ū) 6= ∅

and is compact. Then, since the Sk(Ū) are nested, we have

X = lim
k→∞

Sk(Ū).

Since all the similitudes are continuous, we also have

lim
k→∞

S(Sk(Ū)) = S

(
lim
k→∞

Sk(Ū)

)
= S(X).

On the other hand, it is always true that

lim
k→∞

S(Sk(Ū)) = lim
k→∞

Sk+1(Ū) = lim
k→∞

Sk(Ū) = X.

Thus X is compact, non-empty, and invariant under S.
Now let us show that X is the unique compact set which has this property. So, if Y 6= ∅ is
compact, and S(Y ) = Y , we wish to show that Y = X. For this purpose we define

D(Y,X) := sup
y∈Y

d(y,X) = sup
y∈Y

inf
x∈X

d(y, x).

Similarly, we define

D(Si(Y ), Si(X)) = sup
y∈Y

d(Si(y), Si(X)) = sup
y∈Y

inf
x∈X

d(Si(y), Si(x)).

Now, recalling that Si(y) = rOi(y) + bi, we have that

D(Si(Y ), Si(X)) = sup
y∈Y

inf
x∈X

d(rOi(y), rOi(x)) = sup
y∈Y

inf
x∈X

rd(y, x),

since Oi is an orthogonal transformation, and so it does not change the distance between points,
and r is simply the scaling factor. So, in fact we see that

D(Si(Y ), Si(X)) = rD(Y,X).

Now we shall use the invariance of Y to eventually reach a contradiction. By the invariance of
Y ,

Y = ∪mi=1Si(Y ) = S(Y ),

so we have
D(Y,X) = max

1≤i≤m
D(SiY,X) = D(SjY,X),

for some specific j (or perhaps it is achieved by more than one j, we do not care). Now, for
fixed

y ∈ Y, d(Sjy,X) = inf
x∈X,1≤k≤m

d(Sjy, Skx) ≤ inf
x∈X

d(Sjy, Sjx) = d(Sjy, SjX).
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Here we use that X = S(X) = ∪SkX. Taking the supremum over y ∈ Y , we have

d(SjY,X) ≤ d(SjY, SjX) = rd(Y,X).

Since r < 1 this is only possible if

d(Y,X) = 0⇒ sup
y∈Y

d(y,X) = 0 =⇒ y ∈ X ∀y ∈ Y.

The last statement above follows because X is a compact, and therefore closed, set. Conse-
quently, we see that Y ⊂ X. We can repeat the exact same argument, swapping places with X

and Y , and we obtain that X ⊂ Y . Hence they are equal.

Theorem 9.2 (Riesz Representation for Cc(X)′). If 0 ≤ L ∈ Cc(X)′ ⇒ ∃ a unique measure
µ on X s.t.

I(f) =

∫
X

f dµ

and Borel sets are µ measurable. Here by L ≥ 0 we mean that for all functions f ≥ 0 we have
L(f) ≥ 0. For the sake of simplicity, we may take X = Rn.

Proof: Write f ≺ U if U is open, f ∈ Cc(X), 0 6 f 6 1, and supp(f) ⊂ U . Recall that the
support of a function is

{x ∈ X : f(x) 6= 0}.
We shall define

µ(∅) = 0,

and for U open,

µ(U) := sup{L(f)| f ≺ U}.
Since I ≥ 0, µ(U) ≥ 0. Note that if U is open and non-empty, then there exists a point p ∈ U
and a ball Br(p) such that the closure of B2r(p) is contained in U . Let B be the closure of
Br(p). Let

A = X \B2r(p).

First, we note that since B2r(p) ⊂ U , we have A ⊃ U c. Next, let q ∈ B and x ∈ A. Then, so
defined

d(q, p) ≤ r, d(x, p) ≥ 2r =⇒ d(q, x) ≥ d(x, p)− d(p, q) = r.

Thus, we see that B and A are at a positive distance apart. By Urysohn’s Lemma and its
proof, there is a function f which is 0 on A and 1 on B and takes values between 0 and 1 in
general. Since f must vanish identically on A, the support of f is contained in the closure of
B2r(p) which is contained in U . Here is where it is convenient to take X = Rn, because this

implies that closed balls are compact, so the support of f , being a closed subset of B2r(p) is
also compact.
Therefore, µ is well defined for all open sets. Now we use it to make an outer measure. Let

µ∗(E) = inf{µ(U) | E ⊂ U, U open }.
So defined, this vanishes on the empty set. Moreover, if A ⊂ B, then every U which covers B
also covers A, so we obtain

µ∗(A) ≤ µ∗(B).

Now note that if U ⊂ V are two open sets, then it is more restrictive to require f ≺ U as
compared with requiring f ≺ V . Thus, the supremum taken for V can include more elements,
so we have

µ(U) ≤ µ(V ).

By similar considerations, we also see that µ∗(U) = µ(U) if U is open. Now, let {Uj} be open
sets. Define

U = ∪Uj ,
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and note that this set is also open. If f ≺ U , let K = supp(f). Since K is compact, by
definition of compactness and since it is covered by the Uj (open cover), we have a finite open
cover,

∪nj=1Uj ⊃ K.

Exercise 12. Show that you can find a so-called “partition of unity” that is {φj}nj=1 non-

negative functions, which have φj ≺ Uj and
∑n
j=1 φj = 1 on K. Hint: This is done in Folland’s

Real Analysis, Prop. 4.41.

So, since f is supported on K, we have that
∑n
j=1 φjf = f on K, and it is also true off K

because f is zero over there. So, we have that always f =
∑n

1 φjf , and moreover, fφj ≺ Uj .
So, by the linearity of linear functionals,

L(f) = L(

n∑
1

fφj) =

n∑
1

L(fφj) ≤
n∑
1

µ(Uj) ≤
∞∑
1

µ(Uj).

This holds for all f ≺ U , so we obtain

µ(U) ≤
∞∑
1

µ(Uj).

Consequently, countable sub-additivity holds for all open sets. Now, if we have some other sets,
with

E = ∪jEj ,
if
∑
µ∗(Ej) =∞, then we of course get

µ∗(E) ≤
∑

µ∗(Ej).

So, assume all these guys on the right are finite. Let ε > 0. Then, for each j there is an open
set Uj ⊃ Ej with

µ∗(Ej) +
ε

2j
≥ µ(Uj).

Then, we also have

E ⊂ ∪jUj = U.

By the countable subadditivity for open sets (and note that U is open) we have

µ(U) ≤
∑
j

µ(Uj).

So,

µ(U) ≤
∑

µ(Uj) ≤
∑

µ∗(Ej) +
ε

2j
= ε+

∑
µ∗(Ej).

Now we take the infimum over all open sets U on the left. This is a bit subtle, so let us write
it out

inf{µ(U) : E ⊂ U = ∪jUj , Ej ⊂ Uj open} ≤ ε+
∑

µ∗(Ej).

When we now take the infimum on the left of µ(U) for all open covers of E, it could possibly
be smaller, so we get

µ∗(E) ≤ ε+
∑

µ∗(Ej).

Letting ε → 0 we obtain countable sub-additivity for all sets. Next, we shall show that this is
a metric outer measure.
If d(A,B) > 0, then by its definition

µ∗(A ∪B) = inf{µ(U)|A ∪B ⊂ U, U is open}.

Observe that if f ≺ V , and A ⊂ V , and g ≺ W with B ⊂ W , and V ∩ W = ∅, then
U = V ∪W ⊃ A ∪B. Moreover, f + g ≺ U . By the linearity of linear functionals

L(f + g) = L(f) + L(g).
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Consequently,

µ(U) ≥ sup{L(f + g) = L(f) + L(g)|f ≺ V ⊃ A, g ≺W ⊃ B, V ∩W = ∅}.

Now, take the supremum of L over such f and g for fixed V and W . Since the V and W are
disjoint, and we are supremuming over non-negative elements, the supremum of the sum is the
sum of the suprema, so we have

sup{L(f + g) = L(f) + L(g)|f ≺ V ⊃ A, g ≺W ⊃ B, V ∩W = ∅} = µ(V ) + µ(W ).

Basically, the f and g above are independent of each other, so one simply maximizes for f and
for g independently, which is why the supremum is equal to the sum of the suprema.
Next, we take the infimum over V and W which contain A and B respectively,

µ(U) ≥ inf{µ(V ) + µ(W )|V open, A ⊂ V,W open B ⊂W, V ∩W = ∅}

≥ inf{µ(V )|V open, A ⊂ V }+ inf{µ(W )|W open, B ⊂W}
= µ∗(A) + µ∗(B).

Next taking the infimum over U , which is open and contains A ∪B to obtain

µ∗(A ∪B) > µ∗(A) + µ∗(B) > µ∗(A ∪B).

The right side followed from countable (and thus also finite) subadditivity which we already
established. So, we conclude that µ∗ is a metric outer measure.

Exercise 13. Show that L(f) =
∫
fdµ for all f ∈ Cc(X). This is mostly aimed towards those

who have taken integration theory already!

Exercise 14. Show that the measure obtained in this way is unique.

Definition 9.3. For x ∈ Rn, E ⊂ Rn, a measure µ, {i1, ..., ik} ⊂ {1, ...,m} we define

(1) xi1..ik := Si1 ◦ ... ◦ Sik(x),
(2) Ei1..ik := Si1 ◦ ... ◦ Sik(E), and
(3) µi1..ik := µ((Si1 ◦ ... ◦ Sik)−1(E).

Theorem 9.4 (The invariant measure for an IFS fractal). Assume that S = (S1, ..., Sm) is a
family of similitudes with common scaling factor r ∈ (0, 1), X ⊂⊂ Rn, X 6= ∅, and S(X) = X.
Then there exists a (non-negative) Borel measure µ on Rn such that µ(Rn) = 1, supp(µ) = X,
and

∀k ∈ N, µ =
1

mk

m∑
i1..ik=1

µi1..ik .

Here we mean by the statement that supp(µ) = X that for any A ⊂ Rn which is µ measurable,
then

µ(A) > 0 ⇐⇒ A ∩X 6= ∅.

Proof: We will construct µ on X and extend it to Rn \X to be identically zero. In this way
the last statement will automatically hold true (although we shall also double-check for good
measure). Let x ∈ X, and define

δx(E) :=

{
1, x ∈ E
0, x /∈ E

.

For {Ej}j≥1 disjoint then either there exists i, j such that

x ∈ Ej ⇒ δx( ∪
j≥1

Ej) = 1 =
∑
j≥1

δx(Ej),
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or not; in which case

δx( ∪
j≥1

Ej) = 0 =
∑
j≥1

δx(Ej).

Consequently, we have for any A,B ⊂ Rn, δx(A) = δx(A ∩ B) + δx(A \ B). This shows that
every set in Rn is measurable for δx.
We define

µk :=
1

mk

m∑
i1..ik=1

[δx]i1..ik .

Then note that

[δx]i1..ik(E) = δx(Si1 ◦ ... ◦ Sik(E)) =

{
1, x ∈ (Si1 ◦ ... ◦ Sik)−1(E)⇔ Si1 ◦ ... ◦ Sik(x) ∈ E
0, otherwise

The idea is that we want to show that letting k → ∞, limk→∞ µk defines a bounded, linear
functional, that is an element of Cc(Rn). Then, we will use the Riesz representation theorem to
obtain a measure. Finally, we will show that the measure which we obtain in this way satisfies
the desired properties.
So, to begin, since bounded linear functionals are defined through their action on continuous
functions with compact support, let f be such a function. Then, by definition∫

Rn
fdµk =

1

mk

m∑
i1..ik=1

f(xi1..ik),

and

µk(Rn) =
1

mk

m∑
i1..ik=1

1 =
mk

mk
= 1.

To Complete the Proof:

(1) Show that for any continuous f ,

{
∫
Rn
fdµk}k≥1

is a Cauchy sequence. Consequently we can conclude that it converges to a well-defined
limit for each f . Call the limit

L(f) := lim
k→∞

∫
Rn
fdµk.

(2) Observe that linearity is inherited by L from the linearity of the integral. Moreover, by
definition ∣∣∣∣∫

Rn
fdµk

∣∣∣∣ ≤ ||f ||∞ ∫
Rn
dµk = ||f ||∞.

Here we have used that ∫
Rn
dµk = 1∀k.

(3) Show that the support of µ is precisely X.
(4) Show that µ enjoys the invariance property given in the theorem.

We shall complete items 1, 3, and 4 next time!
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9.1. Homework.

Exercise 15. Compute the Hausdorff dimension of the Koch snowflake curve.

Exercise 16. Let ∆ be the closed triangular region in R2 with vertices (0, 0), (1, 0), and ( 1
2 , 1).

Let

Sj(x) =
1

2
x + bj , b1 = (0, 0), b2 =

(
1

2
, 0

)
, b3 =

(
1

4
,

1

2

)
.

Prove that ∩∞k=0S
k(∆) is the unique compact non-empty invariant set under S = (S1, S2, S3).

Determine its Hausdorff dimension. What is the name of this set?

We shall be entering the realm of complex analysis and complex dynamics, that is the iteration
of holomorphic (and meromorphic) functions. With this in mind, the exercises are now intended
to refresh your memory of basic, fundamental facts in complex analysis.

(1) Prove that f is holomorphic on Dr(z0)⇔ f is R2 differentiable and u = <(f), v = =(f)
satisfy ux = vy and uy = −vx. These are the Cauchy-Riemann equations.
(⇔ ∂̄f) = 0.

(2) Prove that f(z) = z and f(z) ≡ c are holomorphic as in R. Prove that f , g holomorphic
⇒ fg, f + g, f/g(g 6= 0) also just as in R.

(3) Not like in R: Given f : R → R continuous. ∃F : R → R such that F ′ = f? Yes.
F (x) =

∫ x
a
f(t)dt.

This is not necessarily true in C. Give a counterexample.
(4) Prove that if f : Ω → C, where Ω is a domain, is continuous, and if ∃F : Ω → C such

that F ′ = f then
∫
γ
f(z)dz = 0∀ closed curve γ ⊂ Ω.

(5) Prove Goursat’s theorem: if f is holomorphic on Ω, then
∫
∂T
f = 0 ∀ triangle T ⊂⊂ Ω

where
◦
T ⊂ Ω.

(6) Recall that a domain is called star-shaped if there exists a point in the domain such
that the line segment connecting this point and any other point of the domain lies
entirely within the domain. This really looks like a star. Examples include all convex
domains. Prove that if Ω is star-shaped, f holomorphic, f has primitive F (z) =

∫ z
a
f ,

and
∫
γ
f = 0∀ closed γ.

(7) Prove that if f holomorphic on G \ z0 and continuous on G, we also get
∫
γ
f = 0 ∀γ

with γ ∪ ◦γ ⊂⊂ G.
(8) Prove that the converse is also true: If

∫
∂T

f = 0∀T satisfying the hypothesis, then f is

homolomorphic on G.
(9) Prove that if f is holomorphic on T \ z, where z denotes a point, then

∫
∂T

= 0.

(10) Prove the Cauchy Integral Formula: Let f be holomorphic on D = Dr(z0) 3 z. Then

f(z) =
1

2πı

∫
∂D

f(w)

w − z
dw

9.2. Hints.

(1) Assume that f is holomorphic. Near z, f(w) = f(z)+(w−z)Az(w). For the coordinates

(z, z̄) ∈ C ∼= R2, we get x = z+z̄
2 , y = z−z̄

2ı and ∂f
∂z̄ = 0. Therefore we get

∂f

∂z̄
=
∂f

∂x

∂x

∂z̄
+
∂f

∂y

∂y

∂z̄
=

1

2
fx −

1

2ı
fy =

1

2
(fx − ıfy)

=
1

2
(ux + ıvx + ı(uy + ıvy)) =

1

2
(ux − vy + ı(vx + uy)) = 0

⇔ ux = vy and uy = −vx.
On the other hand, assume f is R2 differentiable and

∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
.
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Since ∂̄f = ∂f
∂z̄ = 0, we have near z0:

f(z) = f(z0) +M ·
[
z − z0

z − z0

]
+B(z)

where lim
z→z0

∥∥∥ B(z)
z−z0

∥∥∥→ 0.

Since ∂̄f = 0⇒M =

[
a 0
b 0

]
and therefore

f(z) = f(z0) + (z − z0)

(
(a+ b) +

B(z)

z − z0

)
= f(z0) + (z − z0)A(z), A(z) = (a+ b) +

B(z)

z − z0
,

and A(z) is continuous because B(z)
z−z0 → 0 as z → z0. Consequently

lim
z→z0

f(z)− f(z0)

z − z0
= a+ b

exists.
(2) f(z) = 1

z has no primitive since∫
∂Dr

f(z)dz =

∫ 2π

0

f(γ(t))γ′(t)dt =

∫ 2π

0

1

reit
rieit = 2πi 6= 0

Figure 1.

Goursat First, we split the triangle into four triangles by joining the midpoints of each of the
sides of T . Then integration along the interior edges cancel and so

|
∫
∂T

f | ≤
4∑
i=1

|
∫
∂T 1

i

f | ≤ 4 max
1≤i≤4

|
∫
∂T 1

i

f |

We define T1 to be any T 1
i such that the integral achieves the maximum. We repeat

this process with T1, defining T 2
i for i = 1, 2, 3, 4, such that the integral over the

boundary of T1 is equal to the sum of the integrals over the boundaries of the T 2
i . The

triangle whose integral is maximal is defined as T2. This triangle is again split into
four, and so forth, defining a nested sequence of triangles

T ⊃ T1 ⊃ T2 ⊃ . . .

Note that the length of the boundary |∂T1| = 1
2 |∂T | and therefore |∂Tk| = 2−k|∂T |.

Furthermore, we have diam(T1) = 1
2diam(T ) and therefore diam(Tk) = 2−kdiam(T ).
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Since the triangles are compact and nested, and their diameters converge to zero, the
intersection ⋂

Tk = {z0} = lim
k→∞

Tk.

Since f is holomorphic at z0 which is in the interior of Ω,

f(z) = f(z0) + (z − z0)f ′(z0) + (z − z0)(A(z)−A(z0))

= f(z0) + (z − z0)(A(z)).

Note that B(z) := A(z)− A(z0) is continuous at z0 because A is, and that B(z0) = 0.
Since the function

f(z0) + (z − z0)f ′(z0)

has a primitive, namely

F (z) = z(f(z0)− z0f
′(z0)) +

z2

2
f ′(z0) =⇒ F ′(z) = f(z0) + (z − z0)f ′(z0),

the integral∫
∂T

(f(z0) + (z − z0)f ′(z0))dz = 0,

∫
∂Tk

(f(z0) + (z − z0)f ′(z0))dz = 0, ∀ k.

Consequently by linearity of the integral∫
∂Tk

f(z)dz =

∫
∂Tk

(z − z0)B(z)dz

⇒|
∫
∂Tk

f(z)dz| ≤ |∂Tk|max
∂Tk
|z − z0||B(z)| ≤ |∂Tk|diam(Tk) max

∂Tk
|B(z)| = 2−kdiam(T ) max

∂Tk|
|B(z)| · 2−k|∂T |

⇒|
∫
∂T

f(z)dz| ≤ 4k · 4−kdiam(T )|∂T |max
∂Tk
|B(z)|

Since Tk → z0 and B(z) → B(z0) = 0 as z → z0, it follows that the maximum over
∂Tk of |B(z)| tends to 0 as k → ∞. Consequently the integral on the left above must

vanish.
(3) For the proof of the Cauchy integral formula, let

g(w) :=

{
f(w)−f(z)

w−z w 6= z

f ′(z) w = z

Then g is holomorphic on D \ z and it is continous at z.
Therefore since D is convex and hence star-shaped∫

∂D

g(w)dw = 0

⇒
∫
∂D

f(w)

w − z
dw =

∫
∂D

f(z)

w − z
dw = f(z)

∫
∂D

dw

w − z
Compute

∫
∂D

dw
w−z0 dw = 2πi and prove that the function h(z) :=

∫
∂D

dw
w−z is constant on

D.

9.3. Hints: the integral in Riesz’s representation. To show L(f) =
∫
f dµ ∀f ∈ Cc(X),

we first show
µ(K) = inf{L(f)| f ∈ Cc(X), f > χK} ∀K b X.

(Note:
∫
χK dµ = µ(K) by def.)

Let Uε := {x| f(x) > 1− ε} for such an f ∈ Cc(X), f > χK . Uε is open.
If g ≺ Uε ⇒ (1− ε)−1f − g > 0 ⇒ I

(
(1− ε)−1f − g

)
> 0

⇒ (1− ε)−1I(f) > I(g)
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⇒ µ(K) 6
K⊂Uε

µ(Uε) 6
inf over g

(1− ε)−1I(f)

ε↓0⇒ µ(K) 6 I(f)
On the other hand for U open with U ⊃ K, by Urysohn

∃f ∈ Cc(X) s.t. f > χK and f ≺ U
⇒ L(f) 6 µ(U) (by def. of µ).
µ(K) = inf{µ(U)| U ⊃ K,U open}
⇒ µ(K) 6 L(f) 6 µ(U) ∀U open U ⊃ K
inf on RHS⇒ µ(K) 6 L(f) 6 µ(K)
⇒ µ(K) = inf{L(f)| f ∈ Cc(X), f > χK} ∀K ⊂ X.

It is therefore enough to show

L(f) =

∫
f dµ for f ∈ Cc(X, [0, 1))

since Cc is the linear span of such f , and both L and the integral
∫
dµ are linear functionals

on Cc.

For N ∈ N, 1 6 j 6 N let Kj := {x| f(x) > j
N } and K0 := supp(f).

Then note that

K0 ⊃ K1 ⊃ K2 ⊃ . . . .
Define

fj(x) :=


0 if x 6∈ Kj−1

f(x)− (j−1)
N if x ∈ Kj−1 \Kj

1
N if x ∈ Kj

So defined, fj vanishes on Kc
j−1, and on Kj , fj = 1

N , whereas on Kj−1 \Kj , since

j − 1

N
≤ f < j

N
=⇒ 0 < fj < 1/N.

Consequently,

(9.1) N−1χKj 6 fj 6 N−1χKj−1

(9.2) ⇒ 1

N
µ(Kj) 6

∫
fj dµ 6

1

N
µ(Kj−1).

If U is open and U ⊃ Kj−1, then

Nfj ≺ U,
because the support of fj is Kj−1 which is compactly contained in U . Therefore, by the
definition of µ(U) as the supremum over all such fj , we have

L(fj) 6 N−1µ(U).

Now since for a compact set (which we note Kj is) we showed that µ(Kj) is the infimum over
L(f) for all f ∈ Cc with f ≥ χKj , by (9.1)

1

N
µ(Kj) ≤ I(fj) ≤ N−1µ(U).

Taking the infimum over all open U which contain Kj−1 as in the definition of µ we then have

(9.3)
1

N
µ(Kj) ≤ L(fj) ≤

1

N
µ(Kj−1).

Note that so defined

f =

N∑
j=1

fj ,
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so summing over (9.2) by linearity of the integral,

⇒ 1

N

N∑
j=1

µ(Kj) 6
N∑
j=1

L(fj) 6
1

N

N−1∑
j=0

µ(Kj).

Next we sum over (9.3) using the linearity of the functional I,

1

N

N∑
j=1

µ(Kj) 6
∫
f dµ 6

1

N

N−1∑
j=0

µ(Kj).

Finally, we subtract these inequalities which leaves only the first and last terms, and so

⇒ |L(f)−
∫
f dµ| 6 µ(K0)− µ(KN )

N
≤ µ(supp(f))

N
→ 0, as N →∞.

Note that the measure of the support of f is finite because the support is compact, and for
compact sets, µ(K) is defined as the infimum of L(f), and L is a linear functional (which implies
L is continuous and hence has bounded norm). Therefore we have L(f) =

∫
f dµ.

10. The invariant measure associated to an IFS

Just so that we don’t forget what is going on, recall:

Definition 10.1. For x ∈ Rn, E ⊂ Rn, a measure µ, {i1, ..., ik} ⊂ {1, ...,m} we define

(1) xi1..ik := Si1 ◦ ... ◦ Sik(x),
(2) Ei1..ik := Si1 ◦ ... ◦ Sik(E), and
(3) µi1..ik := µ((Si1 ◦ ... ◦ Sik)−1(E).

We have nearly finished the proof of this awesome result.

Theorem 10.2 (The invariant measure for an IFS fractal). Assume that S = (S1, ..., Sm) is a
family of similitudes with common scaling factor r ∈ (0, 1), X ⊂⊂ Rn, X 6= ∅, and S(X) = X.
Then there exists a (non-negative) Borel measure µ on Rn such that µ(Rn) = 1, supp(µ) = X,
and

∀k ∈ N, µ =
1

mk

m∑
i1..ik=1

µi1..ik .

Here we mean by the statement that supp(µ) = X that for any A ⊂ Rn which is µ measurable,
then

µ(A) > 0 ⇐⇒ A ∩X 6= ∅.

To Complete the Proof: Recall how we defined

µk :=
1

mk

m∑
i1..ik=1

[δx]i1..ik .

Then note that

[δx]i1..ik(E) = δx(Si1 ◦ ... ◦ Sik(E)) =

{
1, x ∈ (Si1 ◦ ... ◦ Sik)−1(E)⇔ Si1 ◦ ... ◦ Sik(x) ∈ E
0, otherwise∫

Rn
fdµk =

1

mk

m∑
i1..ik=1

f(xi1..ik),

and

µk(Rn) =
1

mk

m∑
i1..ik=1

1 =
mk

mk
= 1.
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(1) Show that for any continuous f ,

{
∫
Rn
fdµk}k≥1

is a Cauchy sequence. Consequently we can conclude that it converges to a well-defined
limit for each f . Call the limit

L(f) := lim
k→∞

∫
Rn
fdµk.

(2) Observe that linearity is inherited by L from the linearity of the integral. Moreover, by
definition ∣∣∣∣∫

Rn
fdµk

∣∣∣∣ ≤ ||f ||∞ ∫
Rn
dµk = ||f ||∞.

Here we have used that ∫
Rn
dµk = 1∀k.

(3) Show that the support of µ is precisely X.
(4) Show that µ enjoys the invariance property given in the theorem.

Let ε > 0. That X is compact, and f is continuous implies ∃k > 0 such that

|x− y| ≤ rkdiam(X), x, y ∈ X =⇒ |f(x)− f(y)| < ε.

Above we have used the fact that r < 1 hence rk → 0 as k →∞.
If l > k ≥ K, then since

xi1..il ∈ Xi1..il = Si1 ◦ ... ◦ Sil(X) = Si1 ◦ ... ◦ Sik ... ◦ Sil(X)

Sik+1...il(X) ⊂ X, =⇒ Si1 ◦ ... ◦ Sik ... ◦ Sil(X) ⊂ Si1 ◦ ... ◦ Sik(X),

and

diamXi1..ik = rkdiamX,

we have

|f(xi1..ik)− f(xi1..il)| < ε

which follows because xi1..ik and xi1..il are both in Xi1..ik , so

|xi1..ik − xi1..il | ≤ diam(Xi1..ik) = rkdiam(X).

Summing over ik+1..il, and using the trick

f(xi1..ik) =
1

ml−k

m∑
ik+1..il=1

f(xi1..ik),

because the sum on the right is simply f(xi1..ik) repeated ml−k times, we have∣∣∣∣∣∣f(xi1..ik)− 1

ml−k

m∑
ik+1..il=1

f(xi1..il)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
 m∑
ik+1..il=1

f(xi1..ik)− f(xi1..il)

 1

ml−k

∣∣∣∣∣∣
≤ 1

ml−k

m∑
ik+1..il=1

|f(xi1..ik)− f(xi1..il)|

<
ml−kε

ml−k = ε.
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Next we sum over i1..ik and use the estimate above∣∣∣∣∣∣ 1

mk

m∑
i1..ik=1

f(xi1..ik)− 1

mk

m∑
i1..ik=1

 m∑
ik+1..il=1

f(xi1..il)

 1

ml−k

∣∣∣∣∣∣
=

∣∣∣∣∣∣m−k
 m∑
i1..ik=1

f(xi1..ik)− 1

ml−k

m∑
ik+1..il=1

f(xi1..il)

∣∣∣∣∣∣
≤m−k

m∑
i1..ik=1

∣∣∣∣∣∣f(xi1..ik)− 1

ml−k

m∑
ik+1..il=1

f(xi1..il)

∣∣∣∣∣∣
<m−kmkε = ε.

Since ∫
Rn
fdµl =

1

ml

m∑
i1..il=1

f(xi1..il),

∫
fdµk =

1

mk

m∑
i1..ik=1

f(xi1..ik),

we have ∣∣∣∣∫
Rn
fdµk −

∫
Rn
fdµl

∣∣∣∣ < ε, l > k ≥ K.

We have therefore shown that for any ε > 0 there exists K ∈ N such that for l > k ≥ K,∣∣∣∣∫
Rn
fdµk −

∫
Rn
fdµl

∣∣∣∣ < ε⇒
{∫

Rn
fdµk

}
k≥1

is a Cauchy sequence in R, which is complete, so the sequence converges.
Consequently we define a bounded linear functional on Cc(Rn) by

I(f) := lim
k→∞

∫
Rn
fdµk.

Now, we have called it a bounded linear functional, but let us indeed verify that it is, and that
it is also non-negative. For this, note that if

f ≥ 0⇒
∫
fdµk ≥ 0∀k ⇒ I(f) ≥ 0.

So, I is non-negative. For g ∈ Cc(Rn),

I(f + g) = lim
k→∞

∫
(f + g)dµk = lim

k→∞

∫
fdµk + lim

k→∞

∫
gdµk = I(f) + I(g).

Similarly, for λ ∈ R,

I(λf) = lim
k→∞

∫
λfdµk = λI(f).

Therefore I is linear and non-negative. The functional is bounded because∣∣∣∣∫ fdµk
∣∣∣∣ ≤ ||f ||∞µk(Rn) = ||f ||∞,

which implies
|I(f)| ≤ ||f ||∞ ∀ f ∈ Cc(Rn).

By Reisz Representation Theorem there exists a Borel measure µ such that

I(f) =

∫
fdµ, ∀ f ∈ Cc(Rn).

Note since
µk(Rn \X) = 0 ∀k,

if a function f has support in Rn \X, then∫
fdµk = 0∀ k =⇒

∫
fdµ = 0.
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Since we can approximate the characteristic function of any compact subset of Rn by continuous,
non-negative functions, it follows that

µk(E)→ µ(E) for any E ⊂⊂ Rn =⇒ µ(E) = 0∀E ⊂ Rn \X.
Therefore we have

supp(µ)c = ∪G, G ⊂ Rn open, such that µ(G) = 0,

supp(µ)c ⊃ Rn \X =⇒ supp(µ) ⊂ X.
By the Lebesgue dominated convergence theorem,∫

1dµ = µ(Rn) = lim
k→∞

∫
1dµk = µk(Rn) = 1.

By definition,

xi1..ik ∈ Xi1..ik , for each k ∈ N.
We also have

diam(Xi1..ik) = rkdiam(X)→ 0 as k →∞.
By the invariance of X under the family S, we have

X = ∪mi1...ik=1Xi1..ik .

Then note that for any ε > 0 there exists k ∈ N such that

diam(Xi1..ik) = rkdiam(X) < ε.

This means that for any point y ∈ X, since

y ∈ X = ∪mi1...ik=1Xi1..ik ,

the point y lies in at least one of the elements in the union,

y ∈ Xi1..ik =⇒ |y − xi1...ik | ≤ diam(Xi1..ik) = rkdiam(X) < ε.

This shows that the collection of points

{{xi1...ik}mi1...ik=1}k≥1

is dense in X, and hence the closure of this collection of points is X. By the definition of µk,

supp(µk) = {xi1...ik}mi1...ik=1.

Let p be one of these points, and let f be a compactly supported continuous function with
f(p) = 1, and 0 ≤ f ≤ 1. Then there exists ε > 0 and N ∈ N such that

|y − p| < ε =⇒ f(y) > 1/2, k ≥ N =⇒ rkdiam(X) < ε, p ∈ Xi1...iN .

Note that we have already seen

Xi1...ik...il ⊂ Xi1...ik =⇒ ∪i1...ik...il ⊂ ∪Xi1...ik .

Consequently for any l ≥ N we know that p ∈ Xi1...iN and consequently

xi1...iN ∈ Xi1...iN =⇒ f(xi1...iN ) ≥ 1/2.

Similarly, we also have

f(xi1..iN ...il) ≥ 1/2 ∀iN+1...il.

Then we also have for any k ≤ l,∫
fdµl =

1

ml−k

m∑
ik+1...il=1

1

mk

m∑
i1...ik=1

f(xi1....il)

and in the second sum taking the specific choice i1...iN we have

≥ 1

ml−N

m∑
iN+1...il=1

1

mN
f(xi1...iN ...il) ≥

ml−N

2ml−NmN
=

1

2mN
.
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Keeping N fixed and letting l→∞, this shows that∫
fdµ = lim

l→∞

∫
fdµl ≥ 1

2mN
.

If we had p ∈ supp(µ)c, then since by definition this is an open set, there would be an open
neighborhood of this point contained in supp(µ)c, and so for such an f with support contained
in this neighborhood we’d have ∫

fdµ ≤ µ(supp(f)) = 0.

That is a contradiction. Hence the entire set of points

{{xi1...ik}mi1...ik=1}k≥1 ⊂ supp(µ),

and by definition supp(µ) is closed so supp(µ) contains the closure of these points which is X.
We have already seen that supp(µ) ⊂ X, so this shows that we have equality.
Finally, we will show the invariance property. By definition,

µk+l =
1

mk+l

m∑
i1..ik+l=1

[δx]i1..ik+l ,

and

µl =
1

ml

m∑
i1..il=1

[δx]i1..il

⇒ [µl]i1..ik =
1

ml

m∑
j1..jl=1

[[δx]j1..jl ]i1..ik

First, we compute that

[[δx]j1...jl ]i1...ik(E) = δx((Sj1 . . . Sjl)
−1(Si1 . . . Sik)−1)(E).

Here, note that

(SiSj)
−1 = S−1

j S−1
i .

To see this, just compute

(S−1
j S−1

i )(SiSj) = the identity map.

So, we have

(Sj1 . . . Sjl)
−1(Si1 . . . Sik)−1 = (Si1 . . . Sik)−1(Sj1 . . . Sjl)

−1

= (Si1 . . . SikSj1 . . . Sjl)
−1

Thus,

[[δx]j1..jl ]i1..ik = [δx]i1...ikj1...jl .

Let us therefore define

ik+1 = j1, . . . , ik+l = jl.

Then we have

[[δx]j1..jl ]i1..ik = [δx]i1...ikj1...jl = [δx]i1...ik+l .

Consequently,

⇒ [µl]i1..ik =
1

ml

m∑
j1..jl=1

[[δx]j1..jl ]i1..ik

=
1

ml

m∑
ik+1...ik+l=1

[δx]i1...ik...ik+l .

So, now summing over all k combinations
m∑

i1...ik=1

[µl]i1..ik =
1

ml

m∑
i1...ik=1

m∑
ik+1...ik+l=1

[δx]i1...ik...ik+l
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=
1

ml

m∑
i1...ik+l=1

[δx]i1...ik...ik+l

= mkµk+l =⇒ 1

mk

m∑
i1...ik=1

[µl]i1..ik = µk+l.

Now, let f be continuous. Taking the limit on both sides as l→∞ we have

lim
l→∞

∫
Rn
fdµk+l = lim

l→∞

1

mk

m∑
i1...ik=1

∫
Rn
fd[µl]i1...ik .

Basically, the dominated convergence theorem allows us to move the limit inside everywhere,
obtaining ∫

Rn
fdµ =

1

mk

m∑
i1...ik=1

∫
Rn
fd[µ]i1...ik .

For more details, note that

χϕ−1(E)(x) =

{
1, x ∈ ϕ−1(E)

0, else

and

χE ◦ ϕ(x) =

{
1, ϕ(x) ∈ E ⇔ x ∈ ϕ−1(E)

0, else

Therefore,

χϕ−1(E) = χE ◦ ϕ.
Analogously, (integration is the limit over simple functions i.e sums) and using the definition
of µ, ∫

f [dµl]i1..ik =

∫
f ◦ Si1 ◦ .. ◦ Sikdµl

−→
l→∞

∫
f ◦ Si1 ◦ .. ◦ Sikdµ

=

∫
f [dµ]i1..ik

Let us now assume k is fixed. By the above calculation relating µk+l and µl and the linearity
of the integral, ∫

fdµk+l =
1

mk

m∑
i1..ik=1

∫
f [dµl]i1..ik

−→
l→∞

1

mk

m∑
i1..ik=1

∫
f [dµ]i1..ik

Since

lim
l→∞

∫
fdµk+l =

∫
fdµ

by definition, this shows that ∫
fdµ =

1

mk

m∑
i1..ik=1

∫
f [dµ]i1..ik .

This means that on the right side, we also have a linear functional, namely

f 7→ 1

mk

m∑
i1..ik=1

∫
f [dµ]i1..ik ,
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which coinicides with our linear functional I. By the proof of the Riesz representation theorem
assuming the measure associated with our functional above is constructed in the same way,
these measures are therefore the same, and so

µ =
1

mk

m∑
i1..ik=1

[µ]i1..ik .

The k ∈ N was arbitrary and fixed, hence this holds for all k ∈ N.

10.1. Ball counting Lemma. To compute the dimension of IFS fractals, it will be important
to be able to estimate how much certain sets intersect with our self-similar X such that SX = X.
The following lemma is key.

Lemma 10.3 (Ball counting Lemma). Let c, C, δ > 0. Let {Uα} be a collection of open, disjoint
sets such that. a ball of radius cδ ⊂ Uα ⊂ a ball of radius Cδ. Then no ball of radius δ intersects
more than (1 + 2C)nc−n of the sets Uα (note: we are in Rn).

Proof: If B is a ball of radius δ, and B ∩ Uα 6= ∅, then let p be the center of B, so that

B = Bδ(p).

Then, by the assumptions of the lemma, there is some q ∈ Uα such that

Uα ⊂ BCδ(q).

Next, we wish to show that Uα ⊂ B(1+2C)δ(p). For this, let

x ∈ Uα.

Then for z ∈ B ∩ Uα, by definition of the ball, we have

|z − p| < δ.

By the triangle inequality,

|x− p| 6 |x− z|+ |z − p| < diam (BCδ(q)) + δ = (1 + 2C)δ.

Here we have used that Uα ⊂ BCδ(q), to get that |x − z| ≤ diam (BCδ(q)). So, since this

holds
for any x∈Uα⇒ Uα ⊂ B(1+2C)δ(p). So, in conclusion, any Uα whose closure has non-empty

intersection with B is contained in

B(1+2C)δ(p).

So, the rest of the argument is all about counting. If N of the Uα’s intersect B (i.e. have 6= ∅
intersection), then since they are disjoint, and each contains a ball of radius cδ, and they are
all contained in B(1+2C)δ(p), ⇒ adding up the Lebesgue measures of all these N disjoint balls
of radius cδ which are contained in the one ball of radius (1 + 2C)δ we have the inequality:

⇒ N(cδ)nωn 6 Ln
(
B(1+2C)δ(p)

)
= (1 + 2C)nδnωn.

Simplifying:

⇒ N 6 (1 + 2C)nc−n.
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10.2. Homework. The exercises shall continue with the complex analysis fundamentals to
prepare for the second part of the course.

(1) Super-Mega-Differentiability: Prove that the derivative of a holomorphic function
is holomorphic as are all derivatives. Holomorphic functions are infinitely differentiable
(and in fact much better than merely C∞).

(2) Maximum Principle: Prove that |f | has its maximum on the boundary. Otherwise,
f is constant.

(3) Identity Theorem Prove that TFAE
1. f ≡ g
2. fk(z0) = gk(z0)∀k and some z0

3. f(zn) = g(zn)∀n, zn 6= z0, zn → z0 ∈ G.
(4) Liouville: Let f : C→ C be holomorphic. If f is bounded, then it is constant.
(5) Fundamental theorem of Algebra: p(z) is a polynomial with coefficients in C,

degree of p is k ≥ 1. Then ∃! (up to rearrangement) {rj}kj=0 in C such that p(z) =

r0

k∏
j=0

(z − rj).

(6) Riemann’s Removable Singularity Theorem: Let f : Dr(z0) \ z0 → C be holo-
morphic and bounded. Then z0 is removable. In case you have forgotten, here is the
classification of singularities:

Definition 10.4. If f is holomorphic on Dr(z0)\{z0}, then z0 is an isolated singularity.
(i) Removable ⇔ ∃! holomorphic extension to z0.

(ii) f(z) → ∞ as z → z0 ⇔ ∃!g(z) holomorphic on Dp(z0) where p ≤ r such that
g(z0) = 0 and f(z) = 1

g(z) on Dp(z0) \ {z0}. z0 is a pole.

(iii) Neither 1 nor 2. ”Essential singularity”. If f only has a finite set of singularities
on G ⊂ C of type 1 and/or type 2, f is called ”meromorphic”.

10.3. Hints.

(1) Expanding 1
w−z in a geometric series one can prove that f has a power series expansion.

f(z) =
∑
k≥0

ak(z − z0)k.

It follows from the Lebesgue Dominated Convergence Theorem that

f (k)(z) =
k!

2πi

∫
∂D

f(w)

(w − z)k+1
dw.

The coefficients in the power series expansion are therefore

ak =
f (k)(z0)

k!
.

(2) One way to prove the Identity Theorem is to show that 3 =⇒ 2 by considering
h = f − g and the power series expansion at z0. By continuity h(z0) = 0. So, using the
power series expansion of h at z0, assume all coefficients up to aj vanish (we know this
is true for j ≥ 1 some j, because a0 = h(z0) = 0. Then use the assumption to show
that aj = 0 also. By induction this shows 2. To show the first statement follows from
2, show that the set of points where f = g is clopen (closed and open). Since the set is
non-empty, this means that the set is the entire domain.

(3) Assume |f | ≤M on C. The Cauchy Ingegral Formula implies

f(z) =
1

2πi

∫
∂DR

f(w)

w − z
dw
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Therefore, we have

f ′(z) =
1

2πi

∫
∂DR(z0)

f(w)

(w − z)2
dw

and

f (k)(0) =
k!

2πi

∫
∂DR

f(w)

wk+1
dw

Therefore, we get the estimation

|f (k)(0)| ≤ k!

2π

2πRM

Rk+1
∀R > 0

Letting R → ∞, we get f (k)(0) = 0∀k ≥ 1. Using the Identity Theorem, we get since
f (k)(0) = g(k)(0)∀k ≥ 0, g(z) ≡ f(0)⇒ f ≡ g ⇒ f ≡ f(0) is constant.

FTA If degree of p is 1, then p(z) = az + b and a 6= 0⇒ r0 = a and r1 = − b
a . finish.

By induction on K. If p
∣∣
C 6= 0 then 1

p is entire and → 0 at ∞. ⇒ bounded ⇒ constant

⇒ p constant  
p has at least one zero rk ⇒ p is polynomial, p(z)

z−rk is a rational funcion without poles
⇒ polynomial.
p(z) = (z − rk)q(z) where q has degree k− 1 < k. ⇒ by induction ∃!{rj}k−1

j=0 such that

q(z) = r0

k−1∏
j=1

(z − rj). ⇒ p(z) = r0

k∏
j=0

(z − rj).

RRT g(z) := (z − z0)f(z), z 6= z0. g is holomorphic on Dr(z0) \ z0 lim
z→z0

g(z) = 0 ⇒
define g(z0) = 0 ⇒ g is continuous on Dr(z0). ⇒ g is holomorphic on Dr(z0) and so

lim
z→z0

g(z)−g(z0)
z−z0 = g′(z0) exists, and lim

z→z0
(z−z0)f(z)

z−z0 =: f(z0). Consequently this limit

exists, is unique, and defining f(z0) by this limit is unique and makes f continuous at
z0. Moreover, any holomorphic function on a punctured disk which is continuous on the
whole disk is in fact holomorphic, which follows from the fact that the integral of such
a function over any triangle in the disk vanishes, hence the function has a well-defined
primitive. By super-mega differentiability the original function, that is the derivative
of the primitive, is also holomorphic.

11. The dimension of IFS fractals and an introduction to complex dynamics

We shall now prove the major goal of the geometric measure theory part of this course!

Theorem 11.1 (Dimension of IFS Fractals!!!). Let S = (S1, ..., Sm) be a family of similitudes
with common scale factor r ∈ (0, 1). Let U be a separating set, that is an open, bounded, non-
empty set with S(U) ⊂ U , and Si(U) ∩ Sj(U) = ∅ if i 6= j. Let X be the unique, non-empty,
compact set s.t. S(X) = X. Let p := log 1

r
(m). Then we have

i) Hp(X) ∈ (0,∞), so we may conclude that p = dim(X).
ii) Moreover, Hp (Si(X) ∩ Sj(X)) = 0 for all i 6= j.

Proof: For any k ∈ N, by the invariance of X, we can write

X = Sk(X) =

m⋃
i1,...,ik=1

Si1 ◦ ... ◦ Sik(X) =

m⋃
i1,...,ik=1

Xi1,...,ik .

Each of these Xi1,...,ik has diameter =rkdiam(X). So, if δk = rkdiam(X), then

Hpδk(X) 6
m∑

i1,...,ik=1

(diam (Xi1,...,ik))
p

= mkrpkdiam(X)p
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By definition p = log 1
r
(m) ⇒

(
1
r

)p
= m ⇒ mk = r−pk ⇒ Hpδk(X) 6 diam(X)p. Letting

δk↓0⇒ Hp(X) 6 diam(X)p <∞, because X is compact and thus also bounded.
Next, we wish to show that p-dimensional Hausdorff measure of X is positive. For this purpose,
let 0 < c < C be chose such that U contains a ball of radius c

r and is contained in a ball of

radius C
(
= Cr

r

)
. Since U is a non-empty bounded set, clearly it is possible to find such a c

and C.
Let

N = (1 + 2C)nc−n.

We will prove that

Hp(X) >
1

2pN
by showing that if {Ej}j>1 cover X with diam(Ej) 6 1∀j, then∑

diam(Ej)
p >

1

N2p
.

In this way, we shall obtain that

Hp1(X) ≥ 1

N2p
.

Since Hpδ(X) is monotonically increasing as δ ↓ 0, it follows that

Hp(X) ≥ Hp1(X) ≥ 1

N2p
> 0.

Now, let us make some further reductions. Any (non-empty) set E of diameter δ is contained
in a closed ball of radius δ because the distance between any two points of E is at most δ. So
it suffices to pick any old point p ∈ E, and then d(p, e) ≤ diam(E) = δ for all e ∈ E, so by

definition E ⊂ Bδ(p). With this observation we note that

diam(E) =
diam(Bδ)

2
⇒
∑

diam(Ej)
p =

∑(
diam(Bδ)

2

)p
=

1

2p

∑
diam(Bδ)

p.

Hence, it is enough to show that if

X ⊂ ∪Bj = ∪Bδj , δj 6 1∀j,
then

∞∑
j=1

δpj >
1

N
,

because
∞∑
j=1

δpj = 2p
∞∑
j=1

diam(Ej)
p =⇒

∞∑
j=1

diam(Ej)
p ≥ 1

2pN
.

To prove this, we will prove:
?: if the radius of B is δ 6 1 then µ(B) 6 Nδp. Here µ is our special measure associated to X
which has that cool invariance property.
This shows that

1 = µ(X) 6
∑

µ(Bj) 6 N
∑

δpj .

Above, we are using that X is contained in the balls, and µ is a Borel measure, so we have
countable sub-additivity. Then, note that this shows that

1

N
≤
∑
j

δpj ,

which is what we want.
To prove ? let k ∈ N s.t. rk < δ 6 rk−1. Then by the invariance property enjoyed by µ we have

µ(B) =
1

mk

m∑
i1,...,ik=1

µi1,...,ik(B).
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Since

X ⊂ U, supp(µi1,...,ik) = Xi1,...,ik ⊂ U i1,...,ik .
Thus,

if we have µi1,...,ik(B) 6= 0 then we have B ∩ U i1,...,ik 6= ∅.
Next we use the fact that

Si(U) ∩ Sj(U) = ∅ i 6= j,

together with

S(U) ⊂ U =⇒ Si(U) ⊂ U∀i
to conclude

Sk(Si(U)) ⊂ Sk(U)
Sl(Si(U)) ⊂ Sl(U)

⇒ Sk(Si(U)) ∩ Sl(Si(U)) = ∅ if k 6= l

Moreover, we also have

Sk(Si(U)) ∩ Sk(Sj(U)) = ∅, for i 6= j,

because

Si(U) ∩ Sj(U) = ∅ for i 6= j, and Sk is injective.

This shows that if i1, ..., ik 6= j1, ..., jk, then Ui1,...,ik ∩ Uj1,...,jk = ∅.

Now we use the fact that U contains a ball of radius c
r ⇒ Ui1,...,ik contains a ball of radius

c
r r
k = crk−1. Note: that crk−1 > cδ and Crk < Cδ.

Thus, Ui1,...,ik contains a ball of radius crk−1 > cδ, and is contained in a ball of radius Crk < Cδ.
Ball counting Lemma⇒ B can intersect at most N = (1 + 2C)nc−n of the {Ui1,...,ik}mi1,...,ik=1.

⇒ µ(B) =
1

mk

m∑
i1,...,ik=1

µi1,...,ik(B) 6 Nm−k.

Note that for the last inequality we have used the fact that µi1,..,ik is supported in Xi1,...,ik ⊂
Ui1,...,ik , and the mass of each of these is at most 1 because the total mass is one. Since B
intersects at most N of them, the right side of the inequality m−kN follows. Now, recalling
that
p = log 1

r
(m) ⇒ m−k = rkp ⇒ µ(B) 6 Nrkp 6 Nδp, since rk < δ ≤ 1. This is ?. So, we

have proven that Hp(X) is positive and finite, thus by our previous results, this shows that p
is precisely the Hausdorff dimension of X. Pretty cool!
Finally, we show that the copies of X have zero-measure Hp intersection. Since Sj scales
by r, we have proven that Hp(Sj(X)) = rpHp(X) = m−1Hp(X), using the definition of p.
Consequently,

⇒ Hp(X) =

m∑
j=1

Hp(Sj(X)).

Since

X =

m⋃
j=1

Sj(X),

this holds iff Hp(Si(X) ∩ Sj(X)) = 0 whenever i 6= j. More generally, for any measure ν,
measurable sets A and B

ν(A ∪B) = ν(A) + ν(B)⇔ ν(A ∩B) = 0
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11.1. Introducing complex dynamics. Let us begin with a famous set, the Mandelbrot set.

Definition 11.2. The Mandelbrot set is the set of c ∈ C such that the function

fc(z) := z2 + c,

satisfies
{fnc (0)}n∈N is a bounded subset of C.

Exercise 6. Play around with this definition. Take specific values of c, pop them in, and see
what happens to the sequence you are obtaining.

To study this set and its mysteries, we shall require some notions from complex analysis and
the iteration of complex functions. For a function f(z) : C→ C, the function

fn(z) := f ◦ f ◦ f ◦ . . . ◦ f(z), is f composed with itself n times.

This clearly makes sense when n is a positive integer. Complex dynamics is the study of
the family of functions {fn} for certain choices of the function f . This is exactly how the
Mandelbrot set is defined! It consists of the complex numbers, c, such that the quadratic
function fc(z) = z2 + c satisfies

{fnc (0)}n∈N is bounded.

So, to dig deeper into the Mandelbrot set, we need to understand fundamental facts about
iterating functions. To begin, we define what it means for a family of holomorphic functions to
be normal on a domain in C. For this, we recall a definition that you really ought to already
know.

Definition 11.3. A function f is holomorphic in a neighbourhood Dr(z0) of z0, iff ∀z ∈ Dr(z0)
the following limit exists

lim
w→z

f(w)− f(z)

w − z
=: f ′(z).

Proposition 11.4. This definition is equivalent to requiring that for all z ∈ Dr(z0) there exists
a function Az which is continuous at z, and such that

f(w) = f(z) + (w − z)Az(w), ∀w in a neighborhood of z.

Proof: First, assume that f is holomorphic. Then for w near z we can define

Az(w) =
f(w)− f(z)

w − z
, w 6= z, Az(z) = f ′(z).

Then, for all w near z, we have

Az(w)(w − z) = f(w)− f(z) =⇒ f(w) = f(z) + (w − z)Az(w),

and so defined
lim
w→z

Az(w) = Az(z).

Next assume that we have such a continuous Az(w). Then

lim
w→z

f(w)− f(z)

w − z
= lim
w→z

f(z) + (w − z)Az(w)− f(z)

w − z
= lim
w→z

Az(w) = Az(z).

In the last step we used the fact that Az is continuous at the point z.

Definition 11.5. A family of holomorphic functions F defined on a domain G ⊂ C is normal
if for any sequence in F , there exists a subsequence which converges locally uniformly (this
means uniformly on compact subsets).
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Figure 2. The Mandelbrot set.

Definition 11.6. Let f : C→ C. The Fatou set of f is defined to be

{z ∈ C : ∃r > 0 such that {fn} is a normal family on Dr(z)}.
The Julia set of f is the complement of the Fatou set.

By demonstrating and recalling a few theorems, we will prove that if we wish to study the
complex dynamics (i.e. behavior of the family {fn}) of f : G → G for a domain G ⊂ C,
it’s actually completely equivalent to studying the dynamics on either the unit disk, the entire
complex plane, or the Riemann sphere. In this way, we can simplify the problem by working
on a simple set (disk, plane, or Riemann sphere) rather than working on some creepy wonky
set, G.

Theorem 11.7 (Open Mapping Theorem). Let f : G → C be holomorphic and non-constant.
Then f is an open map, i. e. f(G) is a domain.

Proof: Since G is connected and f is continuous, f(G) is also connected.

Let w0 = f(z0) and r > 0 such that Dr(z0) ⊂⊂ G and so that

f
∣∣
Dr(z0)\z0

6= w0(11.1)

To see why we can do this, we use the Identity Theorem. If there are points zn 6= z0 such that
zn → z0 and f(zn) = f(z0), then the function

f(z)− f(z0)

is also holomorphic, and it has infinitely many zeros occurring at the points zn which accumulate
at z0. The identity theorem then says that this function is identically zero, which would mean
that f(z) ≡ f(z0) is constant. That is a contradiction  .
Now, let us define

δ := min
z∈∂Dr(z0)

|f(z)− w0| > 0

Since ∂Dr(z0) is compact, and f is continuous, so therefore |f(z)− w0| is also continuous, the
minimum is assumed at some point (that’s why we called it a minimum not an infimum... every
minimum is an infimum but not the other way around). Also, since f(z) 6= w0 on the closure
of Dr(z0), we know that δ > 0.
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Claim. D δ
2
(w0) ⊂ f(Dr(z0)). If we can prove this claim, then we will have proven the theorem,

because we will have proven that any point w0 ∈ f(G) has a neighborhood, Dδ/2(w0) which is
also contained in f(G), thus f(G) is an open set.
So, let us prove the claim!
Assume that w has |w − w0| < δ

2 . Then let z ∈ ∂Dr(z0). The triangle inequality gives

|f(z)− w| ≥ |f(z)− w0| − |w − w0|.

By definition of δ as the minimum, and since |w − w0| < δ
2 , we therefore have

|f(z)− w| ≥ δ − δ

2
=
δ

2
, ∀z ∈ ∂Dr(z0).

We would like to show that somewhere inside the disk, |f(z) − w| = 0. To achieve this, let us
consider

g(z) :=
1

f(z)− w
.

At least on the boundary Dr(z0) this function is well defined. For the sake of contradiction, let
us assume that f(z) 6= w for all z ∈ Dr(z0). Then g is holomorphic on all of Dr(z0). Note that

|f(z)− w| ≥ δ

2
∀z ∈ ∂Dr(z0) =⇒ |g(z)| ≤ 2

δ
, ∀z ∈ ∂Dr(z0).

However, we have

g(z0) =
1

f(z0)− w
=

1

w0 − w
=⇒ |g(z0)| = 1

|w0 − w|
>

2

δ
.

Yikes! Holomorphic functions assume their maximum on the boundary, not in the interior
somewhere. So this is impossible. What lead to this impossibility was the assumption that
f(z) 6= w for all z ∈ Dr(z0). Thus, there must be some z ∈ Dr(z0) with f(z) = w. Hence, this
shows that w ∈ f(Dr(z0)). Since w was arbitrary with |w − w0| < δ

2 , this shows that

Dδ/2(w0) ⊂ f(Dr(z0)) ⊂ f(G),

since Dr(z0) ⊂ G.

11.2. Homework.

Exercise 17. Review everything we have done thus far in the geometric measure theory part of
the course. See if there are any lingering questions, gaps, and if so, make a list of these. Bring
your list to class so that these lingering questions can get answered!

Exercise 18. Now review your complex analysis. If you can read German, you can check out
my lecture notes from teaching complex analysis to physicists in Hannover... These are linked
on the course webpage.

Exercise 19. Prove that the locally uniform limit of holomorphic functions is again holomor-
phic.

Exercise 20. Who is this guy ?
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12. Complex dynamics on the plane and Riemann sphere

We would like to understand when domains in the complex plane are equivalent in a certain
sense. This sense is phrased in terms of biholomorphic maps.

Definition 12.1. A map f : G→ f(G) is biholomorphic precisely when f is holomorphic, f−1

exists and is holomorphic on f(G).

Exercise 21. Prove that if f is holomorphic with f ′ 6= 0 on a domain G, then f is locally
1:1, in the sense that for each z ∈ G there exists r > 0 such that f is 1:1 on Dr(z). Find an
example of an f and a G which has f locally 1:1 but not 1:1 on all of G.

Corollary 12.2. Assume that a holomorphic map f : G → Ω. Then it is is biholomorphic
⇐⇒ f ′

∣∣
G
6= 0, and f is 1:1.

Proof: (⇒): Assume that f is biholomorphic. Then we differentiate the identity map,
f−1 ◦ f : G→ G:

(f−1)′(f(z))f ′(z) = 1,

since the derivative of the identity map is 1. Consequently, we get that f ′(z) can never vanish.
Moreover, by assumption that f is biholomorphic, f−1 exists (is defined!) thus f must be 1:1.
(⇐): We assume that f is 1:1 and f ′

∣∣
G
6= 0. Then f is not constant. Therefore f(G) = Ω

is open. To see that f−1 is continuous, we use the characterization that requires the inverse
image of open sets be open. So, let U ⊂ G be open. Then (f−1)−1(U) = f(U) is open by the
Open Mapping Theorem. Thus f−1 is continuous. We can therefore compute

lim
w→z0=f(ξ0)

f−1(w)− f−1(z0)

w − z0
= lim
ξ=f−1(w)→ξ0

ξ − ξ0
f(ξ)− f(ξ0)

=
1

f ′(ξ0)

The step where we changed the limit to ξ → ξ0 is legit because we proved that f−1 is continuous,
so

w → z0 = f(ξ) =⇒ f−1(w) = ξ → f−1(z0) = ξ0.

This exists because f is holomorphic and f ′
∣∣
G
6= 0. Consequently, we have proven that f−1 is

also holomorphic.

Definition 12.3. If G,Ω are domains in C such that ∃f : G→ Ω biholomorphic, then G and Ω
are biholomorphically equivalent. A map f : G→ C such that f ′

∣∣
G
6= 0 is known as a conformal

map, and G is conformally equivalent to f(G).

Remark 7. “Conformal” means angle-preserving.

Theorem 12.4 (Uniformization Theorem). Let G ⊂ C be simply connected. Then G is con-
formally equivalent to one of the following:

(1) C
(2) D
(3) Ĉ = C ∪∞.

Moreover, the same holds for any simply connected Riemann surface (2-dimensional Riemann-
ian manifold with biholomorphic coordinate charts → C).

The following theorem shows that essential singularities are extremely special.

Theorem 12.5 (Big Picard Theorem). If f is holomorphic on Dr(z0)\z0, and z0 is an essential
singularity, then ∀ε ∈ (0, r), #{C \ f(Dε(z0) \ z0)} ≤ 1.

Remark 8. This means that the image of any punctured disk, no matter how tiny, about the
essential singularity gets mapped to cover all of C, except possibly one point!!!
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Definition 12.6. If f is entire and lim
z→∞

f(z) =∞, then f has a pole at ∞.

Corollary 12.7. Assume that f is entire. Then either

(1) f is constant.
(2) f has a pole at ∞.
(3) f has an essential singularity at ∞.

Proof: If f is not constant, then something happens at infinity. By definition, if f has a pole
at infinity, then 1

f( 1
z )

=: g(z) is holomorphic near z = 0 and g(0) = 0. Consequently, f cannot

have an essential singularity at infinity by Picard’s theorem. On the other hand, if f has an
essential singulariy at infinity, then 1

f( 1
z )

=: h(z) has an essential singularity at 0. By Picard’s

theorem, it is impossible that f has a pole at infinity.
A useful result is Montel’s Theorem, which allows us to conclude that if a family is bounded,
then it is normal.

Theorem 12.8 (Montel’s Little Theorem). If a family F is uniformly bounded, then it is
normal.

Proof: Let M ≥ ||f ||∞ for all f ∈ F . Fix z0 ∈ G and R > 0 such that

DR(z0) ⊂⊂ G.
Then for any z ∈ DR/2(z0) we have by the Cauchy Integral Formula for f ∈ F ,

f ′(z) =
1

2πi

∫
∂DR(z0)

f(w)

(w − z)2
dw =⇒

|f ′(z)| ≤ 2πR

2π

M

(R−R/2)2
=: c.

This holds for all z ∈ DR/2(z0). It follows that the family F is equicontinuous on this disk.
Recall that this means that given ε > 0, the same δ “works” in the definition of continuity for
all f ∈ F . In particular, given ε > 0, we can take

δ =
ε

1 + c
=⇒ |f(z)− f(w)| ≤ |z − w| sup

ζ∈DR/2(z0)

|f ′(ζ)| ≤ c|z − w|,

so when
|z − w| < δ =

ε

1 + c
=⇒ |f(z)− f(w)| < εc

1 + c
< ε.

Note that we have a sort of Fundamental Theorem of Calculus in complex analysis, in the
sense that f(z) =

∫ z
z0
f ′(w)dw, which is why we get the estimate |f(z) − f(w)| ≤ |z −

w| supζ∈DR/2(z0) |f ′(ζ)|. Now, since the family was assumed to be bounded, and we proved

it was equicontinuous, the Arzela-Ascoli theorem implies that every sequence has a locally

uniformly convergent subsequence.
By Montel’s Theorem, if a function f : D→ D, then F := {fn} is a normal family. So, we can
already say something about the holomorphic dynamics on D. In particular we have

Theorem 12.9 (Holomorphic dynamics on D). Let f : G → G be holomorphic on the simply
connected domain, G. Assume that G is conformally equivalent to the unit disk, D. Then G
belongs to the Fatou set of f .
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Proof: Let φ : G→ D be the conformal (biholomorphic) map given from the Uniformization
Theorem. Then the map

ϕ = φ ◦ f ◦ φ−1 : D→ D.
Hence, we also have ϕn : D→ D for all n ∈ N. Therefore the family

{ϕn}
is a normal family, by Montel’s Theorem. Thus on any compact subset K ⊂ D, we can find a
uniformly convergent subsequence. Let ϕnk be such a subsequence, with ϕnk → g on K. In
particular, let B ⊂ G be compact. Then by the open mapping theorem φ(G\B) is open, which
shows that φ(B) is closed, and being contained in D, it is therefore compact. Hence, taking
K = φ(B) we have ϕnk converging on K. Therefore, we have

lim
nk→∞

ϕnk(z) exists for all z ∈ K.

Then, since
ϕnk = φ ◦ fnk ◦ φ−1 =⇒ fnk = φ−1 ◦ ϕnk ◦ φ.

Hence
lim

nk→∞
fnk(w) = lim

nk→∞
φ−1 ◦ ϕnk ◦ φ(w) = lim

nk→∞
φ−1ϕnk(z),

for z = φ(w) ∈ φ(B). Since
lim

nk→∞
ϕnk(z)

exists, and φ−1 is holomorphic and therefore continuous, we also have

lim
nk→∞

fnk(w) = lim
nk→∞

φ−1ϕnk(z) exists and equals

φ−1

(
lim

nk→∞
ϕnk(z)

)
.

This shows that {fn} is a normal family on all of G. Hence G belongs to the Fatou set of f .

Corollary 12.10 (Conformal Sandwich). Assume that f : G → G for a domain G which is
conformally equivalent to a domain Ω. Let φ : G→ Ω be biholomorphic. Then {fn} is normal
on G if and only if {ϕn} is normal on Ω, where ϕ = φ ◦ f ◦ φ−1.

Proof: Since the two directions are the same by symmetry of the statement, it suffices to
prove that if {fn} is normal then {ϕn} is normal. For this purpose, let K ⊂ Ω be compact.
Then B = φ−1(K) ⊂ G is also compact, by the open mapping theorem as in the proof of
the preceding theorem. Hence, we have a subsequence of fn converging on B. Denote this
subsequence by {fnk}. Then, we have

lim
nk→∞

ϕnk(z) = lim
nk→∞

φ ◦ fnk ◦ φ−1(z).

For z ∈ K, we have φ−1(z) = w ∈ B, and therefore

lim
nk→∞

φ ◦ fnk ◦ φ−1(z) = lim
nk→∞

φ ◦ fnk(w) = φ

(
lim

nk→∞
fnk(w)

)
.

Above, we have used the fact that fnk converges at w ∈ B, together with the fact that φ is

holomorphic and thus continuous.
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Remark 9. Two functions, f and g, are said to be conformally equivalent if there exists a
conformal map φ such that we have f ◦ φ = φ ◦ g, i.e. f = φ ◦ g ◦ φ−1, or equivalently,
g = φ−1 ◦ f ◦ φ. By the preceding corollary, {fn} is normal on G if and only if {gn} is normal
on φ−1(G). Hence, when functions are conformally equivalent, we can always choose the simpler
one to study.

Complex dynamics is all about determining when the family of iterates {fn} is normal. For f
defined on a simply connected domain G ⊂ C, assume that f : G→ G, so that f ◦ f and more
generally fn is well defined on all of G. Let

φ−1 : E 7→ G,

be the conformal map given by the Uniformization Theorem, where E = D,C, or Ĉ. Then let

f̃ := φ ◦ f ◦ φ−1 : E → E.

Note that f̃n = φ ◦ fn ◦ φ−1. Therefore the preceding corollary shows that the study of
holomorphic dynamics on any simply connected domain is reduced, by the Uniformization
Theorem, to the study of holomorphic dynamics on D, C, and Ĉ. Moreover, we have proven
that in case G is conformally equivalent to the unit disk, D, then such a function f is normal
on G. Hence, the more interesting cases shall be when G is conformally equivalent to C or Ĉ.
Since we can reduce to the case of studying the iterates of the conformal sandwich function
on C or Ĉ, it shall be much simpler to work over there. For this purpose, we shall classify all
functions which are (1) entire and without essential singularity at infinity and (2) meromorphic

on Ĉ. Recall that meromorphic means that there are only discrete poles of finite rank (i.e. no
essential singularities), and elsewhere such a function is holomorphic.

12.1. Homework.

(1) Locate and read a proof of Picard’s BIG theorem.
(2) Locate and read a proof of the Uniformization theorem.
(3) Prove that the Fatou set is always open.
(4) Prove that the Julia set is always closed.

13. Entire and meromorphic functions without essential singularities

We shall first prove that it is quite natural to focus on the Fatou and Julia sets of polynomials
and rational functions.

Theorem 13.1. If f : C → C is entire and without essential singularity at infinity, then f is
a polynomial.

Proof: First note that if f is bounded, then it is constant, and hence a polynomial of degree
0. How interesting (not). Let us assume that f is non-constant and therefore unbounded, then
we must have |f(z)| → ∞ as |z| → ∞. Consequently the function

1

f(1/z)
= g(z)

is holomorphic on a disk about 0 with g(0) = 0. Since f 6≡ ∞, we cannot have g ≡ 0, and
therefore there exists k ∈ N such that

g(z) =
∑
j≥k

ajz
j , ak 6= 0.

Consequently,

f(z) =
1

g(1/z)
=

1

akz−k + . . .
=

zk

ak + ak+1z + . . .
∼ zk as k →∞.

Next since |f | → ∞ as |z| → ∞, there exists R > 0 such that for all |z| > R, |f(z)| > 100000.
In particular for all such z, f 6= 0. So, the set of zeros of f is contained in a compact set. Since
we assumed that f is not constant, by the identity theorem f can only have a finite set of zeros
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(of finite order) because they are all contained in a compact set, and so any infinite set would
accumulate there thus implying f vanishes identically (ID theorem) which it does not.
Let {zk}n1 be the zeros of f of respective degrees dk. Then consider

f(z)∏n
1 (z − zj)dj

.

We know that |f(z)| ∼ |z|k as |z| → ∞. If on the one hand k <
∑
dj , then this function tends

to 0 at infinity and is entire, hence bounded, hence constant by Liouville’s theorem. Since it
tends to zero at infinity, this would imply the function is identically 0, hence so is f , which is
a contradiction. So we must have k ≥

∑
dj . Now, on the other hand, we consider∏n

1 (z − zj)dj
f(z)

.

This function is also entire. If k >
∑
dj , then by the same argument we also get a contradiction.

Hence k =
∑
dj , and so both of these functions are again bounded and entire, hence constant

(and that constant cannot be zero), so there is c ∈ C \ {0} such that

f(z)∏n
1 (z − zj)dj

≡ c ⇐⇒ f(z) ≡ c
n∏
1

(z − zj)dj

which is a polynomial.
So, we now see that holomorphic dynamics for entire functions without essential singularity at
∞ is reduced to the study of iteration of polynomial functions. Moreover, we shall see that
such functions which are non-constant are surjective. The advantage of this is that we can
reduce the study of {fn} on some wonky G to the study of {pn} on C. To see this, start with
f : G → G is holomorphic on G, without essential singularity at ∂G. Assume that G is a
simply connected domain which is conformally equivalent to the plane. Let φ : G → C be the
conformal map obtained through the uniformization theorem. Then p = φ ◦ f ◦ φ−1 : C → C
is entire and without essential singularity at infinity. Consequently p is a polynomial. By the
theorem below, we shall see that as long as f is non-constant, then p is surjective. Thus the
study of {fn} on G is in this case reduced to the study of {pn} on C.

Proposition 13.2. Entire functions without essential singularity at infinity which are non-
constant are surjective.

Proof: By the theorem, such a function is a polynomial p(z) of degree d ≥ 1. Proceeding by
contradiction we assume there is q ∈ C such that p(z) 6= q for all z inC. Then the function

1

p(z)− q
is entire. Moreover, since |p(z)| ∼ |z|d as |z| → ∞, it follows that this function tends to zero at
infinity and hence is bounded. By Liouville the function is constant, which furthermore implies
that p is constant which it is not. Therefore the assumption that p(z) 6= q for all z inC must

be false, and hence p is surjective.
Next let’s consider holomorphic dynamics for meromorphic functions on Ĉ.

Theorem 13.3. Any meromorphic function on Ĉ is a rational function. If it is non-constant,
then it is surjective.
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Proof: Let’s assume f(z) is non-constant and meromorphic. Let {pk}n1 be the poles of f with
corresponding degrees dk. Then

F (z) := f(z)

n∏
1

(z − pk)dk

is entire, and has at worst a pole at ∞. Therefore this function is a polynomial q(z) and hence

f(z) =
q(z)∏n

1 (z − pk)dk

is a rational function. To show surjectivity first note that a meromorphic function defined on Ĉ
without pole is constant by Liouville’s theorem (it is entire and bounded!) Therefore the value
∞ is assumed at a pole. For p 6= ∞, for the sake of contradiction we assume f(z) 6= p for all

z ∈ Ĉ. The function f(z)− p may have poles, but it has no zeros, so

1

f(z)− p
= g(z)

is entire. It has at worst a pole at infinity. If it has no pole at infinity, then it is constant and
hence so is f which is a contradiction. So, this function has a pole at infinity and hence is a
polynomial. Therefore

f(z)− p =
1

g(z)
→ 0 as z →∞.

Since f is meromorphic, this shows that

f(z)→ p as z →∞ =⇒ f(∞) = p.

Hence f does assume the value p since ∞ ∈ Ĉ.
So, holomorphic dynamics for meromorphic functions on Ĉ is reduced to the study of iteration of
rational functions. We can also reduce holomorphic dynamics on any simply connected domain,
G, which is conformally equivalent to Ĉ to the study of the iterates of a rational function. To
see this, assume that f : G → G is meromorphic. Assume that φ : G → Ĉ is given by the
Uniformization Theorem. Then, the study of the iterates of f is equivalent to the study of
the interates of r = φ ◦ f ◦ φ−1. Since f is meromorphic on Ĉ, it follows that r : Ĉ → Ĉ is
meromorphic. Hence it is a rational function. If it is non-constant, then it is surjective as well.

13.1. What about essential singularities? For examples, functions which have essential
singularity at infinity, like ez, or functions which have a discrete set of essential singularities,
like exponentiating a rational function? Well, I did a bit of research into this and found a paper
which has a nice historic introduction to the general field of complex dynamics, followed by
some interesting results. Guess the year of the paper? It is an arxiv preprint from 2017 (!!!!!)
Yeah, so this seems to be relatively unexplored territory.

Exercise 22. Read this paper: https: // arxiv. org/ pdf/ 1705. 03960 .

13.2. Fixed points. A likely candidate for the Fatou set is a point z0 such that

f(z0) = z0.

Then, we at least know that fn(z0) converges to z0, because it is a rather monotonous convergent
sequence (it is constant). However, to belong to the Fatou set, we need to know that fn is
normal in a neighborhood of the point z0. To understand this, we need to understand different
types of fixed points.

Definition 13.4. Let f be holomorphic in a neighborhood of z0 and assume f(z0) = z0. The
value λ := f ′(z0) is known as the multiplier at the fixed point z0.

https://arxiv.org/pdf/1705.03960
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(1) If |λ| < 1, then z0 is an attracting fixed point. If |λ| = 0, then z0 is a super-attracting
fixed point. We shall see that in both of these cases, z0 belongs to the Fatou set.

(2) If |λ| > 1, then z0 is a repelling fixed point. We shall see that in this case, z0 belongs
to the Julia set.

(3) If there exists n ∈ N such that λn = 1, then z0 is a rationally neutral fixed point. This
is subtle, but in this case as well, one can show that z0 belongs to the Julia set (this is
an exercise).

(4) Otherwise z0 is an irrationally neutral fixed point. This is quite subtle. We shall see
that such a fixed point belongs to the Fatou set if and only if {fn} stay uniformly
bounded in some neighborhood of z0. When the multiplier is of the form e2πiθ where
θ is Diophantine (we shall define this later), then Siegel proved that a neighborhood of
z0 belongs to the Fatou set (so z0 also belongs to the Fatou set). In the special case
of quadratic polynomials, there is a necessary and sufficient condition on the multiplier
to guarantee that the fixed point belongs to the Fatou set (this will be an exercise, but
not for the faint hearted).

We recall here the definition of conformally conjugate functions.

Definition 13.5 (Conformally conjugate). We say that f : U → U is conformally conjugate
to g : V → V , if there exists a conformal ϕ : U → V such that g = ϕ ◦ f ◦ ϕ−1. (Schröder’s
equation)
(g and f are like the same, only in different coordinate systems).

Note 1. If g = ϕ ◦ f ◦ ϕ−1, then z0 is a fixed point for f if and only if ϕ(z0) is a fixed point
for g.

Proposition 13.6. If f and g are conformally conjugate, then the multiplier λ at a fixed point
for f is the same for g. In words: The multiplier is invariant under conjugation by conformal
maps.

Proof: f ′(z0) = λ. g = ϕ ◦ f ◦ ϕ−1 if and only if g ◦ ϕ = ϕ ◦ f . Therefore,

(g ◦ ϕ)′(z0)︸ ︷︷ ︸
g′(ϕ(z0))ϕ′(z0)=λgϕ′(z0)

= (ϕ ◦ f)′(z0) = ϕ′(f(z0)︸ ︷︷ ︸
z0

)λf

With ϕ conformal it follows that ϕ′(z0) 6= 0. Thus λg = λf .

Remark 10. At a fixed point, we have f(z0) = z0. Letting T (z) = z + z0, then defining

f̃ = T−1 ◦ f ◦ T,

note that T is a conformal map! Hence, f and f̃ are conformally conjugate. We have

f̃(0) = 0, f̃n = T−1 ◦ fn ◦ T.

So in the general study of fixed points, we lose no generality by assuming the fixed point is at
zero!

Proposition 13.7. Let z0 be an attracting fixed point for an holomorphic function f on Dr(z0).
Then there exists 0 < p ≤ r such that

fn(z)→ z0

on Dp(z0).
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Proof: Since f is holomorphic on Dr(z0), we can write it as a power series

f(z) =
∑
k≥0

ak(z − z0)k = a0︸︷︷︸
=z0

+λ(z − z0) + (z − z0)1
∑
k≥0

ak+2(z − z0)k+1

︸ ︷︷ ︸
this is a convergent power series on Dr(z0)

For Λ ∈ (|λ|, 1), note that

|f(z)− f(z0)| =

∣∣∣∣∣∣λ(z − z0) + (z − z0)
∑
k≥0

ak+2(z − z0)k+1

∣∣∣∣∣∣ ≤ |λ||z − z0|+ |z − z0||z − z0|

∣∣∣∣∣∣
∑
k≥0

ak+2(z − z0)k

∣∣∣∣∣∣︸ ︷︷ ︸
convergent

Since
∑
k≥0 ak+2(z − z0)k converges in Dr(z0), it follows that there is M > 0 such that∣∣∣∣∣∣

∑
k≥0

ak+2(z − z0)k

∣∣∣∣∣∣ < M for all z ∈ Dr/2(z0).

Then, letting

p = min

{
r

2
,

Λ− |λ|
M

}
,

we also get the same inequality∣∣∣∣∣∣
∑
k≥0

ak+2(z − z0)k

∣∣∣∣∣∣ < M for all z ∈ Dp(z0).

Therefore,

|f(z)− f(z0)| ≤ |λ||z − z0|+
Λ− |λ|
M

M |z − z0|︸ ︷︷ ︸
=Λ|z−z0|

on Dp(z0). Since Λ < 1 we have

|f(z)− f(z0)| = |f(z)− z0| ≤ Λ|z − z0| ≤ |z − z0|

which shows that

f(Dp(z0)) ⊂ Dp(z0).

Hence we can apply our estimate to f(f(z)) since f(z) ∈ Dp(z0) presuming z ∈ Dp(z0), and
we have

|f2(z)− f2(z0)| ≤ Λ|f(z)− f(z0)| ≤ Λ2|z − z0|

and in general

|fn(z)− fn(z0)| = |fn(z)− z0| ≤ Λn|z − z0| → 0

as n→∞ because Λ < 1. This proves that fn(z)→ z0 for all z ∈ Dp(z0).

Definition 13.8 (Basin of attraction). For an attracting fixed point z0, the basin of attraction
of z0 is

A(z0) := {z|fn(z) is defined for all z and fn(z)→ z0, as n→∞}.

We have proven that Dp(z0) ⊂ A(z0).
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Proposition 13.9.

A(z0) =
⋃
n≥1

f−n(Dp(z0)).

Proof: We do the standard argument, showing that the sets on the left and right are contained
in each other. Hence we will conclude that they are equal.
“⊆:” Let z ∈ A(z0). Then, by definition fm(z) → z0. Since fm(z) → z0 ∈ Dp(z0), where p is
the same as the radius of the disk in the preceding proposition, there is some such N such that
for all m ≥ N , |fm(z)− z0| < p. Hence, we have

fm(z) ∈ Dp(z0) =⇒ z ∈ f−m(fm(z)) ∈ f−m(Dp(z0)).

This means that

z ∈ f−m(Dp(z0)) ⊂ ∪n≥1f
−n(Dp(z0)).

Since z ∈ A(z0) was arbitrary, this shows that

A(z0) ⊆
⋃
n≥1

f−n(Dp(z0)).

“⊇:” If z ∈ f−n(Dp(z0)) for some n ≥ 1, then

fn(z) ∈ Dp(z0).

We proved that fk(w)→ z0 for all w ∈ Dp(z0) in the preceding proposition. Hence taking

w = fn(z) =⇒ fk(w) = fk(fn(z))︸ ︷︷ ︸
fn+k(z)

→ z0.

By definition, we conclude that z ∈ A(z0). Since z ∈ f−n(Dp(z0)) was arbitrary, this shows

the containment in this direction.

Corollary 13.10. A(z0) is open.

Proof: Since f is continuous, f−n(Dp(z0)) is open for all n ≥ 1. Arbitrary unions of open

sets remain open.

Definition 13.11 (Immediate basin of attraction). The connected component of A(z0) which
contains z0 is the immediate basin of attraction, denoted A∗(z0).

13.3. Homework.

(1) Prove that every polynomial has a super attracting fixed point at ∞.
(2) Let Tn(z) = cos(n arccos z) be the nth Tchebycheff polynomial. Let Fn(z) = 2Tn(z/2).

Determine a conjugation of Fn and ζn.
(3) Schröder was motivated by Newton’s method, to understand the question of conformal

conjugation. Consider a quadratic polynomial which has simple zeros. Determine the
basins of attraction for Newton’s method.

(4) Assume that f has a fixed point at z0 with multiplier λ 6= 0, such that λ is not a root
of unity. Assume that there exists a conformal map φ which conjugates f to g(ζ) = λζ.
Prove that the conjugation φ is unique up to a scale factor. What can be said in case
λ is a root of unity?
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(5) Show that z = −i tan ζ conjugates

2z

1 + z2

to 2ζ.
(6) Compute the basin of attraction for the super-attracting fixed point at ∞ for the

polynomial P (z) = z2 − 2.

13.4. Hints.

(1) Just do it.
(2) Consider the conjugation z = h(ζ) = ζ + 1/ζ. For |ζ| = 1, use the fact that for ζ = eiw

then h(ζ) = 2 cosw.
(3) Show that f(z) = z − P (z)/P ′(z) (this is the function you are iterating, which you

ought to have figured out because you learned Newton’s method in first year analysis)
has superattracting fixed points at the zeros of P and a repelling fixed point at ∞.
Use the Möbius transformation ζ = φ(z) to send the two zeros of p to 0 and ∞, and
send ∞ to 1. Show that this conjugates f(z) to ζ2. Show that the midpoint of the line
segment joining the zeros of p is mapped by f to ∞, and that the midpoint is sent by
φ to the preimage −1 of 1. Show that the perpendicular bisector of the line segment
joining the zeros of P is mapped by φ to the unit circle. Use this to show that the basis
of attraction for Newton’s method are the respective open half-planes on either side of
the bisector.

(4) Show that any conjugation of f(z) = λz is a constant multiple of z. Do this by
considering the power series of the conjugating function and determining the coefficients.

(5) The double angle formula for tangent.
(6) The double angle formula for cosine. Consider the conformal map h(ζ) = ζ + 1/ζ for
{|ζ| > 1} 7→ C \ [−2, 2]. Use this to conjugate P to ζ2. In this way show that the
dynamics of P on C \ [−2, 2] are the same as those of ζ2 on {|ζ| > 1}.

14. Fixed points and conformal conjugation

Note that near a fixed point

f(z) = z0 + λ(z − z0) + . . . , λ 6= 0,

or presuming f is non-constant, then if λ = 0 there is some p ∈ N such that

f(z0) = z0 + ap(z − z0)p + . . . .

Since the dynamics of f , by which we mean the behavior of the iterates of f , are the same as

the dynamics of f̃ = φ−1 ◦ f ◦ φ with

φ(z) = z + z0,

and f̃(0) = 0, let’s assume z0 = 0. Then near the fixed point

f(z) = λz + . . . , or apz
p + . . . .

So, roughly speaking f looks like either λz or apz
p. Let’s call that function g (either g(z) = λz

if λ 6= 0 or g(z) = apz
p if λ = 0). These functions are significantly more simple than f .

Schröder asked the question:

Question 1. Does there exist a neighborhood of the fixed point and a holomorphic map ψ which
conjugates f to g? In other words, does there exist a solution ψ to

ψ ◦ f = g ◦ ψ?

Assuming the fixed point z0 = 0, by which no generality is lost, we also demand that

ψ(0) = 0, ψ′(0) = 1.



74 FRACTALS

This equation is known as Schröder’s equation. Note that it immediately implies that ψ−1

is uniquely defined on g(ψ(Dr)) via ψ−1(g(ψ(x)) = f(g(ψ(x))) and hence any solution to
Schröder’s equation is a locally conformal map. Solving Schröder’s equation turns out to be
super important for understanding whether or not fixed points belong to the Fatou set.

Theorem 14.1 (Koenig’s). Let f have an attracting fixed point z0 with 0 < |λ| < 1. Then there
exists a conformal mapping ϕ(z) that maps a neighborhood of z0 onto a neighborhood Dr(0) of
zero, such that

λϕ(z) = ϕ(f(z)), ϕ′(z0) = 1.

Moreover, ϕ is unique up to multiplication by c 6= 0. This shows that ϕ ◦ f ◦ ϕ−1(z) = λz, and
therefore f is conformally conjugate to multiplication by λ in a neighborhood of the fixed point.

Proof: Without loss of generality, let z0 = 0. Note that we can do this because we may just
complete the proof for

f̃ := T ◦ f ◦ T−1, T (z) = z − z0, T−1(z) = z + z0.

Then 0 is a fixed point for f̃ , and we have proven that the multiplier for f̃ is the same as that

for f . So, proving the theorem for f̃ , we obtain ϕ̃ for f̃ , so that

λϕ̃ = ϕ̃f̃ = ϕ̃T ◦ f ◦ T−1 =⇒ λϕ̃ ◦ T = ϕ̃T ◦ f.

Thus, we use

ϕ := ϕ̃ ◦ T.
Then Schröder’s equation is solved for f with ϕ. Moreover,

ϕ′(z0) = ϕ̃′(T (z0)) = ϕ̃′(0) = 1.

So, we may indeed lose no generality by assuming the fixed point is at 0. Now, since 0 is an
attracting fixed point, let us assume for the rest of this argument that z ∈ Dp(0), where p is
from our preceding propositions. In particular, this guarantees that fn(z) is well defined, since
f : Dp(0) into itself. Hence, every time we compose f with itself, the result has a power series
which converges in Dp(0). Now, let

ϕn(z) := λ−nfn(z).

First, note that since λ is a non-zero complex number, by the preceding considerations, ϕn(z) is
holohomrphic in Dp(0). Therefore, it has a convergent power series. We claim that this power
series is of the form:

(14.1) ϕn(z) = z +
∑
k≥2

akz
k.

The proof is by induction. For n = 1, we have

ϕ1(z) = λ−1f(z) = z +
∑
k≥2

λ−1ckz
k,

since f is holomorphic and therefore has a power series of the form

f(z) =
∑
k≥1

ckz
k, c1 = λ,

since f(0) = 0. So, the base case is true.
Continuing inductively, let us assume that the result holds for n. Then, for n+ 1, we first note
that ϕn+1 has a convergent power series. Moreover, by its definition:

ϕn+1(z) = λ−1λ−nf(fn(z)) = λ−1λ−n
∑
k≥1

ck(fn(z))k = λ−1λ−nλfn(z)+λ−1λ−n
∑
k≥2

ck(fn(z))k

= λ−nfn(z) +
∑
k≥2

λ−1−nck((fn(z))k = ϕn(z) +
∑
k≥2

λ−1−nck((fn(z))k.
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By the induction assumption,

ϕn(z) = z +
∑
k≥2

akz
k.

Hence,

ϕn+1(z) = z +
∑
k≥2

akz
k + λ−1−nck((fn(z))k.

We note that since

f(z) = z

λ+
∑
k≥2

ckz
k

 =⇒ fn(z) = zn

λ+
∑
k≥2

ckz
k

n

.

Consequently, the terms in the series∑
k≥2

akz
k + λ−1−nck((fn(z))k

have powers of z starting with z2 and increasing. Since ϕn+1 has a convergent power series, it
follows that its convergent power series is of the form

ϕn+1(z) = z +
∑
n≥2

bkz
k.

This proves the desired statement. (Note that the fact they were named ak in (14.1) is irrelevant
- the point is that the first term in the power series is z, and the rest of the terms have higher
powers of z going from z2 on upwards).
Now, we want to prove that the ϕn actually converge to something. By the convergence of the
power series of f , there exists c > 0 fixed, and δ > 0 (without loss of generality also assume
that δ < p) such that

(*) |f(z)− λz| ≤ c|z|2 for |z| < δ.

Thus

|f(z)| ≤ |λ||z|+ c|z|2 ≤ (|λ|+ cδ)|z|.

We can now choose δ small enough such that (|λ|+ cδ) < 1 (which is possible because |λ| < 1).
Then this implies two things. Since

|z| < δ =⇒ |f(z)| ≤ (|λ|+ cδ)|z| < |z| < δ,

this shows that

(**)f(Dδ(0)) ⊂ Dδ(0), fn(Dδ(0)) ⊂ Dδ(0), and |fn(z)| ≤ (|λ|+ cδ)n|z|, |z| ≤ δ.

Choose δ possibly smaller so that (|λ+ cδ|)2 ≤ |λ|2 + 2|λ|cδ + c2δ2 < |λ|. Then

|ϕn+1(z)− ϕn(z)| = |λ−n−1fn(f(z))− λ−nfn(z)| =
∣∣∣∣f(fn(z))− λfn(z)

λn+1

∣∣∣∣
(*)+(**)

≤ c|fn(z)|2

|λn+1|
(**)

≤ c(|λ|+ cδ)2n|z|2

|λ|n+1
=
cρn|z|2

|λ|
where ρ :=

(|λ|+ cδ)2

|λ|
< 1.

Now, we have shown that

|ϕn+1(z)− ϕn(z)| < ρn
c|z|2

|λ|
, |z| < δ.

Without loss of generality, choose δ perhaps a bit smaller to guarantee that

cδ2

λ
< 1.

Then we have

|ϕn+1(z)− ϕn(z)| < ρn ∀z ∈ Dδ(0).
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Consequently, for all k ≥ 1 we can estimate

|ϕn+k(z)− ϕn(z)| ≤
k∑
j=1

|ϕn+j(z)− ϕn+j−1(z)| ≤
k∑
j=1

ρn+j−1 =

n+k∑
l=n

ρl.

Since 0 < ρ < 1, the series
∞∑
l=1

ρl

converges. The tail of a convergent series can be made as small as we like. Hence, given any
ε > 0, we may choose n sufficiently large such that

∞∑
l=n

ρl < ε.

We therefore have

|ϕn+k(z)− ϕn(z)| ≤
n+k∑
l=n

ρl ≤
∞∑
l=n

ρl < ε.

This shows that {ϕn(z)} is Cauchy for all |z| ≤ δ, and moreover, converges uniformly there.
We therefore have a holomorphic limit function, ϕ.
Let us see what happens with the limit function. The way we have defined it,

ϕn = λ−nfn(z) =⇒ ϕn ◦ f = λ−nfn+1 = λ(λ−n−1fn+1) = λϕn+1.

So, we have

ϕn ◦ f = λϕn+1.

Since ϕn converges uniformly on Dδ(0), and f : Dδ(0) to itself, taking the limit on both sides
we obtain

ϕ ◦ f = λϕ.

By the locally uniform convergence of ϕn → ϕ, using the Cauchy Integral Formula we obtain
that all the derivatives converge as well.

Exercise 23. Write up the details of this argument. In particular, prove that if ϕn → ϕ locally
uniformly, then we also have ϕ′n → ϕ′ locally uniformly. Repeating, one obtains the locally
uniform convergence of all derivatives.

Since ϕ′n(0) = 1 for all n, it follows that ϕ′(0) = 1 as well. We can therefore decrease the
radius, δ, of our disk a bit more, to guarantee that ϕ is injective with ϕ′ 6= 0 on Dδ(0). It is
therefore a biholomorphic (conformal) map onto its image. So, we have obtained the
The last thing to prove is the uniqueness statement. On Dδ(0) assume that we have

φ(f(z)) = λφ(z)

then

φ(f(0)) = φ(0) = λφ(0),

and λ 6= 1, which forces

φ(0) = 0.

The same argument shows that ϕ(0) = 0. Near zero, we may therefore define

ψ = ϕ ◦ φ−1.

Since φ and ϕ are both conformal, we have

f(z) = φ−1 ◦ λ ◦ φ = ϕ−1 ◦ λ ◦ ϕ.

So, in particular

ϕ ◦ φ−1 ◦ λ ◦ φ = λ ◦ ϕ =⇒ ϕ ◦ φ−1 ◦ λ = λ ◦ ϕ ◦ φ−1 =⇒ ψ ◦ λ = λ ◦ ψ.
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Since ψ(0) = 0, the power series of ψ is of the form

ψ(z) =
∑
k≥1

akz
k.

On the one hand then

ψ ◦ λ(z) =
∑
k≥1

akλ
kzk.

On the other hand, this is equal to

λ ◦ ψ(z) = λ
∑
k≥1

akz
k.

By the uniqueness of coefficients in these expansions, we must have

akλ
k = λak ∀k ≥ 1.

For k = 1 this is fine, but since λ 6= 1, the only way this equation is satisfied for k ≥ 2 is when

ak = 0 ∀k ≥ 2.

Thus

ψ(z) = ϕ ◦ φ−1(z) = cz,

for some non-zero c ∈ C. Consequently,

ϕ(z) = c ◦ id ◦φ(z) = cφ(z).

Here id is the identity map, id(z) = z.

Remark 11. Note that an equivalent formulation, since ϕ is conformal if and only if ϕ−1 is
conformal, is to require the existence of a conformal map h such that

f(h(z)) = h(λz).

To see this, just let h = ϕ−1. By what we proved, we have

λ ◦ ϕ = ϕ ◦ f =⇒ λz = ϕ ◦ f ◦ ϕ−1(z) =⇒

ϕ−1(λz) = f(ϕ−1(z)).

This is

h(λz) = f(h(z)).

As a corollary, we can obtain the same result for repelling fixed points!

Corollary 14.2. If z0 (WLOG = 0) is repelling, then ∃! (up to ? by c 6= 0) conformal φ
conjugating f(z) to λz.

Proof: By assumption, there is some r > 0 so that we can write

f(z) = λz + . . .

on Dr(0). Since |λ| > 1 > 0, then f ′(0) 6= 0. We can take r > 0 sufficiently small, so that and
we may assume

|f ′(z)| ≥ λ

2
on Dr(0). Moreover, we can also take r sufficiently small so that f is bijective from Dr(0) to
the image of this set under f . Therefore, we have proven that f−1 is holomorphic on f(Dr(0)).
Furthermore, since f(0) = 0, by the chain rule,

f−1(0) = 0 and (f−1)′(0) = λ−1.
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Hence, 0 is an attracting fixed point for f−1. We may therefore apply Koenig’s Theorem to f−1.
This gives the existence which is unique, up to scaling by a non-zero constant, of φ conjugating
f−1 to λ−1. In particular, there is φ which is biholomorphic on some disk about zero, with

φ(0) = 0, φ′(0) = 1

and

φ(f−1(z)) = λ−1φ(z) =⇒ λ ◦ φ = φ ◦ f.

The uniqueness follows from Koenig’s Theorem.

14.1. Homework.

(1) Prove that all rationally netural fixed points belong to the Julia set.
(2) Locate a proof of Pfeiffer’s theorem from 1917 and read it. The theorem states: there

is λ = e2πiφ so that the Schröder Equation has no solution for any polynomial f .
(3) A number φ is Diophantine (badly approximated by rational numbers) if there exists

c > 0, µ < ∞ so that |φ − p
q | ≥

c
qµ for all p, q ∈ Z, q 6= 0. This is equivalent to

|λn − 1| ≥ cn1−µ for all n ≥ 1. Which real numbers are Diophantine? Which are
not? Quantify the set of Diophantine real numbers measure theoretically in terms of
Hausdorff measure and dimension.

(4) We used an argument to obtain convergence in Koenig’s theorem which is an example
of a general analysis trick. Prove that if you can show that for a family of functions
{fn} and for all z ∈ K for some compact K that

|fm+1(z)− fm(z)| < cm ∀z ∈ K, for all m ≥ N for some N ,

where the constant c < 1, then the sequence {fn} converges uniformly on K.
(5) Locate a proof of Siegel’s theorem and read it. The theorem states: if φ is Diophantine,

f(0) = 0, f ′(0) = exp 2πiφ, then there exists a solution h to Schröder’s Equation.

14.2. Hints. Rationally neutral fixed points, cases:

(1) λ = 1, p = 1
(2) λ = 1, p > 1
(3) λn = 1, λ 6= 1

Write f(z) = λz + azp+1 + . . . , a 6= 0.

Case 1: Conjugate f by ϕ(z) = az → f̃ = ϕ ◦ f ◦ ϕ−1 = a(f( za )) = a(λza ) + a( za )2 + . . . ) =

λz+ z2 + · · · ⇒WLOGa = 1. Move 0 to ∞ by z → −1
z → g(z) = z+ 1 + b

z + . . . . Fatou proved
that ϕ conjugates g to z → z + 1.
Case 2: Another conjugation.
Case 3: Reduce to case 1 or case 2 by considering fn.
Conclude that at such a fixed point, there are both “repelling” and “attracting” directions.
Thus all rationally neutral fixed points are in J .

15. Super attracting fixed points, irrationally neutral fixed points and
iteration of rational functions

We shall prove the classification theorem for fixed points of holomorphic functions. We begin
by proving the Koenig’s egg theorem.
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Theorem 15.1 (Conformal conjugation at super-attracting fixed points). If f has a super-
attracting fixed point, which without loss of generality is located at zero, then for f 6≡ 0 ∃! (up
to p− 1 root of unity) conformal φ such that φ(0) = 0, and

f ◦ φ = g ◦ φ, g(z) = zp,

where f(z) = azp + . . . is a holomorphic function in a neighborhood of z = 0.

Proof: Fix
c > 1, r > 0

such that
|f(z)| ≤ c|z|p ∀z ∈ Dr(0).

Note that we can do this because f has a convergent power series, as it is holomorphic in a
neighborhood of z = 0,

f(z) = azp +
∑
k≥p+1

akz
k.

Now, choose

δ = min

{
1

c
1
p−1

,
c

2
, 1, r

}
.

Then, note that
|f(z)| ≤ c|z|p ≤ cδp−1δ ≤ δ.

Hence f maps the closed disk of radius δ into itself. Consequently, fn also maps this disk into
itself.

Claim 2.
|fn(z)| ≤ ccp

n−1

|z|p
n

∀z ∈ Dδ(0), ∀n ≥ 1.

The proof is by induction and teamwork. For the base case, we have the estimate

|f(z)| ≤ c|z|p.
This is the statement of the claim when n = 1. Now, assume that the claim holds for some n.
Since fn(z) is in the closed disk of radius δ, we get the estimate

|fn+1(z)| = |f(fn(z))| ≤ c|fn(z)|p ≤ c(cp
n−1

|z|p
n

)p = ccp
n

|z|p
n+1

.

This is the statement of the claim for n + 1. So it’s true. Next, note that by our choice of δ,
we have

|fn(z)| ≤ ccp
n−1

|z|p
n

≤ ccp
n

δp
n

≤ c

2n
→ 0 as n→∞.

So f is converging to zero in Dδ(0).
We wish to obtain the conformal map. For this purpose, let

b :=

(
1

|a|

) 1
p−1

· e
i(2π−θ)
p−1 ,

where
a = |a|eiθ, θ ∈ [0, 2π).

We define first
φ(z) := bz.

This is a conformal map since b 6= 0. (Why is this true? Think about it!) Then

f ∼= f̃ = φ−1 ◦ f ◦ φ,
and

f̃ = b−1(a(bz)p + . . .) = abp−1zp + . . . = zp + . . . .

Since f and f̃ are conformally conjugate, we may simplify life a bit by assuming that

f(z) = zp + . . . .

(That is, we may without loss of generality assume that a = 1).
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Define

φn(z) := (fn(z))p
−n
.

This is tricky business, because of that fractional exponent. Fractional exponent are really
properly defined in C via the complex logarithm, using

wx = elog(w)x.

So, for this to be well-defined, it is very important to know that w is staying in some region of C
where we can define the logarithm. Any small neighborhood away from zero will be fine. This
looks a bit scary though, because our function f is converging to zero quite fast... However,
note that

f(z) = zp(1 +
∑
k≥p+1

akz
k−p).

So, we compute that

fn(z) = zp
n

(1 +
∑
k≥p+1

akz
k−p)n.

Since f is holomorphic on Dδ and maps this disk to itself, fn is holomorphic for all n, and
therefore the term

(1 +
∑
k≥p+1

akz
k−p)n = 1 +

∑
j≥1

αjz
j .

The series on the right is the convergent power series for the holomorphic function, fn. Hence

(15.1) φn(z) = (fn(z))p
−n

= z

1 +
∑
j≥1

αjz
j

 1
pn

.

The first part, z is totally fine. It is well defined everywhere. Also holomorphic everywhere.
The second term is holomorphic for |z| small, because due to the convergence of the series,
the series can be estimated from above by |z| times a constant. Hence, the expression in the
parentheses can be made very close to one, taking z small. Therefore this fractional power is
well defined.
We then compute that

φn−1 ◦ f = (fn−1(f(z)))p
−n+1

= (fn(z))p
−n·p = (φn(z))p

Consequently, if we can prove that φn converges locally uniformly to some nice holomorphic φ,
we will obtain in the limit that

φ ◦ f = (φ)p.

We will prove that
N∏
n=1

φn+1

φn
converges.

Since this is a telescoping product, with

N∏
n=1

φn+1

φn
=
φN+1

φ1
,

This shows that
φN+1

φ1
→ φ =⇒ φN+1(z)→ φ1(z)φ(z).

Compute for this purpose

φn+1

φn
=

(fn+1)p
−n−1

(fn)p−n
=

(f(fn))p
−1p−n

(fn)p−n
.

Above we recognize

f(fn))p
−1

= φ1(fn) = (fn+1)p
−1

.
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So
φn+1

φn
=

(φ1(fn))p
−n

(fn)p−n
.

Then, also

(φ1(fn))p
−n

=
(

(fn+1)p
−1
)p−n

= (fn+1)p
−n−1

.

We write this equivalently as [
(f(fn))p

−1
]p−n

.

On the inside we use (15.1) to get this equal to(fn)p/p

1 +
∑
k≥p+1

ak(fn(z))k−p

p−1
p−n

.

The coefficients above, ak, come from the power series expansion of our function, f (itself). So,
we get

φn+1

φn
=

(fn)p
−n
(

1 +
∑
k≥p+1 ak(fn(z))k−p

)p−n−1

(fn)p−n

=

1 +
∑
k≥p+1

ak(fn(z))k−p

p−n−1

It is sufficient to prove that the product ∏
n≥1

∣∣∣∣φn+1

φn

∣∣∣∣
converges. For |z| small, by the estimate

|fn(z)| ≤ ccp
n−1

|z|p
n

,

we have that ∣∣∣∣∣∣1 +
∑
k≥p+1

ak(fn(z))k−p

∣∣∣∣∣∣ ≥ 1−O(|z|) > 0.

So, the following will be helpful.

Exercise 24. Prove that if {an}n≥1 are all positive, then∏
n≥1

an

converges if and only if ∑
n≥1

log an

converges.

Therefore, it suffices to prove that ∑
n≥1

log

(
|φn+1|
|φn|

)
converges, because we can apply the preceding exercise with

an =
|φn+1|
|φn|

> 0
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for all n for all |z| < δ. By our calculations above,

φn+1

φn
=

1 +
∑
k≥p+1

ak(fn(z))k−p

p−n−1

we get

log

∣∣∣∣φn+1

φn

∣∣∣∣ =
1

pn+1
log

∣∣∣∣∣∣1 +
∑
k≥p+1

ak(fn(z))k−p

∣∣∣∣∣∣ .
Since we can estimate ∣∣∣∣∣∣1 +

∑
k≥p+1

ak(fn(z))k−p

∣∣∣∣∣∣ ≤ 2,

our estimate becomes ∑
n≥1

log

∣∣∣∣φn+1

φn

∣∣∣∣ ≤ 2
∑
n≥1

1

pn+1
.

This converges because p ≥ 2 > 1.
Hence, we have that the product converges, since it converges absolutely, which also shows that

lim
n→∞

φn(z) =: φ(z)

and the convergence is uniform on Dδ(0), taking δ possibly smaller, but really, it ought to be
small enough already.
Since the uniform limit of holomorphic functions is holomorphic, we have that φ is holomorphic.
We recall that so defined

φn−1 ◦ f = (φn)p.

The right side is well defined as n → ∞, since φn → φ. The left side is also well defined. So,
we obtain in the limit

φ ◦ f = (φ)p.

Why is this a conformal map? Recall (15.1). Differentiate:z
1 +

∑
j≥1

αjz
j

 1
pn

′

=

1 +
∑
j≥1

αjz
j

 1
pn

+ z


1 +

∑
j≥1

αjz
j

p−n

′

.

Now set z = 0. We get just one from the first term. Hence we have φ′n(0) = 1 for all n.
Therefore, since the φn converge uniformly to φ, we also get φ′(0) = 1, since φ is holomorphic
(why?). Therefore, φ is bijective onto its image in some neighborhood of 0. Without loss of
generality, take δ perhaps a bit smaller, so that φ is bijective from Dδ(0) to φ(Dδ(0)).
Finally, we demonstrate the uniqueness up to roots of unity. If ψ ◦ f = ψp, with ψ(0) = 0, we
muck around a bit

ψ ◦ f = zp ◦ ψ =⇒ f = ψ−1 ◦ zp ◦ ψ.
We also have

f = φ−1zp ◦ φ.
So

ψ−1 ◦ zp ◦ ψ = φ−1zp ◦ φ =⇒ φ ◦ ψ−1 ◦ zp = zp ◦ φ ◦ ψ−1.

Let us define

Φ := φ ◦ ψ−1.

Then

Φ(zp) = (Φ(z))
p
.

We consider the power series of Φ near zero. Since φ(0) = ψ(0) = 0, we also have

Φ(0) = 0.
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So the power series looks like

Φ′(0)zp + . . . =

∑
j≥1

Φ(j)(0)

j!
zj

p

= Φ′(0)pzp + . . . .

Since both φ and ψ are conformal, their derivatives cannot vanish, so neither can the derivative
of Φ (why?), so this forces

Φ′(0) = Φ′(0)p =⇒ Φ′(0)p−1 = 1.

Next, we write out both sides more carefully:

∑
j≥1

Φ(j)(0)zpj

j!
=

∑
j≥1

Φ(j)(0)

j!
zj

p

.

On the right side, the terms start with zp and then zp+1 etc. On the left side the terms
between zp and z2p do not appear. Consequently, the coefficient on the right side for eg zp+1

must vanish. Since we have the series multiplied by itself p times, the coefficient of zp+1 comes
from taking the z1 term p− 1 times and the z2 term the last time. There are p ways to do this,
so the coefficient is

pΦ′(0)
Φ′′(0)

2!
.

Since Φ′(0) 6= 0, this forces Φ′′(0) = 0.

Exercise 25. Continue (suggestion: by induction) to prove that Φ(j)(0) = 0 for all j ≥ 2.

So, this means that Φ(z) is just given by Φ(z) = λz, where λ is a p − 1 root of unity (that is
λp−1 = 1). Recalling that

Φ := φ ◦ ψ−1 = λz =⇒ φ(z) = λψ(z).

It remains to study what happens at neutral fixed points.

15.1. Neutral fixed points.

Proposition 15.2 (The neutral case). Let λ = e2πıθ where θ ∈ R. Assume that f is holomor-
phic and has a fixed point at z = 0 with multiplier λ. Then, if a holomorphic function h to
Schröder’s equation exists, formulated as

f(h(z)) = h(λz), h′(0) = 1,

this h is injective in Dr for some r > 0.

Proof: Since h′(0) = 1 6= 0, this shows that h′ 6= 0 in some disk about zero, because h′ is
also holomorphic and thus continuous. It was an exercise to prove that a holomorphic function

whose derivative is non-zero is locally injective. The exercise completes the proof.

Proposition 15.3. Just for fun, it is nice to include the fact that if a holomorphic function has
a non-zero derivative at a point, then it is locally injective, that is injective in a neighborhood
of that point.
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Proof: Without loss of generality, let us assume that the point in question is z = 0. Then, f
is holomorphic in Dr(0) for some r > 0. Thus, we have

f(z) =

∫ z

0

f ′(ζ)dζ + f(0) ∀z ∈ Dr(0).

This is because the segment from 0 to z lies entirely inside Dr(0), and since f is holomorphic, one
can directly prove that the derivative of the function on the right is the same as the derivative
of the function on the left. Moreover, they have the same value at z = 0, so the left and right
sides above agree. Then, by assumption f ′(0) 6= 0. Let’s say

f ′(0) = λ.

For simplicity, we shall prove the result for the function

g(z) =
1

λ
f(z).

Then g too is holomorphic in Dr(0) and g′(0) = 1. This is rather convenient. Moreover,

g(z) =

∫ z

0

g′(ζ)dζ + g(0).

Since g′(0) = 1, there exists δ > 0 with δ < r such that

|g′(z)− 1| < 1

2
.

Then note that for all z and w in Dδ(0),

|g(z)− g(w)| =
∣∣∣∣∫ z

0

g′(ζ)dζ −
∫ w

0

g′(ζ)dζ

∣∣∣∣ =

∣∣∣∣∣
∫

[z,w]

g′(ζ)dζ

∣∣∣∣∣ .
We estimate ∣∣∣∣∣

∫
[z,w]

g′(ζ)dζ −
∫

[z,w]

1dζ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

[z,w]

|g′(ζ)− 1|dζ

∣∣∣∣∣ ≤ 1

2
|z − w|.

This is because the segment from z to w lies entirely in Dδ(0) since z and w are both in this
disk, and disks are extremely convex. So, we get∣∣∣∣∣
∫

[z,w]

g′(ζ)dζ −
∫

[z,w]

1dζ

∣∣∣∣∣ ≤ 1

2
|z−w| =⇒

∣∣∣∣∣
∫

[z,w]

g′(ζ)dζ

∣∣∣∣∣ ≥
∣∣∣∣∣
∫

[z,w]

1dζ

∣∣∣∣∣− 1

2
|z−w| = 1

2
|z−w|.

Recalling that

|g(z)− g(w)| =

∣∣∣∣∣
∫

[z,w]

g′(ζ)dζ

∣∣∣∣∣ ,
we therefore get that for all z, w ∈ Dδ(0)

|g(z)− g(w)| ≥ 1

2
|z − w| =⇒ ∀z 6= w ∈ Dδ(0)g(z) 6= g(w).

Consequently g is injective on Dδ(0). Now, note that

g(z) 6= g(w) ⇐⇒ f(z) 6= f(w).

Hence we also get

f(z) 6= f(w) ∀z, w ∈ Dδ(0).
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Corollary 15.4. Assume that f is holomorphic in a neighborhood of 0, with f ′(0) 6= 0, and
f(0) = 0. Then there exists r > 0 such that both f and f−1 are holomorphic in Dr(0).

Proof: From the preceding proposition, we know that there exists δ > 0 in which h is
holomorphic and injective. Since f ′(0) 6= 0, f is clearly non-constant. Therefore by the open
mapping theorem f(Dδ(0)) is open. Moreover it contains 0 since f(0) = 0. We therefore have
some p > 0 which is contained in f(Dδ(0)). Simply define

r := min{δ, p}.

Then both f and f−1 are defined and holomorphic in Dr(0).

Proposition 15.5. Assume that f is holomorphic in a neighborhood of 0, and has a fixed point
at 0 with multiplier λ with |λ| = 1. Then a solution h to Schröder’s equation exists if and only
if {fn} are uniformly bounded on some Dr(0) for some r > 0.

Proof: If h exists, then since h and h−1 are both holomorphic on some Dr(0), we have

fn(z) = h(λnh−1(z)).

We may assume h is continuous on the closed disk, Dr(0), by possibly taking r smaller. Then
we note that the image of a compact set, like the closed disk, under a continuous function, like
h−1 is again a compact set. So, there is some ρ > 0 such that the image under h−1 of Dr(0)
is contained in Dρ(0). Then, note that λn(Dρ(0)) ⊂ Dρ(0). Here we note that the fact that
|λ| = 1 is used, and that this statement holds for all n ∈ N. The closure of this set is again
compact, so the image under h, also being continuous, is therefore also compact. Hence, we
have fn(z) is contained in a compact subset of C for all n.
On the other hand, if |fn| ≤M for all n ∈ N for all points in some Dr(0), then let

ϕn(z) :=
1

n

n−1∑
0

λ−jf j+1(z), n ≥ 1

We clearly have

|ϕn(z)| ≤M ∀z ∈ Dr(0).

Hence, by Montel’s little theorem, it is normal, and contains a convergent subsequence. Note
that

ϕn ◦ f =
1

n

n−1∑
0

λ−jf j+2(z) =
1

n

n∑
1

λ−j+1f j+1(z) =
1

n
λ−n+1fn+1(z) +

1

n

n−1∑
1

λ−j+1f j+1(z)

whereas

λϕn =
1

n

n−1∑
0

λ−j+1f j+1(z) =
1

n
λ+

n−1∑
1

λ−j+1f j+1(z).

Hence

ϕn ◦ f = λϕn +O(1/n),

since f and fn are uniformly bounded, as is |λn| = 1. Consequently, passing to a convergent
subsequence of the ϕn (which we abuse notation and still call ϕn), we obtain in the limit that

ϕ ◦ f = λϕ.
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So defined, ϕn(0) = 0 for all n. Since λ = f ′(0) we have λ−j(f j)′(0) = 1, hence ϕ′n(0) = 1 for
all n. We therefore get that ϕ′(0) = 1. Consequently ϕ is biholomorphic in a neighborhood of

0.
The definition of a normal family should really be phrased on the Riemann sphere. The reason
is that it is possible for a point to belong to the Fatou set, where in a neighborhood of that
point, the iterates fn converge locally uniformly to the function which is identically equal to
infinity. Really, it sounds weird, but it is in fact precise as defined below.

Definition 15.6. Let R be a meromorphic function. The family {Rn} is normal on an open set

U ⊂ Ĉ precisely when, the family is equicontinuous there with respect to the spherical metric
on Ĉ. This means that for any compact V ⊂ U , for any ε > 0 there exists δ > 0 such that

dĈ(z, w) < δ =⇒ dĈ(Rn(z), Rn(w)) < ε ∀n ∈ N, ∀z, w ∈ V.

In this way, we can make sense of “locally uniform convergence to the constant function, ∞”
on the Riemann sphere. For example, assume that R is a rational function which fixes infinity.
Then let

f(z) :=
1

R(1/z)
.

If 0 belongs to the Fatou set of f , then we define ∞ to belong to the Fatou set of R. Let U be
the component of the Fatou set of f which contains 0, then for φ(z) = 1

z , φ(U) is the component
of the Fatou set of R which contains ∞.
We therefore obtain, combining the previous two propositions, a necessary and sufficient con-
dition for a neutral fixed point to belong to the Fatou set!

Corollary 15.7. A neutral fixed point belongs to the Fatou set if and only if there is a solution
to Schröder’s equation.

Proof: For the converse direction, if there is a solution to Schröder’s equation, then we have
proven that the iterates of f are uniformly bounded. Hence, by Montel’s theorem, they are a
normal family.
For the forward direction, assume that a neutral fixed point belongs to the Fatou set. Then we
claim that the iterates are uniformly bounded in a neighborhood of the fixed point. Without
loss of generality, let us henceforth assume that the fixed point is at z0 = 0. We shall argue by
contradiction. Assume that the iterates are not uniformly bounded in any Dr(0). This means
that for every k ∈ N we can find n ≥ k and znk with |znk | ≤ 1

k so that

|fnk(znk)| > k.

In particular, in any neighborhood D1/k(0) there are some iterates and corresponding points,
which we are calling fnk(znk), such that fnk(znk) is super large.
Now, by assumption, the family of functions {fn} is normal on an open set which contains the
fixed point, 0. So, for sufficiently large k = K, we have that

D1/K(0) is contained in the Fatou set.

This means that the sequence

{fnk}k≥K
has a uniformly convergent subsequence on D1/K(0). Let us call this subsequence {fnkj }. Note
that on the one hand

fnkj (0) = 0∀nkj .
However, we also have

|fnkj (znkj )| > kj →∞.
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In particular,

dĈ(fnkj (znkj ),∞)→ 0.

So, by the triangle inequality

dĈ(fnkj (znkj ), fnkj (0)) ≥ dĈ(0,∞)− dĈ(∞, fnkj (znkj )).

For all j large, we can make

dĈ(∞, fnkj (znkj )) <
1

2
dĈ(0,∞).

Then for all j large we have

dĈ(fnkj (znkj ), fnkj (0)) ≥
dĈ(0,∞)

2
.

However, the definition of being normal requires that taking

ε =
dĈ(0,∞)

3
> 0

there exists δ > 0 such that

dĈ(z, 0) < δ =⇒ dĈ(fnkj (z), fnkj (0)) < ε.

Since znkj → 0, as j →∞ we have for any δ > 0 points with

dĈ(znkj , 0) < δ, dĈ(fnkj (znkj ), fnkj (0)) ≥
dĈ(0,∞)

2
> ε.

This is in direct violation of the definition of normal.  The proof is completed by this contra-

diction.
So, now we know a necessary and sufficient condition for the irrationally neutral fixed points
to belong to the Fatou set. Do they always belong to the Fatou set? Nope. It depends on the
number theoretic properties of the angle, θ, in the exponent of the multiplier e2πiθ. We recall
some famous (but too difficult for us to prove here) results.

Theorem 15.8 (Pfeiffer (1917)). There is λ = e2πiφ with φ irrational so that the Schröder
equation has no solution for any polynomial f .

Definition 15.9. φ is Diophantine (badly approximable by rational numbers) if there exists
c > 0, µ <∞ so that

|φ− p

q
| ≥ c

qµ

for all p, q ∈ Z, q 6= 0. This is equivalent to

|λn − 1| ≥ cn1−µ, ∀n 6= 1.

Remark 12. Almost all real numbers are Diophantine - but not all! By the exercises, the
Schröder equation has no solution for any rationally neutral fixed point. This shows that the
connection between the number-theoretic nature of the angle of the multiplier at the fixed point
is intimately related to the behavior of the iterates near the fixed point. It may very well be an
open question to determine necessary and sufficient conditions on the angle at the fixed point
(this is θ where the multiplier is e2πiθ) so that Schröder’s equation admits a solution...

Theorem 15.10. (Siegel, 1950s) If φ is Diophantine, f(0) = 0, f ′(0) = e2πiφ, then there exists
a solution h to Schröder’s Equation.

As a corollary we obtain
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Corollary 15.11. If f has a fixed point at z0 with multiplier e2πiφ such that φ is Diophantine,
then z0 is in the Fatou set of f .

There is a necessary and sufficient condition for the multiplier, in case of irrationally neutral
fixed points of quadratic polynomials, which determines whether or not such a point belongs
to the Fatou set. It may well be an open problem to determine this in general...

15.2. Classification of all fixed points as elements of either the Fatou or Julia set.
First we need a definition.

Definition 15.12. A simply connected component of the Fatou set such that f is conformally
conjugate to an irrational rotation is a Siegel disk. Let such a component be denoted by Ω.
This means that there exists a conformal map φ such that

φ(f(z)) = λφ(z), λ = e2πiθθ ∈ R \Q.

Theorem 15.13. Let z0 be a fixed point of a holomorphic function f . Then

(1) If z0 is an attracting or super attracting fixed point, z0 belongs to the Fatou set.
(2) If z0 is a repelling fixed point, then it belongs to the Julia set.
(3) If z0 is a rationally neutral fixed point, then it belongs to the Julia set.
(4) If z0 is irrationally neutral, then it belongs to the Fatou set if and only if there is a

solution to Schröder’s equation. Otherwise it belongs to the Julia set.

Proof: In a neighborhood of an attracting fixed point, we have proven that the iterates
fn(z)→ z0, where z0 is the fixed point. Hence, all the iterates are uniformly convergent to the
constant function z0, and therefore the family {fn} is normal in this neighborhood of z0. If z0

is a super-attracting fixed point, the iterates fn(z) → z0 in a neighborhood of the fixed point
as well, so by the same argument, z0 is in the Fatou set.
If z0 is a repelling fixed point, then we have proven that (without loss of generality take z0 = 0)
f is conformally conjugate to

g(z) = λz.

Note that for any z 6= 0,
gn(z) = λnz →∞ as n→∞.

Now, I claim that the iterates of g cannot form a normal family in any neighborhood of 0. To
see this, assume that some subsequence gnk converges on some neighborhood of 0. Then, since
gnk(0) = 0 for all nk, the limit at zero is zero. However, for any z 6= 0, gnk(z) → ∞. So, the
limit function would have to vanish at zero and be identically infinity on some Dr(0)\{0}. This
violates the definition of being normal. To see this, let

ε :=
dĈ(∞, 0)

3
.

Since the limit is ∞ for all z 6= 0, we have

dĈ(gnk(z), gnk(0)) ≥ dĈ(0,∞)− dĈ(∞, gnk(z)).

For large k, we can make the

dĈ(∞, gnk(z)) <
1

2
dĈ(0,∞)

thereby obtaining

dĈ(gnk(z), gnk(0)) >
1

2
dĈ(0,∞).

Hence, there is no δ > 0 such that

dĈ(gn(z), gn(0)) < ε ∀dĈ(z, 0) < δ, ∀n ∈ N.
So, indeed, the family {gn} is not normal in any neighborhood of the repelling fixed point at
zero. Consequently, neither is f .
The statement concerning rationally neutral fixed points is an exercise. Note that it implies
that there is never a solution to Schröder’s equation in the rationally neutral case (!)
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If z0 is an irrationally neutral fixed point, the statement has been demonstrated previously.

We know how to classify fixed points and whether they are in the Fatou or Julia set. If we are
interested in iteration of meromorphic functions on Ĉ, we have proven that all such functions
are rational functions. In this case we also know precisely how many fixed points such functions
have.

Theorem 15.14. A rational map of degree d has precisely d + 1 fixed points, counting multi-
plicity, unless of course it is the identity.

Proof: If the rational map is constant, that is of degree d = 0, then we have R(z) = c for

some c ∈ C for all z ∈ Ĉ. Precisely one such point is equal to c, hence R has d + 1 = 1 fixed
point. So, henceforth we assume that R is of degree d ≥ 1 and therefore non-constant, and also
that R is not the identity map.
To simplify our arguments, we will use a bit of conformal conjugation. Assume that there is a
map φ : Ĉ→ Ĉ which is meromorphic and bijective. Then, consider

R̃ := φ ◦R ◦ φ−1.

The R has a fixed point at z0 if and only if R̃ has a fixed point at φ(z0). Since φ is bijective,

this shows that the number of fixed points of R is equal to the number of fixed points of R̃. We
shall use this to justify the reduction to the case in which R does not map infinity to infinity.
If infinity is a fixed point for R, then let us define

φ(z) =
1

z
− c,

for a finite complex number, c. Then,

φ−1(z) =
1

z + c
.

Hence φ : Ĉ → Ĉ is bijective and meromorphic. Moreover,

R̃ = φ−1 ◦R ◦ φ :∞→ −c→ R(−c)→ 1

R(−c) + c
.

Thus, choose some c ∈ C such that R(−c) 6= −c, which is possible by the assumption that R

is not the identity map. Then, R̃(∞) 6=∞. Since R̃ has fixed points in bijection with those of
R, we may without loss of generality assume that R does not fix infinity. Proving the theorem
in this case proves it for R̃, which implies the result for R since its fixed points are in bijection
with those of R.
Let ζ 6=∞ be a fixed point of R = P/Q. We shall always assume that when we write

R(z) =
P (z)

Q(z)
,

these two polynomials have no common factors. Thus, if ζ 6=∞ and

R(ζ) = ζ =⇒ Q(ζ) 6= 0,

because P and Q have no common zeros. (If Q(ζ) = 0, then since P (ζ) 6= 0 this would make
R(ζ) =∞ 6= ζ). Then we observe:

R(ζ) = ζ ⇐⇒ R(ζ)− ζ =
P (ζ)− ζQ(ζ)

Q(ζ)
= 0.

Since the denominator is nonzero, the degree of the zero of the function

R(z)− z
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at the point ζ is the same as the degree of the zero of the function

P (z)− zQ(z)

at the point ζ. This is true for all ζ 6= ∞. Hence the number of fixed points of R is equal to
the number of zeros, counting multiplicity, of the polynomial

P (z)− zQ(z).

Since R does not map infinity to infinity, the degree of the numerator of R is less than or equal
to the degree of the denominator of R, hence the degree of P is less than or equal to the degree
of Q. Therefore, since the degree of R is

max{deg(P ),deg(Q)}
the degree of R, that is d, is equal to the degree of Q. Consequently the polynomial

P (z)− zQ(z) is of degree d+ 1.

By the Fundamental Theorem of Algebra, this polynomials has d+1 zeros, counting multiplicity.

We will use the above result to prove the following awesome theorem on the Julia set!!!

Theorem 15.15. The Julia set is not empty for rational functions with degree ≥ 2.

We shall prove this next time.

15.3. Homework.

(1) * For a quadratic polynomial P (z) = e2πiθz + z2, where {pn/qn} is the sequence of
rational approximations to θ coming from its continued fraction expansion, show that
a conjugation of P to e2πiθζ exists if and only if

∞∑
n=1

log(qn+1)

qn
<∞.

(2) Prove that such a conjugation exists for almost all θ, that is for all θ ∈ R apart from a
set of one-dimensional Hausdorff measure equal to zero. (Of course that is the same as
all θ ∈ R apart from a set of one-dimensional Lebesgue measure equal to zero).

15.4. Hints.

(1) There is a reason there are only two exercises, and the first exercise has a star. The
sufficiency of the condition was proved by Brjuno in 1965. The necessity was proven
by Yoccoz in 1988. If you find yourself stuck, just look up the proofs and work through
the details to complete the exercise.

(2) As you may have noticed, much of this complex dynamics material is from the book by
Lennart Carleson and Theodore W. Gamelin. You can find a proof of this in Section
V.1 of that book, which is apparently due to Yoccoz.

16. The Fatou and Julia sets of rational functions

We begin by giving a useful characterization of being a normal family in the context of a
compact, complete metric space. Note that Ĉ is such a space!

Proposition 16.1 (Arzela-Ascoli). Assume that a family of functions are defined on a com-
pact, complete metric space, (X, d), and that they are all maps from (X, d) to (X, d). Then, if
the family is equicontinuous, every sequence from the family has a uniformly convergent subse-
quence, and the limit to which this sequence converges is a continuous function. Moreover, the
converse holds: if every sequence of the family has a uniformly convergent subsequence, and the
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limit to which the sequence converges is a continuous function, then the family is equicontinuous.
If either of these two equivalent conditions hold, the family is normal.

Proof: If the family of functions are equicontinuous, and they map from a compact metric
space into a compact metric space, then they are bounded in the sense that for all f in the
family, f(X) ⊂ X is compact. The Arzela-Ascoli theorem therefore guarantees the existence of
a convergent subsequence. As the uniform limit of continuous functions, it is also continuous.
For the converse, we argue by contradiction. Assume the family is not equicontinuous. Then
at some point z ∈ X there is a sequence of points zk → z and functions in the family fk such
that for some fixed ε > 0,

d(fk(zk), fk(z)) ≥ ε.
Now, as a sequence of functions in the family {fk} has a convergent subsequence. Let us pass to
this subsequence, but still call it {fk} because it has the same properties, it is just converging
to some f which is by assumption continuous. Moreover the convergence is uniform. Since f is
continuous there is δ > 0 such that if

d(w, z) < δ =⇒ d(f(w), f(z)) <
ε

3
.

Hence, by the triangle inequality

d(fk(zk), fk(z)) ≤ d(fk(zk), f(zk)) + d(f(zk), f(z)) + d(f(z), fk(z)).

By the uniform convergence fk → f , for all k large we can make the first and last terms less
than ε

3 . Since the points zk → z, for all k large we can make d(zk, z) < δ so that the middle
term is also less than ε

3 . We therefore get that

d(fk(zk), f, (z)) < ε for all k large.

 

Theorem 16.2. The Julia set is not empty for rational functions with degree ≥ 2.

Proof: Let R be a rational function of degree ≥ 2.

Claim 3. Rn has degree dn.

Proof of the claim: Write

R(z) =
p(z)

q(z)
, p(z) = a

n∏
1

(z − rk), q(z) = b

m∏
1

(z − sj).

Consider R(R(z)) =

a
∏n

1 (p/q − rk)

b
∏m

1 (p/q − sj)
=

aq(z)−n
∏n

1 (p(z)− rkq(z))
bq(z)−m

∏m
1 (p(z)− sjq(z))

=
a
∏n

1 (p(z)− rkq(z))
bq(z)n−m

∏m
1 (p(z)− sjq(z))

Assume first that the degree of p is greater than or equal to the degree of q. Therefore the
degree d of R is equal to n and n ≥ m. The numerator in R(R(z)) has the factor p(z) a total
of n times, and is therefore of degree n2. The denominator has the factor qn−m which is of
degree m(n−m) times the product which has leading term pm, which is of degree nm. So all
together the denominator is of degree at most

m(n−m) + nm = 2nm−m2.

The denominator could be of lower degree, which can only occur if p and q are of the same
degree, and a = bsj for some sj . However, this is not problematic for the proof, because since
n ≥ m

0 ≤ (n−m)2 = n2 − 2mn+m2 =⇒ 2mn−m2 ≤ n2.
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So, unless there is some other weird cancellation, R(R(z)) is of degree n2 = d2. Can there be
any weird cancellation?
The numerator vanishes iff

p(z) = rkq(z)

for some rk and some z. The denominator vanishes iff

p(z) = sjq(z)

for some sj and some z, or if n > m and q vanishes. I claim that the numerator and denominator
can never both vanish. To see this, if we have both

p(z) = rkq(z) and p(z) = sjq(z) =⇒ rkq(z) = sjq(z) =⇒ rk = sj or q(z) = 0.

The first, rk = sj never happens, and in the second case q(z) = 0 here together with p(z) =
rkq(z) implies p(z) also vanishes but they cannot both vanish at the same point! Hence,
impossible. Similarly, if

p(z) = rkq(z) and q(z) = 0 =⇒ p(z) = 0 .

Hence, there is no cancelation of the numerator and denominator. So, the numerator and
denominator of R(R(z)) have no common zeros and hence the degree of R(R(z)) is indeed
n2 = d2.

Exercise 26. Complete the proof of the claim (hint: induction) to prove that the degree of Rj

is dj. The case in which m ≥ n is very similar.

We shall proceed with the proof by contradiction. We assume J = ∅, so that the family
of iterates of R is normal on Ĉ which is compact, hence there exists a uniformly convergent
subsequence. Let us call that subsequence Rnk and their uniform limit f . Then this function
f is continuous on Ĉ with respect to the dĈ metric.
Let us dispatch with the case in which f ≡ ∞. In this case, we consider the rational function

R̃(z) :=
1

R(1/z)
.

This function is conformally conjugate to R. Since φ(z) = 1/z is a bijection from Ĉ to itself,

and since Rnk converges uniformly to ∞ on all of Ĉ, we get that R̃ converges uniformly to the
constant function 0 on all of Ĉ. Thus, there exists N ∈ N such that for all j ≥ N

dĈ(Rnj (z), 0) <
1

3
dĈ(0,∞) ∀z ∈ Ĉ.

In particular, we get

dĈ(Rnj (z),∞) ≥ dĈ(0,∞)− dĈ(0, Rnj (z)) ≥ 1

2
dĈ(0,∞) > 0.

So, in particular, the Rnj have no poles in Ĉ, and moreover, they are entire and bounded. Thus
the Rnj are all constant for j ≥ N . Since they converge to 0 this means that they are all equal
to the constant zero function. This is a contradiction to the fact that Rnj has degree dnj . So,
we cannot have Rn+j converging uniformly on Ĉ to the constant function, ∞.
What else can we determine about the limit function? First, note that with respect to dĈ the

functions {Rn} are all continuous on the entirety of Ĉ. Yep, even at their poles. Hence, the limit,

being the uniform limit of continuous functions is also continuous on Ĉ. Let us call this limit
function f . Whenever f(z0) 6=∞, by arguments from our previous results, we obtain that the
family {Rn} is uniformly bounded (in the usual sense, |Rn| ≤M for some fixed M > 0 for all n)
in some neighborhood of z0. Consequently, we can apply the dominated convergence theorem
to conclude that the integrals over closed curves in that neighborhood of f is zero, and we
therefore obtain that f is holomorphic in such a neighborhood. Consequently, f is holomorphic
whenever it is not infinity. Now, f can only have finitely many zeros of finite multiplicity
because f ≡ 0 shall lead to a contradiction. If f ≡ 0, then we would get that the family {Rn}
is uniformly bounded on Ĉ, hence they are all constant, which is a contradiction. So, we know
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that f has finitely many zeros of finite multiplicity. Therefore, 1
f is a meromorphic function on

Ĉ. Hence, it is a rational function. Hence f is also a rational function. It therefore has some
finite degree. Now, let us use the results concerning the fixed points of rational functions. The
iterates Rnj have dnj +1 fixed points (counting multiplicity). These are contained in a compact

set, Ĉ. Hence they accumulate somewhere. Let us pass to a subsequence of Rnj but still call it
by the same name but such that we have fixed points for these Rnj at znj which tend to some

z0 ∈ Ĉ. By the uniform convergence to f we therefore have

f(z0) = z0.

Claim 4. The limit function f is not the identity function. Nor is it an entire function.

Let us prove this by contradiction. Assume that f(z) = z for all z ∈ Ĉ. Fix M > 0. Then
since f is holomorphic in DM (0), and it is bounded by M there, we get that all the iterates
{Rn} are bounded in this disk. Hence they have no poles in there. Letting M → ∞, we get
that {Rn} can only have a pole at infinity for all n. Hence they are all polynomials. Since
their degrees are greater than or equal to zero, they all have a super-attracting fixed point at
∞. Hence, some open neighborhood of ∞ belongs to the Fatou set, and all iterates converge
to the constant function, ∞ in this neighborhood. Now that we assumed that the Julia set is
empty, the limit to which our subsequence Rnj converges must therefore also be the function
which is constant and equal to infinity (or at least in an open neighborhood of∞ we must have
f(z) ≡ ∞). This violates the fact that the limit is meromorphic and thus has discrete zeros and
poles.  Hence, the limit function, whatever it may be, is not the identity. This proves the first
part of the claim. For the second part we may proceed similarly. Note that if f is entire, then
f is uniformly bounded on any DM (0). Hence we obtain the same for all the iterates there.
Hence, letting M →∞ we get that the only place the iterates can have a pole is at infinity. We
therefore get the same contradiction in this case as well.
Now, let us assume that some znj is a fixed point of a certain Rnj . Then on the one hand

f ◦Rnj → f ◦ f uniformly as j →∞.
So, fixing the point znj we get

f ◦Rnj (znj )→ f(f(znj ).

On the other hand, by definition of being a fixed point of that particular Rnj we get without
letting j →∞ for this particular nj,

f(Rnj (znj )) = f(znj ).

Hence

f(f(znj )) = f(znj ).

So, whenever Rnj has a fixed point at znj , f has a fixed point at f(znj ). Since Rnj has dnj + 1
fixed points, counting multiplicity, we get that f has a fixed point at f(znj ). However, the
number of fixed points of f is finite, because f is not the identity. This means that the set
{f(znj )} is a finite set. Now, f is of finite degree, so it cannot send infinitely many points
to the same point. Therefore, the set of fixed points of the Rnj must be also finite, and the
multiplicity at these fixed points must be tending to infinity. So, the set {znj}j≥1 of fixed points
of {Rnj}j≥1 is finite and the degree of these fixed points tends to infinity. Near a fixed point,
p 6=∞, the power series of Rnj (z) is of the form

Rnj (z) = p+
∑
k≥1

ak(z − p)k,

where

ak =
(Rnj )(k)(p)

k!
.

The degree of the fixed point is the minimal k such that ak 6= 0. Now, by the uniform con-
vergence to f , we also get the uniform convergence of the derivatives to the corresponding
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derivatives of f . Therefore, since the degree of the fixed point p 6= ∞ is tending to infinity,
this forces f to vanish at p to infinite order. By the identity theorem, then, f ≡ 0 . So, the
only fixed point p can be infinity. However, then the same argument shows that f has a pole
at infinity of infinite order, which violates the fact that f is a rational map (and hence of finite

order). This is a  contradiction.

16.1. Self similar natural of the Julia set.

Definition 16.3. Let R be meromorphic on Ĉ. (Thus it is a rational map). Then we say that
E is completely invariant if E and Ec are invariant under R, in the sense that both

R(E) ⊂ E
and

R(Ec) ⊂ Ec.

This terminology may seem weird á priori, but let us see that it is sound.

Proposition 16.4. Assume that the rational map is non-constant. Then E is completely
invariant if and only if R(E) = E.

Proof: Assume E is completely invariant. Note that the empty set is completely invariant as
is Ĉ. We have proven that all rational maps which are non-constant are surjective from Ĉ to
Ĉ. So, we have

R(Ĉ) = R(E ∪ Ec) = Ĉ = E ∪ Ec.
On the other hand

Ĉ = R(E ∪ Ec) = R(E) ∪R(Ec) ⊂ E ∪ Ec.
Consequently, we must have

R(E) = E, R(Ec) = Ec.

For the converse statement, if we assume R(E) = E, then we also get, via

R(Ĉ) = R(E) ∪R(Ec) = E ∪R(Ec) = Ĉ = E ∪ Ec =⇒ R(Ec) = Ec.

Exercise 27. What about when R is a constant map? Which sets are invariant? Also, observe
that a set E is completely invariant if and only if its complement is completely invariant.

With the notion of completely invariant, we can prove that the Julia set enjoys this property!

Theorem 16.5. The Julia set J of a rational map is completely invariant. The Fatou set is
also completely invariant.

Proof: If either the Julia set or Fatou set is empty, we have proven that both ∅ and Ĉ are
completely invariant, so we are done. If the function R is constant, then the Fatou set is Ĉ,
so we are done in this case. Let us assume that R is not constant. Let us also assume that
the Fatou set is not empty. Let Dr(z0) ⊂ F . Then, let {Rnk} be a subsequence of {Rn}
which converges uniformly on Dρ(z0) for some ρ < r. Hence {Rnk−1} converges uniformly

on R(Dρ(z0)). By continuity of R this set is bounded, and by the open mapping theorem,
it is closed, hence it is compact. Therefore every uniformly convergent subsequence gives rise
to a uniformly convergent subsequence on R(Dρ(z0)). We can do this for any ρ < r. So, in
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particular, we get that R(Dρ(z0)) is in the Fatou set for ρ < r. Since R(z0) is contained in this
set, and since it is an open set by the open mapping theorem, we have

R(F) ⊂ F .

To obtain the converse, note that if Rnk converge uniformly on Dρ(z0), then Rnk+1 converge

uniformly on R−1(Dρ(z0)). Hence R−1(Dρ(z0)), which is open by the continuity of R, and
which contains R−1(z0) (which could be several different points, but that is not important), is
in the Fatou set. Thus

R−1(F) ⊂ F =⇒ F ⊂ R(F).

Combining with the reverse containment, we have

R(F) = F .

Consequently, since R is non-constant in this case, we have that F is completely invariant, and

so is its complement, J .
The next theorem shows that the Julia set is the same for all iterates of our rational function.

Theorem 16.6. ∀N ≥ 1, J (R) = J (RN ). The same statement holds for the Fatou set, that
is

F(R) = F(RN ).

Proof: First, assume that R is constant. Then its Fatou set is Ĉ. Since Rn = R is also
constant for all n, the Fatou set of Rn is Ĉ for all n. So, let us assume that R is not constant.
Then it is surjective because R is a rational map. Let Dr(z0) ∈ F(R). Then the family
{Rn}n≥1 is equicontinuous there. Since the family {(RN )n}n≥1 is contained in {Rn}n≥1 it is
also equicontinuous in Dr(z0). Therefore this is also contained in F(RN ). Hence we obtain

F(R) ⊂ F(RN ).

For the reverse containment let {Rnk} be a subsequence of {Rn}. Then since it is a subsequence,
nk →∞ as k →∞. Hence, so, in particular, we can pick a subsequence of it which has

nkj+1
− nkj = a positive integer multiple of N .

Hence, this subsequence is of the form

{Rnkj } = {RNml+p}

for some sequence of integers {ml}, for some fixed non-negative integer p. Assuming that the
family {RN} is normal in a neighborhood of z, we get a uniformly convergent subsequence

{RNmlq }

consequently

Rp+Nmlq = Rp(RNmlq )

also converges uniformly. This is a subsequence of {Rnkj }. So, it is in turn a uniformly
convergent subsequence of {Rnk}. Hence we see that whenever the family {RNn} is normal, so
is {Rn}. Therefore

F(RN ) ⊂ F(R).

Therefore these sets are equal, so that

F(R) = F(RN ), ∀N ≥ 1.

The same statement holds for the complements,

J (R) = J (RN ), ∀N ≥ 1.
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We shall use but not prove the following lovely theorem.

Theorem 16.7 (Montel’s Big Theorem). If a family of functions is meromorphic on domain G
and the image under G of the family omits three points, then the family is normal. In particular,
if ∃z1, z2, z3 such that f(G) ∩ {zi}3i=1 = ∅ ∀f ∈ F then F is normal.

16.2. Homework.

(1) Locate and read a proof of Montel’s big theorem.
(2) Locate and read a proof of the Riemann-Hurwitz theorem.

17. Julia sets of rational maps

In addition to fixed points another type of distinctive point is a critical point.

Definition 17.1. A point z ∈ Ĉ is a critical point if one of the three equivalent conditions
below holds:

(1) R is not injective on any open neighborhood of z.
(2) R′(z) = 0.
(3) Let f(w) := R(w)−R(z). Then f vanishes at z with multiplicity greater than one.

Definition 17.2. The multiplicity of z ∈ C is the degree of the zero of the function R(w)− z
for w = z and is denoted by mult(z).

We will use but not prove the following theorem.

Theorem 17.3 (Riemann-Hurwitz). Assume R is not constant and of degree d. Then∑
z∈Ĉ

mult(z)− 1 = 2(d− 1).

The proof of this theorem relies upon some rather deep results in topology concerning the Euler
characteristic of Riemann surfaces. Similar to the proof of the fact that the Julia set of any
rational function is non-empty for all rational functions of degree at least two, which relied
on the number of fixed points, we can use the Riemann Hurwitz theorem to prove that any
coompletely invariant set for a rational map of degree at least two has at most two elements.

Theorem 17.4. Any finite completely invariant set for R rational of degree at least two has at
most 2 elements.

Proof: Assume S is such a set. Then R(S) = S, and so R acts as a permutation on the
elements of S. Assume S has n elements. Then R is uniquely identified with an element σ
of the symmetric group Sn. This group has n! elements hence the order of σ is finite. Let
this order be k. This means that Rk acts as the identity element on S. We have already
computed that the degree of Rk is dk where d is the degree of R. Note that the multiplicity
of the zero of Rk(w) − z at w = z is dk. This is because the function Rk(w) − z has precisely
dk zeros counting multiplicity by the Fundamental Theorem of Algebra. Perhaps that is not
immediately apparent, but writing

Rk(w) =
p(w)

q(w)
, Rk(w) = z ⇐⇒ g(w) := p(w)− zq(w) = 0.

The function g(w) : Ĉ → Ĉ is a polynomial of degree equal to the degree of Rk, which is dk.
Hence this function has precisely dk zeros counting multiplicity by the Fundamental Theorem
of Algebra, and g(w) = 0 iff Rk(w) = z. So, if one of these zeros were to be some w 6= z, then
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R−k(z) 3 w which shows that w ∈ S because S is completely invariant. Then since Rk acts as
the identity on S, this means that

Rk(w) = w 6= z = Rk(w).

This is a contradiction. So the only solutions to Rk(w) − z = 0 is w = z and hence the
multiplicity of z for Rk is dk. This holds for each z ∈ S. So we have∑

z∈S
mult(z)− 1 = n(dk − 1) ≤

∑
z∈Ĉ

mult(z)− 1 = 2(dk − 1)

which shows that n ≤ 2.

Definition 17.5. The orbit of a point z ∈ Ĉ is

O(z) := {Rn(z)}n∈Z.

Note that this includes both the forwards and backwards orbits. If the orbit of a point is finite,
then we say that point is exceptional. The set of all such points is denoted by E(R).

Proposition 17.6. The exceptional set of a rational map of degree at least two has 0, 1, or 2
points.

Proof: If z ∈ E(R), then by definition the orbit of z has finitely many elements. Since the
orbit of z is the same as the orbit of R(z) as well as the same as the orbit of R−1(z), the orbit
is completely invariant. By the preceding theorem the orbit of z has 1 or 2 elements. It has at
least one element because it contains z = R0(z). If the orbit of z contains only z, then it is a
fixed point. If the orbit of z also contains w so that R(z) = w 6= z, then we know that either
R(R(z)) = R(w) = w or R(R(z)) = z. Hence either w is a fixed point of R or z is a fixed point
of R2. Consequently the total number of exceptional points is at most twice the number of
fixed points of R plus the number of fixed points of R2. This is finite because R has precisely
d+ 1 fixed points, and R2 has precisely d2 + 1 fixed points. Since the orbit of any exceptional
point is completely invariant, and the orbit of any point in the orbit of z is the same as the
orbit of z, it follows that the orbit of each exceptional point is contained in E(R). There are
finitely many of these, they are each completely invariant, hence E(R) is a finite, completely

invariant set. By the preceding theorem it contains at most 2 points.

Theorem 17.7. The Julia set of any rational map of degree at least two is infinite, and the
exceptional set is contained in the Fatou set.

Proof: If the Julia set is finite, then because it is completely invariant, it contains at most
2 points. We know that the Julia set is not empty. So, first assume the Julia set contains
one point. We can conjugate such that WLOG this point is ∞. Then since the Julia set is
completely invariant,

R(∞) ⊂ J =∞ =⇒ R(∞) =∞,
and

R−1(∞) ⊂ J =∞ =⇒ R−1(∞) =∞.
Consequently, R has no poles in C and is an entire function. Since it has degree at least two,
R is a polynomial. For any polynomial ∞ is a super-attracting fixed point, because 0 is a
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super-attracting fixed point for the function

1

R(1/z)
= φ−1 ◦R ◦ φ, φ(z) = φ−1(z) = 1/z,

and φ−1(0) =∞. We have already seen that if two functions are conformally conjugate such as

φ−1 ◦R◦φ = R̃, then R has a fixed point at∞ if and only if R̃ has a fixed point at φ−1(∞) = 0.

Moreover the multiplier at the fixed point is the same for R as for R̃. Since the polynomial R

is of degree d ≥ 2, 1/R tends to 0 of order d as z → ∞ hence R̃ has a zero of order d at 0.

By the Fundamental Theorem of Algebra, R̃ has precisely d zeros counting multiplicity. Hence
this function has only one zero of order d at zero so

1

R(1/z)
= czd, c ∈ C \ {0} =⇒ R(z) = c−1zd.

Since 0 is a super-attracting fixed point for R̃ it lies in the Fatou set for R̃ and consequently
φ−1(0) = ∞ also lies in the Fatou set of R. This is a contradiction because this point was
assumed to be in the Julia set which is distinct from the Fatou set.
If the Julia set contains two points, we can again assume by conformal conjugation that these
points are {0,∞}. By the complete invariance of the Julia set we have a few possibilities. One
possibility is that R(0) = 0 and R(∞) = ∞. By the complete invariance of the Julia set,
R−1(0) ∈ {0,∞}. If R−1(0) = ∞ =⇒ R(∞) = 0 which is impossible. So, we also have that
R−1(0) = 0 and R−1(∞) = ∞. Consequently, R is a polynomial of degree d ≥ 2. By the
preceding argument ∞ is in the Fatou set, a contradiction.
The other possibility is that R(0) =∞, and R(∞) = 0, due to the complete invariance. In this
case R(z) = P (z)/Q(z) has a Laurent expansion about 0 of the form cjz

−j + ... with cj 6= 0.
Consequently when we consider long division of the polynomials P and Q it follows that the
degree of Q is strictly larger than the degree of P . We can also see this because R vanishes at
infinity, so the degree of Q must be larger than that of P . If there were any other point p ∈ C
such that R(p) = 0, then again by the complete invariance of J such a point would necessarily
be contained in J which it is not. Hence, the only zero of R is at infinity, and this zero must
therefore be of degree d which is the degree of R. Consequently R(z) = cz−d. Then

R2(z) = R(R(z)) = c1−dzd
2

has a super-attracting fixed point at z = 0. It follows that 0 is in the Fatou set of R2, and
by one of our previous results, the Fatou set of RN is the same as the Fatou set of R for any
N ∈ N. Hence 0 is in the Fatou set of R as well, which is a contradiction because 0 was assumed
to be in the Julia set.
So, it is impossible for the Julia set to have 1 or 2 points, and this shows that it must have
infinitely many points because it is not empty.
Next we consider the exceptional set. If it is just one point, by conformal conjugation we may
assume that this point is∞. Then the orbit of this point is∞ and hence R(∞) =∞ = R−1(∞)
and so R is a polynomial because it is an entire non-constant function with pole at infinity. As
we have seen above ∞ is a super-attracting fixed point for any polynomial of degree at least
two and hence lies in the Fatou set.
If the exceptional set contains two points, without loss of generality we assume these two points
are 0 and ∞. Then we either have R(0) = 0, R(∞) = ∞ which implies R(z) = czd, and both
0 and ∞ are in the Fatou set. By the above argument the other possibility is that R(∞) = 0,
R(0) =∞. In this case we showed that R(z) = cz−d, and again both 0 and ∞ lie in the Fatou
set because this is true for R2 (both 0 and ∞ are in the Fatou set of R2 in this case).

So, in all cases the exceptional set lies in the Fatou set.
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Theorem 17.8. Any completely invariant closed set A satisfies one of the following: either
A ⊂ E(R) ⊂ F or A ⊃ J .

Proof: Assume A is such a set, and let U := Ĉ\A. Then U is open and completely invariant.
Therefore the complement of U , being A is also completely invariant. If A is finite, then it has
at most two points. It follows that since A is completely invariant, the orbit of each element of
A lies in A and hence is finite, so A ⊂ E(R). If A is infinite, consider {Rn} on U . Since U is

completely invariant, for each z ∈ U , Rn(z) ⊂ U ⊂ Ĉ\A and hence the family {Rn} on U omits
all points of A, of which there are more than three! So, the family Rn is normal on U , and hence
U ⊂ F . The reverse inclusion therefore holds for their complements, so U c = A ⊃ Fc = J .

Theorem 17.9. The Julia set is perfect for any non-constant rational map.

Proof: Let J ′ denote the set of accumulation points of the Julia set. Then since J is closed it
follows that J ′ ⊂ J . Note that since J is infinite and is contained in Ĉ which is compact, the
Julia set has accumulation points, so J ′ 6= ∅. The idea is thus to show that J ′ is completely
invariant because then we have proven that any completely invariant closed set is either in
the Fatou set or it contains the Julia set. Since J ′ is in the Julia set, it cannot be in the
Fatou set! First let’s show that J ′ is closed. If z is an accumulation point of J ′, then any
open neighborhood U of z contains an element of J ′, which is an element of J since J ′ ⊂ J .
Therefore, this shows that z is an accumulation point of J , hence z ∈ J ′. Hence, J ′ contains
all its accumulation points and is therefore closed.
Next we show the complete invariance of J ′. Let z ∈ J ′. Then there is a sequence {zn} ⊂ J
which converges to z. The function R is continuous on Ĉ, and therefore R(zn) → R(z). Since
R(zn) ∈ J for every n by the invariance of J , we have a sequence in J , namely {R(zn)} which
converges to R(z). Therefore R(z) is an accumulation point of J and so R(z′) ∈ J ′. Hence for
any z ∈ J ′ we have R(z) ∈ J ′.We have thereby shown the inclusion

R(J ′) ⊂ J ′ =⇒ J ′ ⊂ R−1(J ′).

Next let z ∈ R−1(J ′), and w = R(z) ∈ J ′. Then since R is non-constant, it is an open map.
Since w = R(z) ∈ J ′, for an open set U containing z, R(U) is an open set containing w which is
an accumulation point of J , and so R(U) has non-empty intersection with J . Therefore since
R(J ) = J ,

R−1(R(U) ∩ J ) = U ∩R−1(J ) = U ∩ J 6= ∅.

So, for any open U containing z, U ∩ J 6= ∅. It follows that z is an accumulation point of J
and so z ∈ J ′. This shows that

R−1(J ′) ⊂ J ′ =⇒ J ′ ⊂ R(J ′) ⊂ J ′.

So

R(J ′) = J ′

is completely invariant. Since it is a closed set, by the previous theorem it is either contained
in F or it contains J . Since J ′ ⊂ J which is disjoint from F , we cannot have J ′ ⊂ F , and so
we must have

J ′ ⊃ J ⊃ J ′ =⇒ J ′ = J .
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Hence every point of J is an accumulation point of J which is the definition of being perfect.

17.1. Homework.

(1) Determine the Julia set of the function R(z) = z2.
(2) Determine the Julia set of the function R(z) = z2 − 2.
(3) Determine the Julia set of the Lattés function

(z2 + 1)2

4z(z2 − 1)
.

(4) Determine the Julia set of the function 1− 2/z2.
(5) Show that the Julia set is the closure of the repelling periodic points. A repelling

periodic point is a piont such that Rn(z0) = z0 for some n. Take the minimal such
n. Then z0 is a fixed point for Rn, and thus is termed attracting, repelling, rationally
neutral or irrationally neutral according to the type of fixed point of Rn.

(6) Show that the Julia set of a Blaschke product B(z) of degree d ≥ 2 is either the unit
circle or a Cantor set on the unit circle.

17.2. Hints.

(1) Consider |z| < 1 and |z| > 1.
(2) Recall a previous exercise about this function.
(3) Show that a dense subset of C is iterated to the repelling fixed point at ∞.
(4) Show that this function has the same Julia set as the previous one.
(5) Show that the Julia set of R and Rn are the same for any n. Then use the fact that

the Julia set contains all repelling fixed points.
(6) Show that the iterates of a Blaschke product are normal both inside and outside the

unit disk. Thus the Julia set is a perfect subset of the unit disk. Consider what cases
are possible and use the results we have proven.

18. Fractal nature of the Julia set and properties of the Mandelbrot Set

The Julia set of a rational map of degree at least two is either Ĉ or has empty interior!

Theorem 18.1. The Julia set of a rational map R of degree at least two is either Ĉ or has
empty interior.

Proof: Let us decompose Ĉ as a disjoint union

Ĉ = ∂J ∪ J̊ ∪ F .
Let us also assume that z ∈ J̊ , so the interior of J is not empty. Then there exists r > 0
such that Dr(z) ⊂ J̊ ⊂ J . Applying R, by the Open Mapping Theorem, R(Dr(z)) 3 R(z)
is an open set. By the complete invariance of J this set lies in J . Hence there is an open
neighborhood of R(z) in J , so R(z) ∈ J̊ . This shows that

R(J̊ ) ⊂ J̊ .
For the reverse inclusion we use continuity, because R−1(Dr(z)) is an open set contained in J
hence contained in J̊ so

R−1(J̊ ) ⊂ J̊ ,
and we see that J̊ is completely invariant. Since the Fatou set is also completely invariant, we
have the following

R(J̊ ∪ F) = J̊ ∪ F =⇒ R(∂J ) = ∂J ,
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so the boundary of J is also completely invariant. It is closed since its complement is by
definition open. By a preceding result, since the intersection of the Julia set, which is closed
and hence contains its boundary, with the Fatou set is empty, either the boundary of the Julia
set contains the Julia set, or the boundary of the Julia set is empty. By assumption the Julia
set has non-empty interior, so if it has non-empty boundary, then it cannot be contained in its
boundary. It follows that the boundary of the Julia set is empty. This means that the Julia set
is open as well as closed, and hence is the entire Ĉ. This shows that if the Julia set has non-
empty interior, then it is Ĉ. On the other hand, if the Julia set is not Ĉ, by the contrapositive,
it cannot have non-empty interior, so if the Julia set is not Ĉ, then it has empty interior. These

are the only two mutually exclusive possibilities.
The following proposition will allow us to prove the self-similarity property of J . Basically,
take any open set which has non-empty intersection with the Julia set. No matter how small
that is, the inverse images of R of this open set will eventually cover all of J .

Proposition 18.2. Let R be a rational map of degree at least two, and U a non-empty open
set such that U ∩ J 6= ∅. Then

(1) We have ⋃
n≥0

Rn(U) ⊃ Ĉ \ E(R) ⊃ J .

(2) Moreover there exists N ∈ N such that

Rn(U) ⊃ J
for all n ≥ N .

Proof: Well, it makes sense to prove (1) first, because we will likely need it to prove (2) which
is a stronger statement. Define

U0 :=
⋃
n≥0

Rn(U).

Define
V := Ĉ \ U0.

If V = ∅ then we are done. If V has three or more points, we are led to a contradiction because
this would mean that the family {Rn}n≥1 on the set U is normal. Then we would have U ⊂ F
which contradicts the fact that U ∩ J 6= ∅. So, V has at most 2 points. We wish to show that

V ⊂ E(R).

Then we get the reverse inclusion for the complements:

U0 ⊃ Ĉ \ E(R).

So, for the sake of contradiction we assume there is some z0 ∈ V \E(R). Then it must have an
infinite orbit. We will show that a point has an infinite orbit iff the backwards orbit is infinite.
Assume that the backwards orbit is finite,

O−(z0) = K = {z0, . . . , zk}.
Then consider R−1 on K. R−1(zj) is a set of one or more points in K. If two points zj and zl
have a common pre-image meaning the sets

R−1(zj) ∩R−1(zl) 6= ∅,
then applying R to a common point in this pre-image we get that zj = zl. Hence, for each
j = 0, . . . k,

R−1(zj) ⊂ K
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is distinct. Each of these sets contains at least one point. Since K is a finite set, this means
that each of these pre-images contains exactly one point, and so R−1 : K → K is a bijection. It
can therefore be identified with a permutation, an element of the group Sk+1. This is a group
of finite order, so there exists n ∈ N such that (R−1)n = R−n acts as the identity on K. Now
we consider the forward orbit. For each zj ∈ K we have

R−n(zj) = zj =⇒ zj = Rn(zj)

for all j = 0, 1, ..., n. In particular Rn(z0) = z0. Hence

Rn+k(z0) = Rk(z0), ∀k ∈ N.

Consequently, the forward orbit O+(z0) can have at most n + 1 elements. This shows that if
the backward orbit is finite, then the whole orbit is finite. Consequently, if the whole orbit is
infinite, then the backwards orbit is infinite. Of course the reverse statement is also true: if the
backwards orbit is infinite, then the whole orbit is infinite (because it contains the backward
orbit!). So, we have shown the equivalence

#O−(z) =∞ ⇐⇒ #O(z) =∞,

where in this statement z is arbitrary.
In our particular case of concern here, we have z0 not in E(R) hence it has infinite orbit, hence
the backwards orbit is infinite. We will use this to achieve a contradiction. First, if some
R−m(z0) ∈ U0, for some m ∈ N then there is some k ∈ N ∪ {0} such that

R−m(z0) ∈ Rk(U) =⇒ R−m(z0) = Rk(w), w ∈ U.

Then applying Rm to both sides,

z0 = Rm+k(w) ∈ Rm+k(U) ⊂ U0.

This contradicts z0 ∈ V = Ĉ\U0. So, this shows that we must have R−m(z0) 3 U0 for all m ∈ N.

Since the backwards orbit of z0 is infinite, there are infinitely many points R−m(z0) ∈ Ĉ \ U0.
By definition of U0, the family of iterates Rn on U omits all these points, and there are not
just three but infinitely many! By Montel’s Theorem the family of iterates is therefore normal
on U , so U ⊂ F which we have already seen is a contradiction since U ∩ J 6= ∅.
So, the assumption of a point z0 ∈ V \ E(R) leads in all cases to a contradiction, hence there
can be no such problematic point! This shows that V ⊂ E(R) and taking complements reverses
the inclusion,

Ĉ \ V = U0 ⊃ Ĉ \ E(R) ⊃ J .
The second statement is rather ingenious. Since we know that the Julia set is infinite and
perfect, the intersection U ∩J is not only not empty, but must contain infinitely many distinct
points. Choose three distinct points. Since they are all in U which is open, let’s call the points
for instance z1, z2, z3, and there exist εi > 0 for i ∈ I = {1, 2, 3} such that Dεi(zi) ⊂ U .
Moreover we can choose

ε =
1

2
min{ε1, ε2, ε3, |zi − zj |i 6= j ∈ I}.

Then Dε(zi) := Ui are at a positive distance from each other, have non-empty intersection with
J , and are open sets contained in U .

Claim 5. For each i ∈ I there exists j ∈ I and n ∈ N such that

Uj ⊂ Rn(Ui)

Proof: By contradiction we assume not. Then there exists an i ∈ I such that for each j ∈ I
and every n ∈ N

Uj 6⊂ Rn(Ui).

Hence

Uj 6⊂ ∪n≥1R
n(Ui), j = 1, 2, 3.
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Since these three sets are disjoint, there exist points in Uj which are not in ∪n≥1R
n(Ui), and

which are distinct. Hence Rn on Ui omits these three points and is therefore normal. This
is again a contradiction because it would imply Ui ⊂ F which it is not because Ui ∩ J 6= ∅.

Claim 6. There exists n ∈ N and i ∈ I such that

Ui ⊂ Rn(Ui).

Proof: We have shown that there is some j ∈ I such that

Uj ⊂ Rn1(U1).

If j = 1, then the claim is proven. Otherwise, without loss of generality (we can change their
names) assume Uj = U2. Then by the previous claim once more, we have some k ∈ I and
n2 ∈ N such that

Uk ⊂ Rn2(U2).

If k = 2, the claim is proven. Otherwise, if k = 1, then

U1 ⊂ Rn2(U2) ⊂ Rn2(Rn1(U1)) = Rn2+n1(U1),

and so in this case the claim is also proven. So, the remaining case is that k = 3. Then by the
previous claim, there is l ∈ I and n3 ∈ N such that

Ul ⊂ Rn3(U3).

If l = 3, then the claim is proven. If l = 2, then

U2 ⊂ Rn3(U3) ⊂ Rn3(Rn2(U2)) = Rn3+n2(U2),

and so the claim is proven. If l = 2, then

U1 ⊂ Rn3(U3) ⊂ Rn3(Rn2(U2)) ⊂ Rn3(Rn2(Rn1(U1)))

= Rn3+n2+n1(U1).

So in this case the claim is also proven, and we have proven it in every possible case!
Now we can complete the proof of the proposition, which given the amount of work perhaps
ought to be a theorem. For Ui ⊂ Rn(Ui) as in the claim, let

S := Rn.

Then S is also a rational map of degree at least two. Since

Ui ⊂ S(Ui) =⇒ S(Ui) ⊂ S2(Ui)

we have an increasing sequence

Ui ⊂ S(Ui) ⊂ . . . Sk(Ui) ⊂ Sk+1(Ui).

We have proven that the Julia set of R and any of its iterates Rn are identical. So the Julia
set of R is the same as that of S, and we write both as J . By definition of Ui,

Ui ∩ J 6= ∅,
and Ui is open, so by part (1) applied to Ui with respect to S,

J ⊂ ∪n≥0S
n(Ui).
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On the right side we have an open cover by the open mapping theorem. The Julia set is a closed
subset of C which is compact, hence J is also compact. Therefore any open cover admits a
finite sub-cover and so there is M ∈ N such that

J ⊂ ∪Mn=0S
n(Ui) = SM (Ui),

since Sn(Ui) ⊂ SM (Ui) for all n ≤M , n ≥ 0. Note that SM = RnM . So, we have by complete
invariance of J for any s ∈ N

J = Rs(J ) ⊂ Rs(RnM (Ui)) = RnM+s(Ui) ⊂ RnM+s(U),

where the last statement follows since Ui ⊂ U . Hence for any m ≥ N := nM we have

J ⊂ Rm(U).

We can now prove that the Julia set is self-similar!

Theorem 18.3. The Julia set is self-similar in the sense that for any z ∈ J ,

J = {R−n(z)}n≥1.

Proof: Let z ∈ J . Then z 6∈ E(R) ⊂ F , so the backwards orbit of z is infinite. Let ε > 0 and
z0 ∈ J . Consider U := Dε(z0). By the proposition there is N ∈ N such that

J ⊂ RN (U).

Moreover the Julia set is completely invariant which means that R−n(z) ∈ J ⊂ RN (U). So
there exists w ∈ U such that R−n(z) = RN (w) and hence w ∈ R−n−N (z). By definition of
U 3 w

|w − z0| < ε.

This shows that for each z0 ∈ J and ε > 0, there is an element of O−(z) = {R−n(z)}n≥1 which
is at a distance less than ε from z0. Hence O−(z) is dense in J . Therefore the closure of this

set contains the closure of J which is equal to J because J is closed.
This last result as well as our previous result shows the connection between Julia sets and sets
of non-integer Hausdorff dimension. Julia sets have an invariance property, a self-similarity
property, and either have empty interior or are the whole space!

18.1. The Mandelbrot set. The Mandelbrot set focuses on the dynamics of quadratic poly-
nomials

Pc(z) := z2 + c.

As you will show in the exercises, the c-plane is like the moduli space of quadratic polynomials,
because it is in bijection with the conjugacy classes of quadratic polynomials. So, when we look
at the Mandelbrot set, we are looking at the dynamics of the conjugacy classes of quadratic
polynomials. Recall the definition

M := {c ∈ C : Pnc (0) are bounded for all n ∈ N}.

Let us prove a result which characterizes the Mandelbrot set.
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Theorem 18.4. The Mandelbrot set is a closed subset of the disk {|c| ≤ 2} which meets the
real axis in the interval [−2, 1/4]. The Mandelbrot set consists of precisely those c such that
|Pnc (0)| ≤ 2 for all n. The c in the Mandelbrot set are precisely those c ∈ C such that 0
does not belong to the basin of attraction of the superattracting fixed point at ∞. Moreover, the
Mandelbrot set does not have any holes, in the sense that there are no open bounded components
of C \M.

Proof: Assume that |c| > 2. We claim that for all n ≥ 2 we have:

|Pnc (0)| ≥ |c|(|c| − 1)2n−2

.

Let us compute the base case, that is for n = 2:

|P 2
c (0)| = |c2 + c| ≥ |c|2 − |c| = |c|(|c| − 1) = |c|(|c| − 1)22−2

.

So the base case is true, and now we assume it for some n ≥ 2. Then we compute:

|Pn+1
c (0)| = |(Pnc (0))2 + c| ≥ |Pnc (0)|2 − |c| ≥

(
|c|(|c| − 1)2n−2

)2

− |c|

= |c|2(|c| − 1)2n−2∗2 − |c| = |c|2(|c| − 1)2n−1

− |c|.
Since |c| ≥ 2, for n ≥ 2 note that

(|c| − 1)2n−1

≥ 1.

Consequently

|c|(|c| − 1)2n−1

≥ (|c| − 1)2n−1

+ (|c| − 1)2n−1

≥ 1 + (|c| − 1)2n−1

.

Multiplying the far left and far right sides both by |c| we get

|c|2(|c| − 1)2n−1

≥ |c|+ |c|(|c| − 1)2n−1

.

Therefore we have proven that

|Pn+1
c (0)| ≥ |c|2(|c| − 1)2n−1

− |c| ≥ |c|(|c| − 1)2n−1

.

This completes the proof by induction, because it is the statement for n + 1. So, whenever
|c| > 2, and n > 2, the iterates of Pc are bounded below by

|c|(|c| − 1)2n−1

→∞ as n→∞ since |c| > 2 =⇒ |c| − 1 > 1.

So, we therefore see that the Mandelbrot set is contained in the disk D2(0).
Moreover, if |Pnc (0)| ≤ 2 for all n, then this certainly implies that c ∈ M. So, it is a sufficient
condition. To see that it is also a necessary condition, we assume that |Pmc (0)| = 2+ δ for some
δ > 0, and for some m. If |c| = |Pc(0)| > 2, then we have already proven that c 6∈ M. So, now
assume that

|Pc(0)| = |c| ≤ 2,

and for some m ≥ 1, we have

|Pm+1
c (0)| = |(Pmc (0))2 + c| ≥ (2 + δ)2 − |c| ≥ (2 + δ)2 − 2 ≥ 2 + 4δ.

We claim by induction that
|Pm+k
c (0)| ≥ 2 + 4kδ.

The base case with k = 1 is proven. We assume it for some k and then need to show it for
k + 1. So we estimate

|Pm+k+1
c (0)| ≥ |Pm+k

c (0)|2 − |c| ≥ (2 + 4kδ)2 − 2 = 4 + 4(4k)δ + (4kδ)2 − 2

= 2 + 4k+1δ + 42kδ2 ≥ 2 + 4k+1δ.

This completes the proof by induction. Hence,

|Pm+k
c (0)| ≥ 2 + 4kδ →∞ as k →∞,

which means that c cannot be by definition in M. Hence, if c ∈ M, the it is necessarily true
that

|Pmc (0)| ≤ 2 ∀m ≥ 1.
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To prove that M is closed, let us change our perspective a bit. I claim that for each n, the
function

|Pnc (0)|
is a continuous function of c. For n = 1,

|P 1
c (0)| =: f1(c) = |c|.

This is a continuous function. Proceeding by induction as usual then we assume that fn(c) :=
|Pnc (0)| is a continuous function of c. Then

fn+1(c) = |Pn+1
c (0)| = |fn(c)2 + c|.

The function fn(c)2 + c is a continuous function of c since fn is continuous. Moreover the
absolute value function is also a continuous function. Therefore the composition is a continuous
function. This completes the proof by induction. So, we can now write

M = {c ∈ C : fn(c) ∈ D2(0) ∀n ≥ 1}

=
⋂
n≥1

f−1
n (D2(0)).

Since each fn is a continuous function, the pre-image of the closed disk is a closed set. The
intersection of any collection of closed sets is also a closed set. This shows that M is closed.
Next, we wish to prove that M does not have any holes in it. For this, let us define instead
functions

ϕn(c) := Pnc (0).

We claim that these are holomorphic (and indeed entire, polynomial) functions of c. The base
case is certainly true. Then,

ϕn+1(c) = Pn+1
c (0) = (Pnc (0))2 + c = ϕn(c)2 + c.

Since by induction, ϕn is a polynomial, we also have that ϕn(c)2 is a polynomial. Consequently

ϕn+1(c)

is also a polynomial. Now, let’s think about the open set, C\M. For the sake of contradiction,
assume that it has some bounded component, Ω. Then Ω is a bounded, open set, and its
boundary is contained in M. The functions ϕn are all holomorphic on Ω. Therefore, the
maximum principle dictates that they achieve their maximum values on the boundary, that is
for any c ∈ Ω,

|ϕn(c)| ≤ sup
z∈∂Ω

|ϕn(z)|.

Now, since ∂Ω ⊂M, we have proven that

|ϕn(z)| ≤ 2 ∀z ∈M.

So then we get that

|ϕn(c)| ≤ 2 ∀c ∈ Ω.

However, this immediately implies, by our characterization of the Mandelbrot set, that Ω ⊂M.
This is a contradiction. Hence, the Mandelbrot set has no holes.
So, let us proceed with the formulation of the Mandelbrot set in terms of the basin of attraction
of the super attracting fixed point at infinity. It suffices to prove that

|Pnc (0)| ≤ 2∀n ⇐⇒ 0 6∈ A(∞),

where A(∞) is the basin of attraction of the super attracting fixed point of Pc at∞. Now =⇒
is pretty clear, because if 0 ∈ A(∞) then this requires Pnc (0)→∞ which clearly cannot happen
if the iterates are all bounded above by 2.
For the converse direction, we first show that Pc(A(∞)) = A(∞). Assume that z ∈ A(∞).
Then we have

Pnc (z)→∞ =⇒ Pnc (Pc(z))→∞ =⇒ Pc(z) ∈ A(∞) =⇒ Pc(A(∞)) ⊂ A(∞).
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Next note that if z ∈ A(∞) then

Pn−1
c (z)→∞ =⇒ Pnc (P−1

c (z))→∞ =⇒ P−1
c (z) ∈ A(∞) =⇒ P−1

c (A(∞)) ⊂ A(∞)

so we get applying Pc to both sides

A(∞) ⊂ Pc(A(∞)).

Consequently, we have equality, that is

A(∞) = Pc(A(∞)).

We can repeat the argument to get that for all n

A(∞) = Pnc (A(∞)), P−nc (A(∞)) = A(∞).

If for some m we have |Pmc (0)| > 2 we get that Pmc (0) ∈ A(∞) and therefore 0 ∈ P−mc (A(∞)) =
A(∞). So, this shows that if 0 6∈ A(∞) then we get

|Pmc (0)| ≤ 2 ∀m ≥ 1 =⇒ c ∈M.

Finally, let us ponder the real numbers in the Mandelbrot set. If c is real, then the equation

Pc(x)− x = 0 ⇐⇒ x2 − x+ c = 0 ⇐⇒ x =
1

2
±
√

1− 4c

2
,

has no real roots if c > 1
4 . The equation has one real root at 1

2 if c = 1
4 , and two real roots

if c < 1
4 . If c > 1

4 , then first note that Pnc (0) is real and increasing. This can be proven by
induction:

Pc(0) = c, P 2
c (0) = c2 + c > c >

1

4
.

Similarly, for
Pn+1
c (0) = Pnc (0)2 + c,

we have that
Pnc (0)2 − Pnc (0) + c > 0

because the equation
x2 − x+ c

has no real roots for c > 1
4 . By induction, Pnc (0) = x > 1

4 . So, the sequence is real and
increasing. If Pnc (0) had some finite limit point, call it x, then since the limit of real numbers
is a real number when it exists, we would get

lim
n→∞

Pnc (x) = lim
n→∞

Pn+1
c (x) = x =⇒ Pc(x) = x .

So, this shows that no real numbers greater than 1
4 are in M. Now, we already know that no

real numbers less than 2 are in M because any number with modulus greater than 2 is not in
M. So, finally on the interval [−2, 1/4], let

a =
1

2
+

√
1− 4c

2

be the larger of the two real roots of Pc(x)− x = 0. Then, since c ∈ [−2, 1/4], we have

a =
1

2
+

√
1− 4c

2
≥ 1

2
+

√
1 + 8

2
=

1

2
+

3

2
= 2 ≥ |c| = |Pc(0)|.

Then we claim by induction that |Pnc (0)| ≤ a for all n. We have proven the base case. Next,

|Pn+1
c (0)| = |(Pnc (0))2 + c| = ±(Pnc (0)2 + c).

In case of + we have
(Pnc (0))2 + c ≤ a2 + c = a

since
a2 − a+ c = 0.

In case of − we have
−(Pnc (0))2 − c ≤ −c ≤ a,
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since we proved that
a ≥ |c|.

So this proves that the iterates all have |Pnc (0)| ≤ a for all n. By definition, c ∈M.
It is nice to recall, but we shall not prove, the following result which further characterizes the
Mandelbrot set.

Theorem 18.5. If Pnc (0) → ∞, then the Julia set of Pc is totally disconnected. Otherwise,
Pnc (0) is bounded, and the Julia set is connected. Consequently, the Mandelbrot set consists of
precisely those c such that the Julia set of the conjugacy class of Pc is connected.

What is meant by totally disconnected?

Definition 18.6. A set S is totally disconnected in this context means that the connected
components are single points.

The geometry of the Mandelbrot set and its various bits and pieces is therefore closely tied
to the geometry of the Julia and Fatou sets of the conjugacy classes of quadratic polynomials.
It could be interesting to investigate other Mandelbrot inspired type sets. For instance, what
if we replace the conjugacy classes of quadratic polynomials with polynomials of a different
degree? What happens? What if we instead look at such a thing but for conjugacy classes of
rational functions of a certain degree, d? Do you have other ideas for interesting related topics
to investigate? Have fun with it!

18.2. Homework.

(1) Show that any quadratic polynomial can be conjugated to a monic polynomial, z2 +
αz + β.

(2) Show that any monic polynomial can be conjugated to move any given point to 0.
(3) Show that conjugating a fixed point to 0 you obtain λz + z2, where λ is the multiplier

of the fixed point.
(4) Show that to uniquely determine the conjugacy class of the polynomial, you can move

the critical point to 0, and then the polynomial is of the form Pc(z) = z2 + c. In this
way different c correspond to different conjugacy classes of quadratic polynomials.

(5) Show that the Hausdorff dimension of the Julia set of the polynomial Pc(z) is 2 if c is
on the boundary of the Mandelbrot set.

(6) * For small values of t, consider a family {ft} of maps of the form z 7→ e−2πitz + z2.
Show that there exists a sequence {tn} such that the Hausdorff dimension dn of the
Julia set of ftn satisfies

lim sup
n→∞

dn = 2.

18.3. Hints. This hint is for exercise # 6. This is actually a pretty recent result contained in
a research article from Heinemann & Stratmann published in 2001. If you get stuck on this
exercise, find their paper and work through the proof. Interestingly, the proof connects IFS
fractals to Julia sets of quadratic polynomials, thereby tying together the main topics of this
course. It seemed like a nice way to wrap things up.
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