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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. The best approximation theorem

The Fourier series of f an element of a Hilbert space, H, with respect to an
orthonormal set {φn} is ∑

n

f̂nφn,

where

f̂n = 〈f, φn〉, and the set {φn} is orthonormal, meaning 〈φn, φm〉 =

{
1 n = m

0 n 6= m.

The Fourier series is actually equal to f if and only if the orthonormal set is in fact
an orthonormal basis. In any case, even though the Fourier series might not be
equal to f , it is the best approximation to f in the following sense.

Theorem 1 (Best Approximation). Let {φn}n∈N be an orthonormal set in a Hilbert
space, H. If f ∈ H, and ∑

n∈N
cnφn ∈ H,

then

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

and equality holds ⇐⇒ cn = 〈f, φn〉 is true ∀n ∈ N.

Proof: We make a few definitions: let

g :=
∑

f̂nφn, f̂n = 〈f, φn〉,

and

ϕ :=
∑

cnφn.

Idea: write

||f − ϕ||2 = ||f − g + g − ϕ||2 = ||f − g||2 + ||g − ϕ||2 + 2<〈f − g, g − ϕ〉.

Idea: show that

〈f − g, g − ϕ〉 = 0.
1
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Just write it out (stay calm and carry on):

〈f, g〉 − 〈f, ϕ〉 − 〈g, g〉+ 〈g, ϕ〉

=
∑

f̂n〈f, φn〉 −
∑

cn〈f, φn〉 −
∑

f̂n〈φn,
∑

f̂mφm〉+
∑

f̂n〈φn,
∑

cmφm〉

=
∑
|f̂n|2 −

∑
cnf̂n −

∑
|f̂n|2 +

∑
f̂ncn = 0,

where above we have used the fact that φn are an orthonormal set. Then, we have

||f − ϕ||2 = ||f − g||2 + ||g − ϕ||2 ≥ ||f − g||2,

with equality iff

||g − ϕ||2 = 0.

Let us now write out what this norm is, using the definitions of g and ϕ. By their
definitions,

g − ϕ =
∑

(f̂n − cn)φn.

By the Pythagorean theorem, due to the fact that the φn are an orthonormal set,

and hence multiplying them by the scalars, f̂n − cn, they remain orthogonal, we
have

||g − ϕ||2 =
∑∣∣∣f̂n − cn∣∣∣2 .

This is a sum of non-negative terms. Hence, the sum is only zero if all of the terms
in the sum are zero. The terms in the sum are all zero iff∣∣∣f̂n − cn∣∣∣ = 0∀n ⇐⇒ cn = f̂n∀n ∈ N.

Corollary 2. Assume that {φn} is an OS in a Hilbert space H. Then the best
approximation to f ∈ H of the form

N∑
n=1

cnφn

is given by taking

cn =
〈f, φn〉
||φn||2

.

Exercise 1. Prove this corollary using the best approximation theorem.

1.1. Application of the best approximation theorem. The goal is to find the
numbers {cj}3j=0 so that ∫ π

−π
|f −

3∑
j=0

cje
ijx|2dx

is minimized. Here,

f(x) =

{
0 −π < x < 0

1 0 ≤ x ≤ π
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Since the functions eijx are orthogonal on L2(−π, π) we can apply the best approx-
imation theorem! It says that the best approximation is to set The best approxi-
mation theorem’s corollary says that

cj =
f̂j

||eijx||2
=
〈f, φj〉
||φj ||2

, φj(x) = eijx.

We therefore compute

cj =
1

2π

∫ π

−π
f(x)e−ijxdx =

{
1
2 j = 0
(−1)j−1
−2πij j = 1, 2, 3

2. Spectral Theorem Motivation

Partial differential operators act on functions which are elements of certain
Hilbert spaces, known as Sobolev spaces. For example, the operator

∆ = −∂2x
acts on the Hilbert space H2. Don’t worry about what it is precisely, because all
that matters is that it is a Hilbert space. The operator ∆ takes elements of the
Hilbert space H2 and sends them to the Hilbert space L2. It is a linear operator
because

∂2x(f(x) + g(x)) = f ′′(x) + g′′(x) = ∂2x(f(x)) + ∂2x(g(x)).

Thinking of functions as vectors, then ∆ is like a linear map that takes in vectors
and spits out vectors. Just like linear maps on finite dimensional vector spaces,
which can be represented by a matrix, a linear operator on a Hilbert space can be
represented by a matrix. If it is a sufficiently “nice” operator, then there will exist
an orthonormal basis of eigenfunctions with corresponding eigenvalues. Here it is
useful to recall

Theorem 3 (Spectral Theorem for Cn). Assume that A is a Hermitian matrix.
Then there exists an orthonormal basis of Cn which consists of eigenvectors of A.
Moreover, each of the eigenvalues is real.

Proof: Remember what Hermitian means. It means that for any u, v ∈ Cn, we
have

〈Au, v〉 = 〈u,Av〉.
By the Fundamental Theorem of Algebra, the characteristic polynomial

p(x) := det(A− xI)

factors over C. The roots of p are {λk}nk=1. These are by definition the eigenvalues
of A. First, we consider the case when A has zero as an eigenvalue. If this is the
case, then we define

K0 := Ker(A) = {u ∈ Cn : Au = 0}.
We note that all nonzero u ∈ K0 are eigenvectors of A for the eigenvalue 0. Since
K0 is a k-dimensional subspace of Cn, it has an ONB {v1, . . . , vk}. If k = n, we
are done. So, assume that k < n. Then we consider

K⊥0 = {u ∈ Cn : 〈u, v〉 = 0∀v ∈ K0}.
Note that if u ∈ K⊥0 then

〈Au, v〉 = 〈u,Av〉 = 0 ∀v ∈ K0.
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Hence A : K⊥0 → K⊥0 . Moreover, if

u ∈ K⊥0 , Au = 0 =⇒ u ∈ K0 ∩K⊥0 =⇒ u = 0.

Hence A is bijective from K⊥0 to itself. Since A has eigenvalues {λj}nj=1, and 0
appears with multiplicity k, λk+1 6= 0. It has some non-zero eigenvector. Let’s call
it u. Since it is an eigenvector it is not zero, so we define

vk+1 :=
u

||u||
.

Proceeding inductively, we define K1 to be the span of the vectors {v1, . . . , vk+1}.
We look at A restricted to K⊥1 . We note that A maps K1 to itself because if

v =

k+1∑
1

cjvj =⇒ Av =

k+1∑
1

cjAvj =

k+1∑
1

cjλjvj ∈ K1.

Similarly, if w ∈ K⊥1 ,

〈Aw, v〉 = 〈w,Av〉 = 0∀v ∈ K1.

So, A maps K⊥1 into itself. Since the kernel of A is in K1, A is a surjective
and injective map from K⊥1 into itself. We note that A restricted to K⊥1 satisfies
the same hypotheses as A, in the sense that it is still Hermitian, and it has a
characteristic polynomial of degree equal to the dimension of K⊥1 So, there is an
eigenvalue λk+2, for A as a linear map from K⊥1 to itself. It has an eigenvector,
which we may assume has unit length, contained in K⊥1 . Call it vk+2. Continue
inductively until we reach in this way {v1, . . . , vn} to span Cn.

Why are the eigenvalues all real? This follows from the fact that if λ is an
eigenvalue with eigenvector u then

〈Au, u〉 = λ||u||2 = 〈u,Au〉 = λ||u||2.

Since u is an eigenvector it is not zero, so this forces λ = λ.

2.1. An example. Let us do an example. On [−π, π], the functions which satisfy

∆f = λf, f(−π) = f(π)

are

f(x) = fn(x) = einx.

The corresponding

λn = n2.

So, the eigenvalues of ∆ with this particular boundary condition are n2, and the
corresponding eigenfunctions are e±inx. We have proven that these are orthogonal.
We note that for all f and g in L2 which satisfy f(−π) = f(π), g(−π) = g(π) and
which are also (at least weakly) twice differentiable, we would also get f ′(−π) =
f ′(π) and similarly for g, so that

〈∆f, g〉 =

∫ π

−π
−f ′′(x)g(x)dx = −f ′(x)g(x)

∣∣∣π
−π

+

∫ π

−π
f ′(x)g′(x)dx

= −f ′(x)g(x)
∣∣∣π
−π

+ f(x)g′(x)
∣∣∣π
−π
−
∫ π

−π
f(x)g′′(x)dx.
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Due to the boundary conditions, all that survives is

−
∫ π

−π
f(x)g′′(x)dx = 〈f,∆g〉.

So we see that
〈∆f, g〉 = 〈f,∆g〉.

This is just like the spectral theorem for Hermitian matrices! There is a simi-
lar spectral theorem here, a “grown-up linear algebra” theorem, called The Adult
Spectral Theorem. This grown-up version of the spectral theorem says that, like
a Hermitian matrix, the operator ∆ also has an L2 orthonormal basis of eigen-
functions. Hence, by this Spectral Theorem, we will be able to conclude that the
orthonormal set, {

einx√
2π

}
n∈Z

,

is an ONB. To state the Adult Spectral Theorem, we need to introduce Regular
Sturm-Liouville Problems (SLPs).

2.2. Regular SLPs. Let L be a linear, second order ordinary differential operator.
So, we can write

L(f) = r(x)f ′′(x) + q(x)f ′(x) + p(x)f(x).

Above, r, q, and p are specified REAL VALUED functions. As a simple example,
take r(x) = −1, and q(x) = p(x) = 0. Then we have

L(f) = ∆f = −f ′′(x).

We are working with functions defined on an interval [a, b] which is a finite interval.
So, the Hilbert space in which everything is happening is L2 on that interval. Like
with matrices, we can think about the adjoint of the operator L. The adjoint by
definition satisfies

〈Lf, g〉 = 〈f, L∗g〉,
where we are using L∗ to denote the adjoint operator. Whatever it is. On the
left side, we know what everything is, so we write it out by definition of the scalar
product

〈Lf, g〉 =

∫ b

a

L(f)g(x)dx =

∫ b

a

(r(x)f ′′(x) + q(x)f ′(x) + p(x)f(x)) g(x)dx.

Integrating by parts, we get

= (rḡ)f ′|ba −
∫ b

a

(rḡ)′f ′ + (qg)f |ba −
∫ b

a

(qḡ)′f +

∫ b

a

pfḡ

= (rḡ)f ′ + (qḡ)f |ba −
∫ b

a

[(rḡ)′f ′ + (qḡ)′f − pfḡ] .

We integrate by parts once more on the (rḡ)′f ′ term to get

= (rḡ)f ′ − (rḡ)′f + (qḡ)f)|ba +

∫ b

a

(rḡ)′′f − (qḡ)′f + fpḡ.

So, if the boundary conditions are chosen to make the stuff evaluated from a to b
(these are called the boundary terms in integration by parts) vanish, then we could
define

L∗g = (rg)′′ − (qg)′ + pg,
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since then

〈Lf, g〉 =

∫ b

a

(rḡ)′′f − (qḡ)′f + fpḡ = 〈f, L∗g〉.

Here we use that r, q and p are real valued functions, so r̄ = r, q̄ = q, and p̄ = p.
For the spectral theorem to work, we will want to have

L = L∗.

When this holds, we say that L is formally self-adjoint. So, we need

Lf = L∗f ⇐⇒ rf ′′ + qf ′ + pf = (rf)′′ − (qf)′ + pf.

We write the things out:

rf ′′+qf ′+pf = (rf ′+r′f)′−qf ′−q′f+pf ⇐⇒ rf ′′+qf ′ = rf ′′+2r′f ′+r′′f−qf ′−q′f

⇐⇒ qf ′ = 2r′f ′ + r′′f − qf ′ − q′f ⇐⇒ (2q − 2r′)f ′ + (r′′ − q′)f = 0.

To ensure this holds for all f , we set the coefficient functions equal to zero:

2q − 2r′ = 0 =⇒ q = r′, q′ = r′′.

Well, that just means that q = r′. So, we need L to be of the form

Lf = rf ′′ + r′f ′ + pf = (rf ′)′ + pf.

The boundary terms should also vanish, so we want:

(rḡ)f ′ − (rḡ)′f + (qḡ)f)|ba = (rḡ)f ′ − (rḡ)′f + (r′ḡ)f |ba = 0,

⇐⇒ rḡf ′ − r′ḡf − rḡ′f + r′ḡf |ba = 0 ⇐⇒ rḡf ′ − rḡ′f |ba = 0

⇐⇒ r(ḡf ′ − ḡ′f)|ba = 0.

So, it suffices to assume that we are working with functions f and g that satisfy

(ḡf ′ − ḡ′f)|ba = 0.

Writing this out we get:

ḡ(b)f ′(b)− ḡ′(b)f(b)− (ḡ(a)f ′(a)− ḡ′(a)f(a)) = 0 ⇐⇒

ḡ(b)f ′(b)− ḡ′(b)f(b) = ḡ(a)f ′(a)− ḡ′(a)f(a).

This is how we get to the definition of a regular SLP on an interval [a, b]. It is
specified by

(1) a formally self-adjoint operator

L(f) = (rf ′)′ + pf,

where r and p are real valued, r, r′, and p are continuous, and r > 0 on
[a, b].

(2) self-adjoint boundary conditions:

Bi(f) = αif(a) + α′if
′(a) + βif(b) + β′if

′(b) = 0, i = 1, 2.

The self adjoint condition further requires that the coefficients αi, α
′
i, βi, β

′
i

are such that for all f and g which satisfy these conditions

r(ḡf ′ − ḡ′f)|ba = 0.

(3) a positive, continuous function w on [a, b].



FOURIER ANALYSIS & METHODS 2020.02.04 7

The SLP is to find all solutions to the BVP

L(f) + λwf = 0, Bi(f) = 0, i = 1, 2.

The eigenvalues are all numbers λ for which there exists a corresponding non-zero
eigenfunction f so that together they satisfy the above equation, and f satisfies the
boundary condition.

We then have a miraculous fact.

Theorem 4 (Adult Spectral Theorem). For every regular Sturm-Liouville problem
as above, there is an orthonormal basis of L2

w consisting of eigenfunctions {φn}n∈N
with eigenvalues {λn}n∈N. We have

lim
n→∞

λn =∞.

Here, L2
w is the weighted Hilbert space consisting of (the almost everywhere-equivalence

classes of measurable) functions on the interval [a, b] which satisfy∫ b

a

|f(x)|2w(x)dx <∞,

and the scalar product is

〈f, g〉w =

∫ b

a

f(x)g(x)w(x)dx.

We are not equipped to prove this fact. You can rest assured however that it is
done through the techniques of functional analysis and bears similarity to the proof
of the spectral theorem for finite dimensional vector spaces. As a corollary to this
theorem we obtain

Theorem 5. The functions {
einx

}
n∈Z

are an orthogonal basis for the Hilbert space L2(−π, π).

Proof: These functions satisfy a regular SLP. This SLP is to find all constants
λ and functions f such that

f ′′ + λf = 0,

and f is 2π periodic. The operator L is just the operator

L(f) = f ′′.

The function r = 1, p = 0, and the weight is just 1. The boundary conditions are
thus:

f(−π)− f(π) = 0, f ′(−π)− f ′(π) = 0.

We can check that this is ‘self-adjoint’ by plugging it into the required condition.
Assume that some totally arbitrary f and g satisfy this condition, so that g(−π)−
g(π) = 0 also. Then

(ḡf ′ − ḡ′f)|π−π = ḡ(π)f ′(π)− ḡ′(π)f(π)− ḡ(−π)f ′(−π) + ḡ′(−π)f(−π) = 0.

By our ODE theory, we can already say that all solutions (up to constant factors)
to this problem are

fn(x) = einx, λn = n2π2.

Now, by the Adult Spectral Theorem, we know that these are an orthogonal basis
(they can be normalized if we so desire).
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2.3. Exercises for the week: Hints. Those exercises from [
folland
1] which one should

solve are:

(1) (3.3.1) Show that if {fn}n≥1 are elements of a Hilbert space, H, and we
have for some f ∈ H that

lim
n→∞

fn = f,

then for all g ∈ H we have

lim
n→∞

〈fn, g〉 = 〈f, g〉.

Hint: Apply the Cauchy-Schwarz inequality to 〈fn − f, g〉.
(2) (3.3.2) Show that for all f , g in a Hilbert space one has

|||f || − ||g||| ≤ ||f − g||.
Hint: First show that for any real numbers a and b,

|a− b|2 = a2 − 2ab+ b2.

Next, apply this fact with a = ||f || and b = ||g|| to show that

|||f || − ||g||| = ||f ||2 − 2||f ||||g||+ ||g||2.
Compare this to

||f − g||2 = ||f ||2 − 2<〈f, g〉+ ||g||2.
(3) (3.3.10.d) Use Parseval’s equation to compute∑

n≥1

sin2(na)

n4
.

Hint: The Fourier series of

f(x) :=


x −a < x < a

aπ−xπ−a a < θ < π

aπ+xa−π −π < x < −a

where implicitly we are assuming 0 < a < π is

2

π − a
∑
n≥1

sin(na)

n2
sin(nx)

(4) (3.4.1) Show that {e2πi(mx+ny)}n,m∈Z is an orthogonal set in L2(R) where R
is any square whose sides have length one and are parallel to the coordinate
axes. Hint: Compute the integral∫ a+1

x=a

∫ b+1

y=b

e2πi(mx+ny)e−2πi(kx+`y)dxdy, m, n, k, ` ∈ Z.

(5) (3.4.6) Find an example of a sequence {fn} in L2(0,∞) such that fn(x)→ 0
uniformly for all x > 0 but fn 6→ 0 in the L2 norm. Hint: Oh this is a
fun sort of challenge problem... Here is a little bit of idea. The function

1√
n2+x

is not in L2(0,∞). How about using this function as an idea, define

functions fn(x) which are say defined in some way for x ∈ [0, n] and make
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them zero for all x > n. Get them to decrease uniformly to zero for all x,
but get their L2 norms to be increasing... Play around with it!

(6) (3.5.7) Find all solutions f on [0, 1] and all corresponding λ to the equation:

f ′′ + λf = 0, f(0) = 0, f ′(1) = −f(1).

Hint: As we have computed before, consider three cases, λ = 0, λ > 0, and
λ < 0. Use the boundary conditions to solve for all the possible f .

(7) (4.2.3) Let f(x) be the initial temperature at the point x in a rod of length
`, mathematicized as the interval [0, `]. Assume that heat is supplied at
a constant rate at the right end, in particular ux(`, t) = A for a constant
value A, and that the left end is held at the constant temperature 0, so that
u(0, t) = 0. Find a series expansion for the temperature u(x, t) such that
the initial temperature is given by f(x). Hint: Divide and conquer. First
find a so-called steady state solution, that is find a function g(x) which does
not depend on t which satisfies

(∂t − ∂xx)g = 0, g(0) = 0, g′(`) = A.

Now, since g does not depend on t, when you apply the heat operator you
just get

−g′′(x) = 0, g(0) = 0, g′(`) = A.

Find g which solves this. Now, look for a solution u which satisfies

ut − uxx = 0, u(0, t) = ux(`, t) = 0, u(x, 0) = f(x)− g(x).

You can use the methods from last week, separation of variables, superpo-
sition (since everything including the BCs are homogeneous), and Fourier
series (Hilbert spaces!) to solve for u. The full solution will then be

u(x, t) + g(x).
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