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3.3:9

Suppose that {φn}∞1 is an orthonormal basis for L2(a, b). Show that for any functions
f, g ∈ L2(a, b),

〈f, g〉 =
∞∑
n=1

〈f, φn〉〈g, φn〉

Solution: We know from this chapter that functions f, g ∈ L2(a, b) can be written as linear
combinations of basis functions, i.e., as (generalized) Fourier series:

f =
∞∑
n=1

〈f, φn〉φn, g =
∞∑
m=1

〈g, φm〉φm

Use the properties of the inner product (§3.1 in Folland):

〈f, g〉 = 〈f,
∑
〈g, φm〉φm〉 (sum representation of g)

= 〈
∑
〈g, φm〉φm, f〉 〈f1, f2〉 = 〈f2, f1〉

=
∑
〈g, φm〉〈φm, f〉

=
∑
〈g, φm〉〈f, φm〉 (sesquilinearity)

3.3:10a,b,c

Evaluate the following series by applying Parseval’s equation to certain of the Fourier ex-
pansions in Table 1 of §2.1.

a.
∞∑
1

1

n4
b.

∞∑
1

1

(2n− 1)6
c.

∞∑
1

n2

(n2 + 1)2

Solution: From the previous exercise, we deduce the following:

Theorem 0.1 (Parts of Theorem 3.4). Let {φn}∞1 be an orthonormal set in L2(a, b). For
every f ∈ L2(a, b),

‖f‖2 =
∞∑
1

|〈f, φn〉|2 ⇐⇒ f =
∞∑
1

〈f, φn〉φn

Let (a, b) = (−π, π). We find in Table 1 of §2.1 that

f(t) = t2 =
π2

3
+
∞∑
1

4(−1)n

n2
cos(nt)

1



Recall that a basis for L2(−π, π) is

{cosnx}∞n=0 ∪ {sinnx}∞n=1

Writing

f(x) =
1

2
a0 +

∞∑
1

(an cosnx+ bn sinnx)

Parseval’s equality takes the form

‖f‖2 =
1

2
|a0|2 +

∞∑
1

(
a2n + b2n

)
We identify

a0 =
2π2

3
, an =

4(−1)n

n2
, bn = 0

so

‖f‖2 =
1

2

(
2π2

3

)2

+
∞∑
1

(
4(−1)n

n2

)2

= 2
π4

9
+ 16

∞∑
1

1

n4

Since

‖f‖2 =
1

π

∫ π

−π
|f(x)|2dx =

1

π

∫ π

−π
x4dx =

2

π

π5

5
= 2

π4

5

Equating

2
π4

5
= 2

π4

9
+ 16

∞∑
1

1

n4

we get

4
π4

45
= 8

∞∑
1

1

n4
⇐⇒ π4

90
=
∞∑
1

1

n4

When f(θ) = θ(π − |θ|)

f(θ) =
∞∑
1

8

π(2n− 1)3
sin(2n− 1)θ

so an = 0 and for even n we have bn = 0. For odd n,

bn =
8

πn3
i.e. b2n−1 =

8

π(2n− 1)3
.

‖f‖2 =
∞∑
n=1

∣∣∣∣ 8

π(2n− 1)3

∣∣∣∣2 =
64

π2

∞∑
n=1

1

(2n− 1)6

Now

‖f‖2 =
1

π

∫ π

−π
|f(x)|2dx =

1

π

∫ π

−π
x2(π − |x|)2dx =

2

π

∫ π

0

x2(π − x)2dx =
π4

15
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so
π4

15
=

64

π2

∞∑
n=1

1

(2n− 1)6
or

π6

960
=
∞∑
n=1

1

(2n− 1)6

For c., we are looking for something with (n2 + 1) in the denominator. On L2(−π, π),

f(t) = sinh t =
∞∑
1

2 sinhπ

π

(−1)n+1n

n2 + 1
sinnt

so for f(t) = sinh t,

‖f‖2 =
∞∑
1

∣∣∣∣2 sinhπ

π

(−1)n+1n

n2 + 1

∣∣∣∣2 =

(
2 sinhπ

π

)2 ∞∑
1

n2

(n2 + 1)2

Now

‖f‖2 =
1

π

∫ π

−π
sinh2(t)dt =

1

π

∫ π

−π

(
1

2
cosh(2t)− 1

2

)
dt =

sinh(π) cosh(π)− π
π

Equating:
sinh(π) cosh(π)− π

π
=

(
2 sinhπ

π

)2 ∞∑
1

n2

(n2 + 1)2

π
sinhπ cosh π − π

4 sinh2 π
=
∞∑
1

n2

(n2 + 1)2

3.4.3

Let D be the unit disk {x, y ∈ R : x2 + y2 ≤ 1} and let fn(x, y) = (x + iy)n. Show that
{fn}∞0 is an orthogonal set in L2(D) and compute ‖fn‖ for all n.

Solution: Write x+ iy = eiθr with r =
√
x2 + y2. We know from this chapter that an inner

product on D is

〈f, g〉 =

∫
D

f(x, y)g(x, y)dxdy =

∫ 1

0

∫ 2π

0

f(r, θ)g(r, θ)rdθdr

fn(x, y) = (x+ iy)n = rneinθ, fm(x, y) = (x− iy)m = rne−imθ

〈fn, fm〉 =

∫ 1

0

∫ 2π

0

rn+mei(n−m)θrdθdr =

∫ 1

0

rn+m+1

(∫ 2π

0

ei(n−m)θdθ

)
dr

If n = m ∫ 2π

0

ei(n−m)θdθ =

∫ 2π

0

dθ = 2π
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and if n 6= m∫ 2π

0

ei(n−m)θdθ =
1

i(n−m)

(
ei(n−m)2π − 1

)
=

i

n−m
(
1− ei(n−m)2π

)
= 0

using periodicity. Thus we arrive at

〈fn, fm〉 6= 0, if n 6= m

〈fn, fm〉 = 0, if n = m

What is ‖fn‖2?

3.1:1

Cauchy-Schwarz’ inequality and norm convergence gives

|〈fn − f, g〉| ≤ ‖fn − f‖‖g‖ → 0 as n→∞

The left hand side is
|〈fn − f, g〉| = |〈fn, g〉 − 〈f, g〉|

So ‖fn − f‖ → 0 implies that |〈fn, g〉 − 〈f, g〉| → 0, and we are done.

3.1:2

Notice that both |‖f‖ − ‖g‖| and ‖f − g‖ are non-negative.

‖f − g‖2 = 〈f − g, f − g〉 = 〈f, f〉 − 〈f, g〉 − 〈g, f〉+ 〈g, g〉

〈f, g〉+ 〈g, f〉 = 2Re{〈f, g〉}

‖f − g‖2 = ‖f‖2 − 2Re{〈f, g〉}+ ‖g‖2

|‖f‖ − ‖g‖|2 = ‖f‖2 − 2‖f‖‖g‖+ ‖g‖2

Cauchy-Schwarz’ inequality and complex algebra gives

Re{〈f, g〉} ≤ |〈f, g〉| ≤ ‖f‖‖g‖

Collecting results:
|‖f‖ − ‖g‖|2 ≤ ‖f − g‖2

If ‖fn − f‖ → 0 then |‖fn‖ − ‖f‖| → 0.
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3.5:4

Find the eigenvalues and normalized eigenfunctions for the problem

f ′′ + λf = 0 on [0, l]

f(l) = 0

f ′(0) = 0

Solution:

If λ = 0 then f(x) = c0 + c1x but the boundary conditions give c0 = c1 = 0. Let ν2 = λ and
assume that λ > 0. The general solution of the differential equation f ′′ + ν2f = 0 is

f(x) = a cos νx+ b sin νx, ν2 = λ

Use conditions! We have
f ′(0) = bν =⇒ b = 0

and
f(l) = a cos νl = 0 =⇒ νl =

π

2
+ nπ, n ∈ Z

Take a = 1, and let n ∈ N since the actual eigenvalues are ν2. Thus

f(x) = cos

(
π

l

[
1

2
+ n

]
x

)
, λ =

√
π

l

[
1

2
+ n

]
, n ∈ N

Now assume λ < 0 and let λ = −µ2.

f ′′ − µ2f = 0 =⇒ f(x) = aeµx + be−µx

Use conditions! We have
f ′(0) = µ (a− b) = 0 =⇒ a = b

and
f(l) = aeµl + be−µl = a

(
eµl + e−µl

)
= 0

but cosh(µl) 6= 0 and hence a = 0. So if λ < 0 then no eigenfunctions exist (except f = 0).

EÖ 23

Bestäm samtliga egenvärden och egenfunktioner till Sturm-Liouville-problemet{
f ′′ + λf = 0, 0 < x < l

f(0) = f ′(0), f(l) + 2f ′(l) = 0.

Solution: If λ = 0 then f(x) = c0 + c1x but the boundary conditions give c0 = c1 = 0. Let
ν2 = λ and assume that λ > 0. The general solution of the differential equation f ′′+ν2f = 0
is

f(x) = a cos νx+ b sin νx, ν2 = λ

5



Use conditions! We have f ′(x) = −νa sin νx+ νb cos νx = ν(−a sin νx+ b cos νx), so

f(0) = f ′(0) =⇒ a = νb

and
f(l) + 2f ′(l) = 0 ⇐⇒ a cos νl + b sin νl + 2ν(−a sin νl + b cos νl) = 0

so

0 = 3ν cos νl + sin νl − 2ν2 sin νl = ν cos νl + (1− 2ν2) sin νl

= (1− 2ν2) cos νl

(
3ν

1− 2ν2
+ tan νl

)
Notice that if ν2 = 1/2 or cos νl = 0 the original equation is not fulfilled. Restricting to
ν > 0 as before,

0 =
3ν

1− 2ν2
+ tan νl

will have solutions {νn} for some parameters (like l = 1). Conclusion: eigenfunctions cos νnx
and sin νnx, where {νn} are solutions to the equation above, exist.

For λ = −µ2 < 0 we get

f(x) = ãeµx + b̃e−µx = a
eµx + e−µx

2
+ b

eµx − e−µx

2
= a coshµx+ b sinhµx

and f ′(x) = µa sinhµx+ µb coshµx so

f(0) = f ′(0) =⇒ a = µb

and
f(l) + 2f ′(l) = 0 ⇐⇒ a coshµl + b sinhµl + 2µ(a sinhµl + b coshµl) = 0

so

0 = 3µ coshµl + sinhµl + 2µ2 sinhµl = (1 + 2µ2) coshµl

(
3µ

1 + 2µ2
+ tanhµl

)
Observe that cosh x > 0 for all real x. So are there solutions to

tanh(µl) +
3µ

1 + 2µ2
= 0 ?

No. Both terms are either positive or negative, simultaneously.

4.2:1

This problem concerns heat flow in a rod on the interval [0, l]; it is assumed that heat can
enter or leave the rod only at the ends.

Suppose the end x = 0 is held at temperature zero while the end x = l is insulated.

(a) Find a series expansion for the temperature u(x, t) given the initial temperature f(x).
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(b) What is u(x, t) when f(x) = 50 for all x?

Solution: Solve

ut = kuxx, u(0, t) = 0, ux(l, t) = 0, u(x, 0) = f(x)

Set u(x, t) = X(x)T (t) to obtain

T ′

T
= k

X ′′

X
, X(0) = 0, X ′(l) = 0

So
T (t) = T (0)e−kλt

and X ′′ + λX = 0 with X(0) = 0, thus λ = ν2 and

X(x) = a sin νx,

and
0 = X ′(l) = ν cos νl =⇒ νl =

π

2
+ nπ, n ∈ {0, 1, 2, 3, ...}

so the conclusion is u(x, t) =
∑
An sin(νnx)e−kν

2t, where νn is the sequence above. Notice
that if λ = −µ2 < 0 then X(x) = a sinh(µx) but X ′(l) = µ coshµl > 0. At t = 0

u(x, 0) = f(x) =
∞∑
n=0

An sin(νnx)

Taking inner products (with proper normalization),

〈f, sin νm·〉 = Am

(Here, the dot after νm indicates where the x should go. Think about it: We don’t write
f(x) but only f for the same reason, namely that f is a function and f(x) is a function value
at point x.)

The full solution is

u(x, t) =
∞∑
n=0

〈f, sin νn·〉e−kν
2
nt sin νnx

If f = 50 then

〈f, sin νn·〉 =
2

l

∫ l

0

50 sin νntdt =
100

l

1

νn
=

200

π(2n+ 1)

so then

u(x, t) =
200

π

∞∑
n=0

1

2n+ 1
e−kν

2
nt sin νnx
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Open questions

Going back to sum computations, why is the following not working? Write

t2 − π2

3
=
∞∑
1

4(−1)n

n2
cos(nt)

so by Parseval’s equality

‖t2 − π2

3
‖2 =

∞∑
1

∣∣∣∣4(−1)n

n2

∣∣∣∣2
Now

‖t2 − π2

3
‖2 =

∫ π

−π
(t2 − π

3
)2dx =

∫ π

−π
(t4 − 2t2

π

3
+
π2

9
)dx =

2

45
π3(5− 10π + 9π2)

and
∞∑
1

∣∣∣∣4(−1)n

n2

∣∣∣∣2 = 16
∞∑
1

1

n4

so Parseval’s equality says that

∞∑
1

1

n4
=

1

16

2

45
π3(5− 10π + 9π2) =

1

360
π3(5− 10π + 9π2)
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