
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.01.29

As a corollary to the theorem on the pointwise convergence of Fourier series we
have

Corollary 1. If f and g are 2π periodic and piecewise C1. Assume that at any
point at which f is discontinuous, it satisfies

f(x) =
f(x+) + f(x−)

2
,

and the same is true for g. Then if f and g have the same Fourier coefficients,
then f = g.

Proof: By assumption, f and g have the same Fourier series. Let us write the
partial series

SN (x) =

N∑
−N

cne
inx.

By the theorem on the pointwise convergence of Fourier series,

eq1day5eq1day5 (1.1) lim
N→∞

SN (x) =
f(x+) + f(x−)

2
=
g(x+) + g(x−)

2
, ∀x ∈ R.

Now, at a point where f is continuous,

f(x+) + f(x−)

2
= f(x).

Similarly, at a point where g is continuous

g(x+) + g(x−)

2
= g(x).

So, by the assumptions on f and g, we have for all x ∈ R

f(x) =
f(x+) + f(x−)

2
, g(x) =

g(x+) + g(x−)

2
.

Thus, by (
eq1day5eq1day5
1.1),

f(x) = g(x) ∀x ∈ R.

1
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1.1. Fourier series to compute sums. On an exam one may see the following:
Beräkna:

∞∑
n=0

1

1 + n2
.

Tips: Utveckla ex som en Fourier-serie p̊a intervallet (−π, π)).
The best advice is to follow the hint. Moreover, if this Fourier series is contained

in Beta, then begin by writing down the series contained in Beta. In case the series
is not contained in Beta, we compute it:∫ π

−π
exe−inxdx =

ex(1−in)

1− in

∣∣∣∣x=π
x=−π

=
eπe−inπ

1− in
− e−πeinπ

1− in
= (−1)n

2 sinh(π)

1− in
.

Hence, the Fourier coefficients are

1

2π
(−1)n

2 sinh(π)

1− in
,

and the Fourier series for ex on this interval is

ex =

∞∑
−∞

(−1)n sinh(π)

π(1− in)
einx, x ∈ (−π, π).

We can pull out some constant stuff,

ex =
sinh(π)

π

∞∑
−∞

(−1)neinx

1− in
, x ∈ (−π, π).

Now, we use the theorem which tells us that the series converges to the average of
the left and right hand limits at points of discontinuity, like for example π. The left
limit is eπ. Extending the function to be 2π periodic, means that the right limit
approaching π is equal to e−π. Hence

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

(−1)neinπ

1− in
.

Now, we know that einπ = (−1)n, thus

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

1

1− in
.

We now consider the sum, and we pair together ±n for n ∈ N, writing
∞∑
−∞

1

1− in
= 1 +

∑
n∈N

1

1− in
+

1

1 + in
= 1 +

∑
n∈N

2

1 + n2
.

Hence we have found that

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

(−1)neinπ

1− in
=

sinh(π)

π

(
1 +

∑
n∈N

2

1 + n2

)
.

The rest is mere algebra. On the left we have the definition of cosh(π). So, moving
over the sinh(π) we have

π cosh(π)

sinh(π)
= 1 + 2

∑
n∈N

1

1 + n2
=⇒

(
π cosh(π)

sinh(π)
− 1

)
1

2
=
∑
n∈N

1

1 + n2
.

Wow.
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1.1.1. Caution. To what does the Fourier series converge when x is not in the
interval (−π, π)? When we build a Fourier series for a function defined on the
interval (−π, π), it is of the form: ∑

n∈Z
cne

inx.

Each of the terms einx is a 2π periodic function. Hence the Fourier series is also a
2π periodic function. So, for x = 2π, the series does not converge to e2π. Rather,
it converges to e0 because, writing

S(x) =
∑
n∈Z

cne
inx, S(x+ 2kπ) = S(x) ∀k ∈ Z.

For x ∈ (−π, π), by the Theorem we proved, we have that S(x) = ex. However, for
x outside this interval, the series converges to the function which is equal to ex on
(−π, π) and is extended to be 2π periodic. Hence the series converges to the value
at 0 since 2π = 0 + 2π, and the series is 2π periodic. This is a really important
subtlety.

Example: Use a Fourier series to compute∑
n≥1

(−1)n

n2 + b2
.

Hint: Compute the Fourier series of the function which is equal to ebx for |x| < π
and extended to be 2π periodic.

To do this, in case the series is not contained in Beta, we compute the coefficients
directly:

cn =
1

2π

∫ π

−π
ebxe−inxdx =

1

2π(b− in)
e(b−in)π − 1

2π(b− in)
e(b−in)(−π).

To simplify things, let us note that

e±inπ = (−1)n.

Thus

cn =
1

2π(b− in)
(−1)nebπ− 1

2π(b− in)
(−1)ne−bπ =

(−1)n

2π(b− in)

(
ebπ − e−bπ

)
=

(−1)n

π(b− in)
sinh(bπ).

The Fourier series is therefore

1

π
sinh(bπ)

∑
n∈Z

(−1)n

b− in
einx.

Given the presence of the (−1)n, which we also want, it makes sense to try com-
puting with x = 0. The series is at this point

1

π
sinh(bπ)

∑
n∈Z

(−1)n

b− in
.

Let us re-arrange things a wee bit:

1

π
sinh(bπ)

∑
n∈Z

(−1)n

b− in
=

sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n

b− in
+

1

π
sinh(bπ)

∑
n≤1

(−1)n

b− in
.
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Let us re-write

1

π
sinh(bπ)

∑
n≤1

(−1)n

b− in
=

1

π
sinh(bπ)

∑
n≥1

(−1)n

b+ in
,

with the observation that
(−1)n = (−1)−n.

Consequently the series is:

sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(
(−1)n

b− in
+

(−1)n

b+ in

)

=
sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n
b+ in+ b− in
(b− in)(b+ in)

=
sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n
2b

b2 + n2
.

On the other hand, we use the theorem PWF
∑

to say that at the point x = 0 the
Fourier series of this function converges to

f(0+) + f(0−)

2
.

At the point 0, note that our function is defined to be ebx for |x| < π and certainly
|0| < π, so in particular, the function is continuous and thus the left and right limits
are both equal and equal to f(0) which is 1. Thus the series converges to 1, and so

1 =
sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n
2b

b2 + n2
.

Re-arranging, we get

1− sinh(bπ)

πb
=

2b sinh(bπ)

π

∑
n≥1

(−1)n

b2 + n2
=⇒ π

2b sinh(bπ)
− 1

2b2
=
∑
n≥1

(−1)n

b2 + n2
.

1.2. Differentiating and Integrating Fourier series. First, let us demonstrate
a fact about the Fourier series of a function and its derivative. Note that this is a
theory item, so you may be asked to prove this on the exam.

Theorem 2. Assume that f is 2π periodic, continuous, and piecewise C1. Let an,
bn, and cn be the Fourier coefficients as we have defined them previously, and let
a′n, b′n, c′n be the Fourier coefficients of f ′ according to the same definition. Then
we have

a′n = nbn, b′n = −nan, c′n = incn.

Proof: DO NOT DIFFERENTIATE THE FOURIER SERIES TERMWISE.
To do this, you would need to prove that the series can be differentiated termwise,
which at this point we do not have the techniques to demonstrate. So, it will be an
incomplete and incorrect proof. Not a good thing.

Instead, use the definition of Fourier coefficients and integration by parts:

c′n =
1

2π

∫ π

−π
f ′(x)e−inxdx =

1

2π
f(x)e−inx

∣∣x=π
x=−π −

1

2π

∫ π

−π
f(x)(−ine−inx)dx

=
in

2π

∫ π

−π
f(x)e−inxdx = incn.
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Above, we have used the fact that f is 2π periodic, and e−inx is also 2π periodic so

1

2π
f(x)e−inx

∣∣x=π
x=−π = 0.

In the last step we use the definition of cn. Recall that

an = cn + c−n, an =
1

π

∫ π

−π
f(x) cos(nx)dx, ∀n ∈ N≥1,

and

bn = i(cn − c−n), bn =
1

π

∫ π

−π
f(x) sin(nx)dx, ∀n ∈ N≥1,

with

a0 = c0 =
1

2π

∫ π

−π
f(x)dx,

and the same relationship holds true for a′n, b′n, c′n. We therefore compute

a′n = c′n + c′−n = incn − inc−n = in(cn − c−n) = nbn,

b′n = i(c′n − c′−n) = i(incn + inc−n) = −n(cn + c−n) = −nan.

Now, using the theorem we have just proven, we obtain

Corollary 3. Assume that f is 2π periodic, continuous, piecewise C1, and assume
that f ′ is also piecewise C1. Then, if

∞∑
−∞

cne
inx

is the Fourier series for f , we have that∑
n∈Z

incne
inx

is the Fourier series for f ′.

Before demonstrating the results concerning integration of Fourier series, it shall
be useful to introduce a certain Hilbert space known as “little ell two.”

Definition 4. Let

`2(C) := {(zn)n∈Z, zn ∈ C∀n, and
∑
n∈Z
|zn|2 <∞}.

This is a Hilbert space with the scalar product

〈z, w〉 :=
∑
n∈Z

znwn, z = (zn)n∈Z , w = (wn)n∈Z.

The norm on the Hilbert space, `2 = `2(C) is defined by

||z|| =
√∑
n∈Z
|zn|2.

We also have a Cauchy-Schwarz inequality:

|〈z, w〉| ≤ ||z||||w||.
We will use this together with the relationship between the Fourier coefficients for
a piecewise C1 and continuous function, f , to prove
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Theorem 5. Assume that f is 2π periodic, continuous, and piecewise C1. Then
the Fourier series of f converges absolutely uniformly to f on all of R.

Proof: By assumption, f ′ is piecewise continuous. Bessel’s inequality tells us
that ∑

Z
|c′n|2 <∞.

We use the preceding theorem to say that for all n 6= 0,

|cn| =
∣∣∣∣c′n 1

n

∣∣∣∣ .
Hence we can estimate∑

n∈Z
|cneinx| =

∑
n∈Z
|cn| = |c0|+

∑
n∈Z\0

|c′n|
|n|

.

By Bessel’s inequality ∑
n∈Z
|c′n|2 <∞,

and we know very well that ∑
n∈Z\0

|n|−2 <∞.

So, using the Cauchy-Schwarz inequality on `2, we have∑
n∈Z
|cn| = |c0|+

∑
n∈Z\0

|c′n|
|n|
≤ |c0|+

√ ∑
n∈Z\0

|c′n|2
√ ∑
n∈Z\0

|n|−2 <∞.

Therefore the Fourier series converges absolutely, and uniformly for all x ∈ R,
because we see that the convergence estimates are independent of the point x.
Since the function is continuous, the limit of the series is, by the Theorem on the
pointwise convergence of Fourier series

f(x+) + f(x−)

2
= f(x).

We can repeat this idea to show that the more differentiable a function is, the
faster its Fourier series converges.

Theorem 6. Let f be 2π periodic, and assume that f is Ck−1, and f (k−1) is
piecewise C1, and f is piecewise Ck. Then the Fourier coefficients of f satisfy∑

|nkan|2 <∞,
∑
|nkbn|2 <∞,

∑
|nkcn|2 <∞.

If |cn| ≤ c|n|−k−α for some c > 0 and α > 1, for all n 6= 0, then f ∈ Ck.

Proof: We apply the theorem relating the Fourier coefficients of f to those of
the derivatives of f . Do it k times. We get

c(k)n = (in)kcn.

Next, we apply Bessel’s inequality to conclude that since f is piecewise Ck, f (k) is
bounded on the interval hence it is in L2 on the interval, and so∑

|c(k)n |2 <∞.
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Since

|c(k)n | = |n|k|cn|
this shows that ∑

|nkcn|2 <∞.

We have similar estimates for an and bn using the same theorem, specifically

|a(k)n | = |nkan|, |b(k)n | = |nkbn|.

Hence, ∑
|nkan| <∞,

∑
|nkbn| <∞.

Now we demonstrate the result which says that if the Fourier coefficients are
sufficiently rapidly decaying, then the function f is actually in Ck. Let

g(x) := f (k−1)(x).

Then g is continuous and by assumption it is piecewise C1. Therefore, by the
theorem on the pointwise convergence of Fourier series, the Fourier series of g
converges to g(x) for all x in R. Next, we use the assumption and the fact that the
Fourier coefficients of g are

c(k−1)n = (in)k−1cn.

Therefore∑
n∈Z
|c(k−1)n einx| =

∣∣∣c(k−1)0

∣∣∣+
∑
n 6=0

|nk−1||cn| ≤
∣∣∣c(k−1)0

∣∣∣+ c
∑
n 6=0

|n|k−1−k−α <∞.

Hence, the series converges absolutely and uniformly in R. Moreover, differentiating
the series termwise is legitimate, because the result∑

n∈Z
inc(k−1)n einx

also converges absolutely and uniformly in R:∑
n∈Z
|inc(k−1)n | ≤

∑
n 6=0

|n||c(k−1)n | ≤ c
∑
n 6=0

|n||n|k−1−k−α <∞

because α > 1. Since the series is equal to g(x) = f (k−1)(x) for all x ∈ R, and the
series is a differentiable function for all x ∈ R, this shows that g is differentiable for
all x ∈ R. Moreover, g′ is continuous on R, because the series defines a continuous
function.1 This is the case because the series defining g′ converges absolutely and
uniformly for all of R. Hence, f (k−1) is in C1 on all of R, and therefore f is in Ck
on all of R.

We will prove a theorem about integrating Fourier series. To get warmed up,
here is an exercise.

1This is true because the series should really be viewed as the limit of the partial series,
and each partial series defines a smooth, thus also continuous, function. The uniform limit of

continuous functions is itself a continuous function.
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Exercise 1. Show that if you compute the indefinite integrate∫
einxdx, n ∈ Z \ {0},

the result is also a 2π periodic function. What happens in the case n = 0?

Theorem 7. Let f be a 2π periodic function which is piecewise continuous. Define

F (x) :=

∫ x

0

f(t)dt.

If c0 = 0, then

F (x) = C0 +
∑
n 6=0

cn
in
einx, C0 =

1

2π

∫ π

−π
F (x)dx.

Similarly,

F (x) =
1

2
A0 +

∑
n≥1

an
n

sin(nx)− bn
n

cos(nx).

Proof: We first note that F is continuous and piecewise C1, because it is the
integral of a piecewise continuous function. Moreover, assuming c0 = 0, we see that

F (x+2π)−F (x) =

∫ x+2π

0

f(t)dt−
∫ x

0

f(t)dt =

∫ x+2π

x

f(t)dt =

∫ π

−π
f(t)dt = 2πc0 = 0.

Above we have used the nifty lemma that allows us to slide around integrals of
periodic functions. So, F satisfies the assumptions of the theorem on pointwise con-
vergence of Fourier series. We therefore have pointwise convergence of the Fourier
series of F . Moreover, applying the theorem relating the Fourier coefficients of
F ′ = f to those of F , we have

Cn =
cn
in

n 6= 0.

(That’s because cn = C ′n and the theorem says C ′n = inCn which shows cn = inCn,
which we can re-arrange as above). Of course, the formula for C0 is just the usual
formula for it, because we can’t say anything more specific without knowing more
information on f . The re-statement in terms of a and b follows from the relationship
between these and the cn.

Remark 1. If c0 6= 0, then define a new function

g(t) := f(t)− c0.
Since f is 2π periodic, so is g. Then, apply the theorem above to g. Note that

G(x) =

∫ x

0

g(t)dt = F (x)− c0x.

Moreover, the Fourier coefficients of g,

1

2π

∫ π

−π
(f(x)− c0)e−inxdx = cn =

1

2π

∫ π

−π
f(x)e−inxdx, ∀n 6= 0.

So, the series for G(x) from the theorem is

C̃0 +
∑
n 6=0

cn
in
einx,
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with

C̃0 =
1

2π

∫ π

−π
(F (x)− c0x) dx = C0.

So, in fact, it is the same C0, where we have used the oddness of the function x
above. Then, we get something of a corollary which says that in general, the series
in the theorem,

C0 +
∑
n 6=0

cn
in
einx, C0 =

1

2π

∫ π

−π
F (x)dx

converges to F (x)− c0x.

1.3. Fourier sine and cosine series. Let’s say we are just looking at [0, π]. There
are two ways to extend a function defined over there to all of [−π, π]. One way is
oddly, and the other way is evenly. If we want to extend oddly, we define

f(x) := −f(−x), x ∈ (−π, 0).

Then, we have computed in an exercise that the an coefficients are all zero, and the
bn coefficients are

bn =
1

π

∫ π

−π
f(x) sin(nx)dx =

2

π

∫ π

0

f(x) sin(nx)dx.

Here we used the fact that sine is also an oddball. On the other hand, if we want
to extend evenly, we define

f(x) := f(−x), x ∈ (−π, 0).

Then, we have computed in an exercise that the bn are all zero, because our function
is even. Here we have the coefficients

an =
1

π

∫ π

−π
f(x) cos(nx)dx =

2

π

∫ π

0

f(x) cos(nx)dx, n ≥ 0.

Above we used the fact that cosine is even. In this way, we may define Fourier sine
and cosine series for functions on [0, π]. The Fourier sine series is defined to be∑

n≥1

bn sin(nx), bn =
2

π

∫ π

0

f(x) sin(nx)dx

whereas the Fourier cosine series is

a0
2

+
∑
n≥1

an cos(nx), an =
2

π

∫ π

0

f(x) cos(nx)dx, ∀n ∈ N.

Theorem 8. Let f be a function which is piecewise C1 on [0, π]. Then the Fourier
sine and cosine series converge to f(x) for all x ∈ (0, π) at which f is continuous.
For other points, they converge to

1

2
(f(x−) + f(x+)) .

Proof: First, we extend the function either evenly or oddly. Next, we extend it
to all of R to be 2π periodic. Like Riker, we just make it so. We’re only proving
a statement about points in (0, π). So, what happens outside of this set of points,
well it don’t matter. We apply the theorem on pointwise convergence of Fourier
series now.
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1.4. How to compute sums using the Integration Theorem for Fourier
Series. Example: Use a Fourier series to compute:∑

n≥1

1

n4
.

Hint: Expand x2 in a Fourier series. This is an even function, hence no sines
in its Fourier series. The other terms

an =
1

π

∫ π

−π
x2 cos(nx)dx =

2

π

∫ π

0

x2 cos(nx)dx.

We do this integral:∫ π

0

x2 cos(nx)dx =

∫
x2
(

sin(nx)

n

)′
dx = x2

sin(nx)

n

∣∣∣∣π
0

−
∫ π

0

2x
sin(nx)

n
dx.

Above we did integration by parts. The first part vanishes. The second term we
handle with integration by parts again,∫ π

0

x sin(nx)dx =

∫ π

0

x (− cos(nx)/n)
′
dx = −x cos(nx)

n

∣∣∣∣π
0

+

∫ π

0

cos(nx)/ndx.

Now this time the second term vanishes because integrating gives us a sine which
is 0 at 0 and at π. So, recalling the constant factors, we get∫ π

0

x2 cos(nx)dx =
2π cos(πn)

n2
=

2π(−1)n

n2
.

Hence our coefficients,

an =
2 ∗ 2(−1)n

n2
.

Moreover, we also compute the term

a0 =
1

π

∫ π

−π
x2dx =

2π3

3π
=

2π2

3
.

Hence, the Fourier series expansion of x2 is

π2

3
+ 4

∑
n≥1

(−1)n cos(nx)

n2
.

Let x = π. Since our periodically extended function, x2 is continuous on all of R,
the Fourier series converges to its value at x = π which means

π2 =
π2

3
+ 4

∑
n≥1

(−1)n(−1)n

n2
=⇒ π2

6
=
∑
n≥1

1

n2
.

To get up to summing n−4 we use Theorem 2.4 about integrating Fourier series.
We see that

c0 =
π2

3
.

We also see that for f(t) = t2,

F (x) :=

∫ x

0

f(t)dt =
x3

3
.
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The series from the theorem is

C0 + 4
∑
n≥1

(−1)n sin(nx)

n3
.

The term

C0 =
1

2π

∫ π

−π
F (x)dx = 0,

because F (x) above is odd. Hence, the theorem together with the remark after it
says that

4
∑
n≥1

(−1)n sin(nx)

n3
=
x3

3
− π2x

3
, x ∈ [−π, π].

Exercise: Compute
∑
n−3.

To proceed, we’re going to need to use the theorem once more to get n4 in the
denominator. Before we do this, let’s multiply everything by 3 to make it nicer.
Then

x3 − π2x = 12
∑
n≥1

(−1)n sin(nx)

n3
, x ∈ [−π, π].

So, here we have

f(t) = t3 − π2t =⇒ F (x) =

∫ x

0

f(t)dt =
x4

4
− π2x2

2
.

We see also that

c0 =
1

2π

∫ π

−π
f(t)dt = 0.

Hence, we apply the theorem directly to F . The theorem says

F (x) = C0 + 12
∑
n≥1

− (−1)n cos(nx)

n4
.

We compute

C0 =
1

2π

∫ π

−π
F (x)dx =

1

π

∫ π

0

x4

4
− π2x2

2
dx =

π4

20
− π4

6
.

Therefore

F (x) =
x4

4
− π2x2

2
=
π4

20
− π4

6
− 12

∑
n≥1

(−1)n cos(nx)

n4
, x ∈ [−π, π].

We do the same trick now of choosing

x = π =⇒ cos(nx) = cos(nπ) = (−1)n, (−1)n(−1)n = 1∀n.

Hence,

F (π) =
π4

4
− π4

2
=
π4

20
− π4

6
− 12

∑
n≥1

1

n4
.

Re-arranging things ∑
n≥1

1

n4
=

1

12

(
π4

20
− π4

6
+
π4

2
− π4

4

)
.
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Just for fun, we determine what this is...

π4

20
− π4

6
+
π4

2
− π4

4
=
π4

2

(
1

10
− 1

3
+

1

2

)
=
π4

2

(
3− 10 + 15

30

)
=
π4

2

(
8

30

)
=

2π4

15
.

So, recalling the factor of 1
12 , we see that∑

n≥1

1

n4
=

2π4

(12)(15)
=

π4

6(15)
=
π4

90
.

Wow, who would have guessed that? Not I said the fly!

1.4.1. Exercises to be done by oneself: Hints.

(1) Compute the Fourier series of the function defined on (−π, π)

f(x) := x(π − |x|).
Hint: Use Beta.

(2) Compute the Fourier series of the function defined on (−π, π)

f(x) = ebx.

Hint: Use Beta.
(3) Use the Fourier series for the function f(x) = | sin(x)| to compute the sum

∞∑
n=1

1

4n2 − 1
=

1

2
,

∞∑
n=1

(−1)n+1

4n2 − 1
=
π − 2

4
.

Hint: use Beta to show that the Fourier series of the function defined to be
| sin(x)| for |x| < π and extended to be 2π periodic is:

2

π
− 4

π

∞∑
n=1

cos(2nx)

4n2 − 1
.

Use the theorem on the pointwise convergence of Fourier series to compute
the value for x = 0. Then use algebra to obtain the value for∑

n≥1

1

4n2 − 1
.

Next, take x = π
2 , and proceed similarly to compute the sum∑

n≥1

(−1)n+1

4n2 − 1
.

(4) Use the Fourier series for the function f(x) = x(π − |x|) to compute the
sum

∞∑
n=1

(−1)n+1

(2n− 1)3
=
π3

32
.

Hint: use Beta to show that the Fourier series of the function x(π − |x|)
defined on |x| < π and extended to be 2π periodic is:

8

π

∑
n≥1

sin(2n− 1)x

(2n− 1)3
.
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To compute the sum, set x = π
2 and use the theorem on the pointwise

convergence of Fourier series.
(5) Let f(x) be the periodic function such that f(x) = ex for x ∈ (−π, π), and

extended to be 2π periodic on the rest of R. Let∑
n∈Z

cne
inx

be its Fourier series. Therefore, by Theorem 2.1

ex =
∑
n∈Z

cne
inx, ∀x ∈ (−π, π).

If we differentiate this series term-wise then we get
∑
incne

inx. On the
other hand, we know that (ex)′ = ex. So, then we should have∑

incne
inx =

∑
cne

inx =⇒ cn = incn ∀n.

This is clearly wrong. Where is the mistake?
Hint: What are the hypotheses of the theorem on differentiation of

Fourier series (Theorem 2 in today’s notes)? Are they all satisfied in this
case?
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