
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.01.31

1.1. Example of the vibrating string. Assume that at t = 0, the ends of the
string are fixed, and we have pulled up the middle of it. This makes a shape which
mathematically is described by the function

v(x) =

{
x, 0 ≤ x ≤ π
2π − x, π ≤ x ≤ 2π

Assume that at t = 0 the string is not yet vibrating, so the initial conditions are
then {

u(x, 0) = v(x)

ut(x, 0) = 0

We assume the ends of the string are fixed, so we have the boundary conditions

u(0) = u(2π) = 0.

The string is identified with the interval [0, 2π]. Determine the function u(x, t)
which gives the height at the point x on the string at the time t ≥ 0 which satisfies
all these conditions.

1.1.1. First Step: Separate Variables. We use our first technique, separation of
variables. The wave equation demands that

�u = 0, �u = ∂ttu− ∂xxu.
Write

u(x, t) = X(x)T (t).

Hit it with the wave equation:

X(x)T ′′(t)−X ′′(x)T (t) = 0.

We again separate the variables by dividing the whole equation by X(x)T (t). Then
we have

T ′′(t)

T (t)
− X ′′(x)

X(x)
= 0 =⇒ T ′′

T
=
X ′′

X
= constant.

The two sides depend on different variables, which makes them both have to be con-
stant. We give that a name, λ. Then, since we have those handy dandy boundary
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conditions for X (but a much more complicated initial condition for u(x, 0) = v(x))
we start with X. We solve

X ′′ = λX, X(0) = X(2π) = 0.

Exercise 1. Show that the cases λ ≥ 0 won’t satisfy the boundary condition.

We are left with λ < 0 which by our multivariable calculus theorem tells us that

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

To get X(0) = 0, we must have a = 0. To get X(2π) = 0 we will need√
|λ|2π = kπ k ∈ Z.

Hence √
|λ| = k

2
, k ∈ Z.

Since sin(−x) = − sin(x) are linearly dependent, we only need to take k ∈ N
(without 0, you know, American N). So, we have X which we index by n, writing

Xn(x) = sin(nx/2) n ∈ N.

For now, we don’t worry about the constant factor. Next, we have the equation for
the partner-function (can’t forget the partner function!)

T ′′n
Tn

= λn.

Since we know that λn < 0 and
√
|λn| = n/2 we have

λn = −n
2

4
.

Hence, our handy dandy multivariable calculus theorem tells us that the solution

Tn(t) = an cos(nt/2) + bn sin(nt/2).

Now, we have

un(x, t) = Xn(x)Tn(t), �un = 0 ∀n ∈ N.

1.1.2. Supersolution obtained by superposition principle. Since the PDE is linear
and homogeneous, we also have

�
∑
n≥1

un(x, t) =
∑
n≥1

�un(x, t) = 0.

We don’t know which of these un we need to build our solution according to the
initial conditions, so we just take all of them for now.

1.1.3. Fourier series to find the coefficients using the initial conditions. We need

u(x, t) :=
∑
n≥1

un(x, t)

to satisfy the initial conditions. The first is that

u(x, 0) =
∑
n≥1

Xn(x)an = v(x).
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We are working on the interval [0, 2π]. The coefficients are obtained by using Xn

as a basis for L2 on this interval. The coefficients are therefore

an1an1 (1.1) an =
1

||Xn||2
〈v,Xn〉 =

∫ 2π

0
v(x)Xn(x)dx∫ 2π

0
|Xn(x)|2dx

.

If one wishes to do these integrals, one is welcome to do so. That will not be
necessary on the exam, however.

To obtain the bn coefficients, we use the other initial condition which says that

ut(x, 0) =
∑
n≥1

Xn(x)T ′n(0) =
∑
n≥1

Xn(x)
(
−an

n

2
sin(0) + bn

n

2
cos(0)

)
=
∑
n≥1

Xn(x)
n

2
bn = 0.

These coefficients are calculated in the same way:

n

2
bn =

〈0, Xn〉
||Xn||2

= 0∀n.

Hence, our solution is ∑
n≥1

an sin(nx/2) cos(nt/2),

with an given in equation (
an1an1
1.1).

1.2. Summary of methods for solving PDEs on bounded intervals. Thus
far we have collected the following techniques to solve PDEs like the heat and wave
equation on bounded intervals:

(1) Separation of variables (a means to an end),
(2) Superposition position (smash solutions together to make a supersolution),
(3) Fourier series to find the coefficients obtained using the initial data (L2

scalar product and divide by the norm).

These methods work well on bounded intervals.

1.3. Another wave equation example. Solve:

utt = uxx, t > 0, x ∈ (−1, 1),
u(0, x) = 1− |x|
ut(0, x) = 0

ux(t,−1) = 0

ux(t, 1) = 0

We use separation of variables, writing u(x, t) = X(x)T (t). It is just a means to an
end. We write the PDE:

T ′′X = X ′′T.

Divide everything by XT to get

T ′′

T
=
X ′′

X
.

Since the two sides depend on different variables, they are both constant. Start
with the X side because we have more simple information about it. The boundary
conditions that

ux(t,−1) = ux(t, 1) = 0 =⇒ X ′(−1) = X ′(1) = 0.
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So, we have the equation

X ′′

X
= constant, call it λ.

Thus we are solving

X ′′ = λX, X ′(−1) = X ′(1) = 0.

Case 1: λ = 0: In this case, we have solved this equation before. One way to think
about it is like the second derivative is like acceleration. If X ′′ = 0, it’s like saying
X has constant acceleration. Therefore X can only be a linear function. Now, we
have the boundary condition which says that X ′(−1) = X ′(1) = 0. So the slope of
the linear function must be zero, hence X must be a constant function in this case.
So, the only solutions in this case are the constant functions.

Case 2: λ > 0: In this case, a general solution is of the form:

X(x) = Ae
√
λx +Be−

√
λx.

Let us assume that A and B are not both zero. The left boundary condition requires

A
√
λe−

√
λ −
√
λBe

√
λ = 0.

Since λ > 0 we can divide by
√
λ to say that we must have

Ae−
√
λ = Be

√
λ =⇒ A

B
= e2

√
λ.

The right boundary condition requires

A
√
λe
√
λ −
√
λBe−

√
λ = 0.

Since λ > 0, we can divide by
√
λ, to make this:

Ae
√
λ = Be−

√
λ =⇒ e2

√
λ =

B

A
.

Hence combining with the other boundary condition we get:

A

B
= e2

√
λ =

B

A
=⇒ A2 = B2 =⇒ A = ±B =⇒ A

B
= ±1.

Neither of these are possible because

e2
√
λ > 1 since 2

√
λ > 0.

So, we run amok under the assumption that A and B are not both zero. Hence,
the only solution in this case requires A = B = 0. This is the waveless wave.

Case 3: λ < 0: In this case a general solution is of the form:

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

To satisfy the left boundary condition we need

−a
√
|λ| sin(−

√
|λ|) + b

√
|λ| cos(−

√
|λ|) = 0 ⇐⇒ a sin(

√
|λ|) = −b cos(

√
|λ|).

To satisfy the right boundary condition we need

−a
√
|λ| sin(

√
|λ|) + b

√
|λ| cos(

√
|λ|) = 0 ⇐⇒ a sin(

√
|λ|) = b cos(

√
|λ|).

Hence we need

eq:bceq:bc (1.2) a sin(
√
|λ|) = −b cos(

√
|λ|) = b cos(

√
|λ|).

We do not want both a and b to vanish. So, we need to have either
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(1) the sine vanishes, so we need sin(
√
|λ|) = 0 which then implies that√

|λ| = nπ, n ∈ Z

(2) or the cosine vanishes so we need cos(
√
|λ|) = 0 which then implies that√

|λ| =
(
n+

1

2

)
π, n ∈ N.

Note that these two cases are mutually exclusive. In case (1), by (
eq:bceq:bc
1.2) this means

that b = 0. In case (2), by (
eq:bceq:bc
1.2) this means that a = 0. So, we have two types of

solutions, which up to constant factor look like:

Xm(x) =

{
cos(mπx/2) m is even

sin(mπx/2) m is odd

In both cases,

λm = −m
2π2

4
.

We can now solve for the partner function, Tm(t). The equation is

T ′′m
Tm

=
X ′′m
Xm

= λm = −m
2π2

4
.

Therefore, we are in case 3 for the Tm function as well, so we know that

Tm(t) = am cos

(
mπt

2

)
+ bm sin

(
mπt

2

)
.

Then we have for

um(x, t) = Xm(x)Tm(t), �um = 0 ∀m.
(Recall that � = ∂tt − ∂xx, that is the wave operator). Hence, our functions solve
a homogeneous PDE, so we can use the superposition principle to smash them all
together to make a super solution:

u(x, t) =
∑
m∈N

um(x, t) =
∑
n∈N

Xm(x)

(
am cos

(
mπt

2

)
+ bm sin

(
mπt

2

))
.

How do we determine the coefficients? Using the initial data and a Fourier series
for it!!!

The initial data is {
u(0, x) = 1− |x|
ut(0, x) = 0

Let us plug t = 0 into our solution:

u(x, 0) =
∑
m∈N

Xm(x)am.

We demand that this is the initial data, so we need

1− |x| =
∑
m∈N

Xm(x)am.

It is a Fourier series on the right side!! We therefore just need to expand the function
1− |x| in a Fourier series. If we think about the basis functions {Xm(x)}m≥0 then

am =
〈1− |x|, Xm(x)〉
||Xm||2

,
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where

〈1− |x|, Xm(x)〉 =

∫ 1

−1
(1− |x|)Xm(x)dx,

||Xm||2 =

∫ 1

−1
|Xm(x)|2dx.

On an exam, you are not actually required to compute these integrals!
Now, for the other coefficients (the bn), we use the condition on the derivative:

ut(x, 0) =
∑
m∈N

mn
mπ

2
Xm(x) = 0.

We know how to Fourier expand the zero function: its coefficients are all just zero.
Hence, it suffices to take

bm = 0∀m.

1.4. Fourier series on an arbitrary interval. When we use our tools to solve
a PDE on a finite interval, as above, the initial data is not a periodic function.
Moreover, it was not defined on the interval (−π, π). The technique still works!
It is actually quite beautiful. When we determined the coefficients, we solved for
the Fourier coefficients on the interval (−1, 1). Here we explain how to do that in
general.

For a function f defined on an interval [a − `, a + `] for some a ∈ R, and some
` > 0, we begin by extending f to be 2` periodic on R. Next, we define

g(t) := f

(
t`

π
+ a

)
= f(x),

that is
t`

π
+ a = x, t =

(x− a)π

`
.

Then, the function g(t) is 2π periodic, because

g(t+ 2π) = f

(
(t+ 2π)`

π
+ a

)
= f

(
t`

π
+ a+ 2`

)
= f

(
t`

π
+ a

)
.

Above, we used the fact that f is 2` periodic. If g is in L2, then we can expand it
into a Fourier series: ∑

n∈Z
cne

int,

with coefficients

cn =
1

2π

∫ π

−π
g(t)e−intdt =

1

2π

∫ π

−π
f

(
t`

π
+ a

)
e−intdt.

Substituting in the integral,

x =
t`

π
+ a, dx =

`dt

π
the coefficients become:

cn =
1

2π

π

`

∫ a+`

a−`
f(x)e−in(x−a)π/`dx =

1

2`

∫ a+`

a−`
f(x)e−in(x−a)π/`dx.

Then, we get by substituting for t in terms of x the Fourier series for f ,∑
n∈Z

cne
in( (x−a)π

` ).
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The same relationship holds for the Fourier cosine and sine coefficients:

a0 = 2c0, an = cn + c−n, bn = i(cn − c−n), n ≥ 1,

or equivalently

an =
1

`

∫ a+`

a−`
f(x) cos(n(x− a)π/`)dx, bn =

1

`

∫ a+`

a−`
f(x) sin(n(x− a)π/`)dx,

and the Fourier series has the form
a0
2

+
∑
n≥1

an cos(n(x− a)π/`) + bn sin(n(x− a)π/`).

To what does the Fourier series converge?

Theorem 1. Assume that f is defined on an interval [a− `, a+ `] for some a ∈ R,
and some ` > 0, such that f is piecewise C1 on this interval. Then the Fourier
series for f , defined by∑

n∈Z
cne

in( (x−a)π
` ), cn =

1

2`

∫ a+`

a−`
f(x)e−in(x−a)π/`dx,

or equivalently the series

a0
2

+
∑
n≥1

an cos(n(x− a)π/`) + bn sin(n(x− a)π/`)

converges to f(x) for all x ∈ (a − `, a + `) at which f is continuous. At a point
x ∈ (a− `, a+ `) where f is not continuous, the series converges to

eq:avgeq:avg (1.3)
f(x+) + f(x−)

2
.

Exercise 2. Prove the theorem. As a hint: apply the Theorem PCF
∑

to the
function g above.

1.5. Two primary applications of Fourier series. We now have to main uses
for Fourier series.

(1) Solving PDEs on bounded intervals. This proceeds in three steps: (1)
separation of variables (a means to an end), (2) smashing all solutions
obtained in this way together to create a super solution (superposition),
and (3) using a Fourier series to express the initial data.

(2) Using Theorem 2.1 to compute nifty sums like:∑
n≥1

1

n2
.

To compute such a sum, you will first compute the Fourier series of a certain
function f which is defined on (−π, π) and extended 2π periodically:∑

n∈Z
cne

inx.

Next, substituting a specific value of x you want to recover the desired sum,
like

∑
n−2. You use the theorem to conclude that the series converges to

the average of the left and right limit of the function at x. Then re-arrange
to obtain your desired sum.



8 JULIE ROWLETT

The simplest way to compute the sum∑
n≥1

1

n4

requires deep theorems about Hilbert spaces, which is our next topic. These theo-
rems will tell us that ∑

n∈Z
|cn|2 =

1

2π

∫ π

−π
|f(x)|2dx,

for

f(x) := x2 for |x| ≤ π, and extended to be 2π periodic on R,

with

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

If we have looked up the Fourier series (or we compute it), we find:

π2

3
+
∑
n≥1

4(−1)n cos(nx)

n2
.

This is not given in terms of cn but we can nonetheless obtain the cn since:

an = cn + c−n =
4(−1)n

n2
, bn = i(cn − c−n) = 0∀n ≥ 1 =⇒ cn = c−n

and thus

an = 2cn =⇒ cn =
2(−1)n

n2
= c−n ∀n ≥ 1.

The magical Hilbert space theory therefore tells us that∑
n∈Z
|cn|2 =

1

2π

∫ π

−π
|x2|2dx =

1

2π

2π5

5
=
π4

5
.

On the left side,∑
n∈Z
|cn|2 = |c0|2 + 2

∑
n≥1

|cn|2 =
π4

9
+ 2

∑
n≥1

∣∣∣∣2(−1)n

2n2

∣∣∣∣2 =
π4

9
+ 2

∑
n≥1

4

4n4

=
π4

9
+ 8

∑
n≥1

1

n4
.

Consequently,

π4

5
=
π4

9
+ 8

∑
n≥1

1

n4
=⇒ π4

5
− π4

9
= 8

∑
n≥1

1

n4
=⇒ 9π4 − 5π4

8 ∗ 45
=
∑
n≥1

1

n4
=
π4

90
.

Our main motivation for developing Hilbert space theory (in case we are not simply
motivated by the love of the theory itself) are that this theory will:

(1) provide new tools to be able to explicitly evaluate series using Fourier series
(as done above);

(2) determine if our solution found by the Fourier series method is indeed the
unique solution to our PDE on a bounded interval;

(3) provide new tools to be able to solve PDEs in other compact geometric
settings (like in a rectangle, disk, annulus, cylinder, box, sphere, and so
forth).
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1.5.1. Exercises to be done by oneself: Answers.

(1) Compute the Fourier series of the function defined on (−π, π)

f(x) := x(π − |x|).

Okay, it is ∑
n≥1

8 sin((2n− 1)x)

π(2n− 1)3
.

(2) Compute the Fourier series of the function defined on (−π, π)

f(x) = ebx.

Okay, it is ∑
n∈Z

sinh(bπ)(−1)n

π(b− in)
einx.

(3) Use the Fourier series for the function f(x) = | sin(x)| to compute the sum

∞∑
n=1

1

4n2 − 1
=

1

2
,

∞∑
n=1

(−1)n+1

4n2 − 1
=
π − 2

4
.

The Fourier series is

2

π
− 4

π

∑
n≥1

cos(2nx)

4n2 − 1
.

So, to obtain the first sum, one can use x = 0. The series will converge to
0, so you get that

2

π
− 4

π

∑
n≥1

1

4n2 − 1
= 0.

Then, re-arranging, one obtains the desired sum. To get the sum with the
(−1)n+1 upstairs, one should use x = π

2 , because then upstairs one has

cos(2nπ/2) = cos(nπ) = (−1)n.

The series will converge to | sin(π/2)| = 1. The same idea applies to re-
arrange and obtain the desired sup.

(4) Use the Fourier series for the function f(x) = x(π − |x|) to compute the
sum

∞∑
n=1

(−1)n+1

(2n− 1)3
=
π3

32
.

We have computed the Fourier series above. The question now is what
value of x to use? Well, upstairs we have

sin((2n− 1)x).

For x = π/2 this becomes

sin((2n− 1)π/2).

This will alternate between +1 like when n = 1 and −1 like when n = 2.
So, we can compute in this way that

sin((2n− 1)π/2) = (−1)n+1.
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Consequently, for x = π/2 the series is∑
n≥1

8(−1)n+1

π(2n− 1)3
.

It converges to the average of the left and right limits of f(x) at x = π/2.
These are the same and are both equal to

π2

4
.

Hence
π2

4
=
∑
n≥1

8(−1)n+1

π(2n− 1)3
.

Re-arrange to get the desired sum.
(5) Let f(x) be the periodic function such that f(x) = ex for x ∈ (−π, π), and

extended to be 2π periodic on the rest of R. Let∑
n∈Z

cne
inx

be its Fourier series. Therefore, by Theorem 2.1

ex =
∑
n∈Z

cne
inx, ∀x ∈ (−π, π).

If we differentiate this series term-wise then we get
∑
incne

inx. On the
other hand, we know that (ex)′ = ex. So, then we should have∑

incne
inx =

∑
cne

inx =⇒ cn = incn ∀n.

This is clearly wrong. Where is the mistake?
DO NOT DIFFERENTIATE THE SERIES TERMWISE!!! That’s the

mistake. One can only differentiate termwise when the function satisfies
the hypotheses of Theorem 2.3. That theorem requires the function to
be continuous on R. The function ex on (−π, π) and extended to be 2π
periodic on R has discontinuities at π + 2nπ for all n ∈ Z. So it fails to
satisfy the hypotheses of the theorem, thus that theorem does not apply to
this function.

(6) Determine the Fourier sine and cosine series of the function

f(x) =

{
x 0 ≤ x ≤ π

2

π − x π
2 ≤ x ≤ π

Okay, they are

π

4
− 2

π

∑
n≥1

cos((4n− 2)x)

(2n− 1)2
,

4

π

∑
n≥1

(−1)n+1 sin((2n− 1)x)

(2n− 1)2
.

(7) Expand the function

f(x) =

{
1 0 < x < 2

−1 2 < x < 4
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in a cosine series on [0, 4]. Okay, it is

4

π

∑
n≥1

(−1)n+1

2n− 1
cos

(
(2n− 1)πx

4

)
.

(8) Expand the function ex in a series of the form∑
n∈Z

cne
2πinx, x ∈ (0, 1).

Okay, it is

(e− 1)
∑
n∈Z

e2πinx

1− 2πin
.

(9) Define

f(t) =


t 0 ≤ t ≤ 1

1 1 < t < 2

3− t 2 ≤ t ≤ 3

and extend f to be 3-periodic on R. Expand f in a Fourier series. Deter-
mine, in the form of a Fourier series, a 3-periodic solution to the equation

y′′(t) + 3y(t) = f(t).

This is Extra Exercise 2, and the solution is contained in the extra övningar
document on the course homepage.
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