Big group 3rd of February: 3.3:9; 3.3:10b,c; 3.4:3; räkna själv: 3.3:1; 3.3:2
Small group 4th and 7th of February: 3.5:4; Eö 23; 4.2:1

3.3:9

Suppose that $\left\{\phi_{n}\right\}_{1}^{\infty}$ is an orthonormal basis for $L^{2}(a, b)$. Show that for any functions $f, g \in L^{2}(a, b)$,

$$
\langle f, g\rangle=\sum_{n=1}^{\infty}\left\langle f, \phi_{n}\right\rangle \overline{\left\langle g, \phi_{n}\right\rangle}
$$

Solution: We know from this chapter that functions $f, g \in L^{2}(a, b)$ can be written as linear combinations of basis functions, i.e., as (generalized) Fourier series:

$$
f=\sum_{n=1}^{\infty}\left\langle f, \phi_{n}\right\rangle \phi_{n}, \quad g=\sum_{m=1}^{\infty}\left\langle g, \phi_{m}\right\rangle \phi_{m}
$$

Use the properties of the inner product ($\S 3.1$ in Folland):

$$
\begin{array}{rlr}
\langle f, g\rangle & =\left\langle f, \sum\left\langle g, \phi_{m}\right\rangle \phi_{m}\right\rangle & \text { (sum representation of } g \text {) } \\
& =\overline{\left\langle\sum\left\langle g, \phi_{m}\right\rangle \phi_{m}, f\right\rangle} & \left\langle f_{1}, f_{2}\right\rangle=\overline{\left\langle f_{2}, f_{1}\right\rangle} \\
& =\sum \overline{\left\langle g, \phi_{m}\right\rangle\left\langle\phi_{m}, f\right\rangle} & \\
& =\sum \overline{\left\langle g, \phi_{m}\right\rangle}\left\langle f, \phi_{m}\right\rangle & \text { (sesquilinearity) }
\end{array}
$$

3.3:10a,b,c

Evaluate the following series by applying Parseval's equation to certain of the Fourier expansions in Table 1 of $\S 2.1$.
a. $\sum_{1}^{\infty} \frac{1}{n^{4}}$
b. $\sum_{1}^{\infty} \frac{1}{(2 n-1)^{6}}$
c. $\sum_{1}^{\infty} \frac{n^{2}}{\left(n^{2}+1\right)^{2}}$

Solution: From the previous exercise, we deduce the following:
Theorem 0.1 (Parts of Theorem 3.4). Let $\left\{\phi_{n}\right\}_{1}^{\infty}$ be an orthonormal set in $L^{2}(a, b)$. For every $f \in L^{2}(a, b)$,

$$
\|f\|^{2}=\sum_{1}^{\infty}\left|\left\langle f, \phi_{n}\right\rangle\right|^{2} \quad \Longleftrightarrow \quad f=\sum_{1}^{\infty}\left\langle f, \phi_{n}\right\rangle \phi_{n}
$$

Let $(a, b)=(-\pi, \pi)$. We find in Table 1 of $\S 2.1$ that

$$
f(t)=t^{2}=\frac{\pi^{2}}{3}+\sum_{1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n t)
$$

Recall that a basis for $L^{2}(-\pi, \pi)$ is

$$
\{\cos n x\}_{n=0}^{\infty} \cup\{\sin n x\}_{n=1}^{\infty}
$$

Writing

$$
f(x)=\frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Parseval's equality takes the form

$$
\|f\|^{2}=\frac{1}{2}\left|a_{0}\right|^{2}+\sum_{1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

We identify

$$
a_{0}=\frac{2 \pi^{2}}{3}, \quad a_{n}=\frac{4(-1)^{n}}{n^{2}}, \quad b_{n}=0
$$

so

$$
\|f\|^{2}=\frac{1}{2}\left(\frac{2 \pi^{2}}{3}\right)^{2}+\sum_{1}^{\infty}\left(\frac{4(-1)^{n}}{n^{2}}\right)^{2}=2 \frac{\pi^{4}}{9}+16 \sum_{1}^{\infty} \frac{1}{n^{4}}
$$

Since

$$
\|f\|^{2}=\frac{1}{\pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{4} d x=\frac{2}{\pi} \frac{\pi^{5}}{5}=2 \frac{\pi^{4}}{5}
$$

Equating

$$
2 \frac{\pi^{4}}{5}=2 \frac{\pi^{4}}{9}+16 \sum_{1}^{\infty} \frac{1}{n^{4}}
$$

we get

$$
4 \frac{\pi^{4}}{45}=8 \sum_{1}^{\infty} \frac{1}{n^{4}} \Longleftrightarrow \frac{\pi^{4}}{90}=\sum_{1}^{\infty} \frac{1}{n^{4}}
$$

When $f(\theta)=\theta(\pi-|\theta|)$

$$
f(\theta)=\sum_{1}^{\infty} \frac{8}{\pi(2 n-1)^{3}} \sin (2 n-1) \theta
$$

so $a_{n}=0$ and for even n we have $b_{n}=0$. For odd n,

$$
\begin{gathered}
b_{n}=\frac{8}{\pi n^{3}} \quad \text { i.e. } \quad b_{2 n-1}=\frac{8}{\pi(2 n-1)^{3}} . \\
\|f\|^{2}=\sum_{n=1}^{\infty}\left|\frac{8}{\pi(2 n-1)^{3}}\right|^{2}=\frac{64}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{6}}
\end{gathered}
$$

Now

$$
\|f\|^{2}=\frac{1}{\pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2}(\pi-|x|)^{2} d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2}(\pi-x)^{2} d x=\frac{\pi^{4}}{15}
$$

so

$$
\frac{\pi^{4}}{15}=\frac{64}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{6}} \quad \text { or } \quad \frac{\pi^{6}}{960}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{6}}
$$

For c., we are looking for something with $\left(n^{2}+1\right)$ in the denominator. On $L^{2}(-\pi, \pi)$,

$$
f(t)=\sinh t=\sum_{1}^{\infty} \frac{2 \sinh \pi}{\pi} \frac{(-1)^{n+1} n}{n^{2}+1} \sin n t
$$

so for $f(t)=\sinh t$,

$$
\|f\|^{2}=\sum_{1}^{\infty}\left|\frac{2 \sinh \pi}{\pi} \frac{(-1)^{n+1} n}{n^{2}+1}\right|^{2}=\left(\frac{2 \sinh \pi}{\pi}\right)^{2} \sum_{1}^{\infty} \frac{n^{2}}{\left(n^{2}+1\right)^{2}}
$$

Now

$$
\|f\|^{2}=\frac{1}{\pi} \int_{-\pi}^{\pi} \sinh ^{2}(t) d t=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(\frac{1}{2} \cosh (2 t)-\frac{1}{2}\right) d t=\frac{\sinh (\pi) \cosh (\pi)-\pi}{\pi}
$$

Equating:

$$
\begin{gathered}
\frac{\sinh (\pi) \cosh (\pi)-\pi}{\pi}=\left(\frac{2 \sinh \pi}{\pi}\right)^{2} \sum_{1}^{\infty} \frac{n^{2}}{\left(n^{2}+1\right)^{2}} \\
\pi \frac{\sinh \pi \cosh \pi-\pi}{4 \sinh ^{2} \pi}=\sum_{1}^{\infty} \frac{n^{2}}{\left(n^{2}+1\right)^{2}}
\end{gathered}
$$

3.4.3

Let D be the unit disk $\left\{x, y \in \mathbb{R}: x^{2}+y^{2} \leq 1\right\}$ and let $f_{n}(x, y)=(x+i y)^{n}$. Show that $\left\{f_{n}\right\}_{0}^{\infty}$ is an orthogonal set in $L^{2}(D)$ and compute $\left\|f_{n}\right\|$ for all n.
Solution: Write $x+i y=e^{i \theta} r$ with $r=\sqrt{x^{2}+y^{2}}$. We know from this chapter that an inner product on D is

$$
\begin{gathered}
\langle f, g\rangle=\int_{D} f(x, y) \overline{g(x, y)} d x d y=\int_{0}^{1} \int_{0}^{2 \pi} f(r, \theta) \overline{g(r, \theta)} r d \theta d r \\
f_{n}(x, y)=(x+i y)^{n}=r^{n} e^{i n \theta}, \quad \overline{f_{m}(x, y)}=(x-i y)^{m}=r^{n} e^{-i m \theta} \\
\left\langle f_{n}, f_{m}\right\rangle=\int_{0}^{1} \int_{0}^{2 \pi} r^{n+m} e^{i(n-m) \theta} r d \theta d r=\int_{0}^{1} r^{n+m+1}\left(\int_{0}^{2 \pi} e^{i(n-m) \theta} d \theta\right) d r
\end{gathered}
$$

If $n=m$

$$
\int_{0}^{2 \pi} e^{i(n-m) \theta} d \theta=\int_{0}^{2 \pi} d \theta=2 \pi
$$

and if $n \neq m$

$$
\int_{0}^{2 \pi} e^{i(n-m) \theta} d \theta=\frac{1}{i(n-m)}\left(e^{i(n-m) 2 \pi}-1\right)=\frac{i}{n-m}\left(1-e^{i(n-m) 2 \pi}\right)=0
$$

using periodicity. Thus we arrive at

$$
\begin{array}{ll}
\left\langle f_{n}, f_{m}\right\rangle \neq 0, & \text { if } n \neq m \\
\left\langle f_{n}, f_{m}\right\rangle=0, & \text { if } n=m
\end{array}
$$

What is $\left\|f_{n}\right\|^{2}$?

3.1:1

Cauchy-Schwarz' inequality and norm convergence gives

$$
\left|\left\langle f_{n}-f, g\right\rangle\right| \leq\left\|f_{n}-f\right\|\|g\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

The left hand side is

$$
\left|\left\langle f_{n}-f, g\right\rangle\right|=\left|\left\langle f_{n}, g\right\rangle-\langle f, g\rangle\right|
$$

So $\left\|f_{n}-f\right\| \rightarrow 0$ implies that $\left|\left\langle f_{n}, g\right\rangle-\langle f, g\rangle\right| \rightarrow 0$, and we are done.

3.1:2

Notice that both $|\|f\|-\|g\||$ and $\|f-g\|$ are non-negative.

$$
\begin{gathered}
\|f-g\|^{2}=\langle f-g, f-g\rangle=\langle f, f\rangle-\langle f, g\rangle-\langle g, f\rangle+\langle g, g\rangle \\
\langle f, g\rangle+\langle g, f\rangle=2 \operatorname{Re}\{\langle f, g\rangle\} \\
\|f-g\|^{2}=\|f\|^{2}-2 \operatorname{Re}\{\langle f, g\rangle\}+\|g\|^{2} \\
\mid\|f\|-\|g\|\left\|^{2}=\right\| f\left\|^{2}-2\right\| f\| \| g\|+\| g \|^{2}
\end{gathered}
$$

Cauchy-Schwarz' inequality and complex algebra gives

$$
\operatorname{Re}\{\langle f, g\rangle\} \leq|\langle f, g\rangle| \leq\|f\|\|g\|
$$

Collecting results:

$$
\mid\|f\|-\|g\|^{2} \leq\|f-g\|^{2}
$$

If $\left\|f_{n}-f\right\| \rightarrow 0$ then $\mid\left\|f_{n}\right\|-\|f\| \| \rightarrow 0$.

3.5:4

Find the eigenvalues and normalized eigenfunctions for the problem

$$
\begin{aligned}
& f^{\prime \prime}+\lambda f=0 \quad \text { on }[0, l] \\
& f(l)=0 \\
& f^{\prime}(0)=0
\end{aligned}
$$

Solution:

If $\lambda=0$ then $f(x)=c_{0}+c_{1} x$ but the boundary conditions give $c_{0}=c_{1}=0$. Let $\nu^{2}=\lambda$ and assume that $\lambda>0$. The general solution of the differential equation $f^{\prime \prime}+\nu^{2} f=0$ is

$$
f(x)=a \cos \nu x+b \sin \nu x, \quad \nu^{2}=\lambda
$$

Use conditions! We have

$$
f^{\prime}(0)=b \nu \Longrightarrow b=0
$$

and

$$
f(l)=a \cos \nu l=0 \Longrightarrow \nu l=\frac{\pi}{2}+n \pi, \quad n \in \mathbb{Z}
$$

Take $a=1$, and let $n \in \mathbb{N}$ since the actual eigenvalues are ν^{2}. Thus

$$
f(x)=\cos \left(\frac{\pi}{l}\left[\frac{1}{2}+n\right] x\right), \quad \lambda=\sqrt{\frac{\pi}{l}\left[\frac{1}{2}+n\right]}, \quad n \in \mathbb{N}
$$

Now assume $\lambda<0$ and let $\lambda=-\mu^{2}$.

$$
f^{\prime \prime}-\mu^{2} f=0 \Longrightarrow f(x)=a e^{\mu x}+b e^{-\mu x}
$$

Use conditions! We have

$$
f^{\prime}(0)=\mu(a-b)=0 \Longrightarrow a=b
$$

and

$$
f(l)=a e^{\mu l}+b e^{-\mu l}=a\left(e^{\mu l}+e^{-\mu l}\right)=0
$$

but $\cosh (\mu l) \neq 0$ and hence $a=0$. So if $\lambda<0$ then no eigenfunctions exist (except $f=0$).

EÖ 23

Bestäm samtliga egenvärden och egenfunktioner till Sturm-Liouville-problemet

$$
\begin{cases}f^{\prime \prime}+\lambda f=0, & 0<x<l \\ f(0)=f^{\prime}(0), & f(l)+2 f^{\prime}(l)=0 .\end{cases}
$$

Solution: If $\lambda=0$ then $f(x)=c_{0}+c_{1} x$ but the boundary conditions give $c_{0}=c_{1}=0$. Let $\nu^{2}=\lambda$ and assume that $\lambda>0$. The general solution of the differential equation $f^{\prime \prime}+\nu^{2} f=0$ is

$$
f(x)=a \cos \nu x+b \sin \nu x, \quad \nu^{2}=\lambda
$$

Use conditions! We have $f^{\prime}(x)=-\nu a \sin \nu x+\nu b \cos \nu x=\nu(-a \sin \nu x+b \cos \nu x)$, so

$$
f(0)=f^{\prime}(0) \Longrightarrow a=\nu b
$$

and

$$
f(l)+2 f^{\prime}(l)=0 \Longleftrightarrow a \cos \nu l+b \sin \nu l+2 \nu(-a \sin \nu l+b \cos \nu l)=0
$$

so

$$
\begin{aligned}
& 0=3 \nu \cos \nu l+\sin \nu l-2 \nu^{2} \sin \nu l=\nu \cos \nu l+\left(1-2 \nu^{2}\right) \sin \nu l \\
&=\left(1-2 \nu^{2}\right) \cos \nu l\left(\frac{3 \nu}{1-2 \nu^{2}}+\tan \nu l\right)
\end{aligned}
$$

Notice that if $\nu^{2}=1 / 2$ or $\cos \nu l=0$ the original equation is not fulfilled. Restricting to $\nu>0$ as before,

$$
0=\frac{3 \nu}{1-2 \nu^{2}}+\tan \nu l
$$

will have solutions $\left\{\nu_{n}\right\}$ for some parameters (like $l=1$). Conclusion: eigenfunctions $\cos \nu_{n} x$ and $\sin \nu_{n} x$, where $\left\{\nu_{n}\right\}$ are solutions to the equation above, exist.

For $\lambda=-\mu^{2}<0$ we get

$$
f(x)=\tilde{a} e^{\mu x}+\tilde{b} e^{-\mu x}=a \frac{e^{\mu x}+e^{-\mu x}}{2}+b \frac{e^{\mu x}-e^{-\mu x}}{2}=a \cosh \mu x+b \sinh \mu x
$$

and $f^{\prime}(x)=\mu a \sinh \mu x+\mu b \cosh \mu x$ so

$$
f(0)=f^{\prime}(0) \Longrightarrow a=\mu b
$$

and

$$
f(l)+2 f^{\prime}(l)=0 \Longleftrightarrow a \cosh \mu l+b \sinh \mu l+2 \mu(a \sinh \mu l+b \cosh \mu l)=0
$$

so

$$
0=3 \mu \cosh \mu l+\sinh \mu l+2 \mu^{2} \sinh \mu l=\left(1+2 \mu^{2}\right) \cosh \mu l\left(\frac{3 \mu}{1+2 \mu^{2}}+\tanh \mu l\right)
$$

Observe that $\cosh x>0$ for all real x. So are there solutions to

$$
\tanh (\mu l)+\frac{3 \mu}{1+2 \mu^{2}}=0 ?
$$

No. Both terms are either positive or negative, simultaneously.

4.2:1

This problem concerns heat flow in a rod on the interval $[0, l]$; it is assumed that heat can enter or leave the rod only at the ends.

Suppose the end $x=0$ is held at temperature zero while the end $x=l$ is insulated.
(a) Find a series expansion for the temperature $u(x, t)$ given the initial temperature $f(x)$.
(b) What is $u(x, t)$ when $f(x)=50$ for all x ?

Solution: Solve

$$
u_{t}=k u_{x x}, \quad u(0, t)=0, \quad u_{x}(l, t)=0, \quad u(x, 0)=f(x)
$$

Set $u(x, t)=X(x) T(t)$ to obtain

$$
\frac{T^{\prime}}{T}=k \frac{X^{\prime \prime}}{X}, \quad X(0)=0, \quad X^{\prime}(l)=0
$$

So

$$
T(t)=T(0) e^{-k \lambda t}
$$

and $X^{\prime \prime}+\lambda X=0$ with $X(0)=0$, thus $\lambda=\nu^{2}$ and

$$
X(x)=a \sin \nu x
$$

and

$$
0=X^{\prime}(l)=\nu \cos \nu l \Longrightarrow \nu l=\frac{\pi}{2}+n \pi, \quad n \in\{0,1,2,3, \ldots\}
$$

so the conclusion is $u(x, t)=\sum A_{n} \sin \left(\nu_{n} x\right) e^{-k \nu^{2} t}$, where ν_{n} is the sequence above. Notice that if $\lambda=-\mu^{2}<0$ then $X(x)=a \sinh (\mu x)$ but $X^{\prime}(l)=\mu \cosh \mu l>0$. At $t=0$

$$
u(x, 0)=f(x)=\sum_{n=0}^{\infty} A_{n} \sin \left(\nu_{n} x\right)
$$

Taking inner products (with proper normalization),

$$
\left\langle f, \sin \nu_{m} \cdot\right\rangle=A_{m}
$$

(Here, the dot after ν_{m} indicates where the x should go. Think about it: We don't write $f(x)$ but only f for the same reason, namely that f is a function and $f(x)$ is a function value at point x.)

The full solution is

$$
u(x, t)=\sum_{n=0}^{\infty}\left\langle f, \sin \nu_{n} \cdot\right\rangle e^{-k \nu_{n}^{2} t} \sin \nu_{n} x
$$

If $f=50$ then

$$
\left\langle f, \sin \nu_{n} \cdot\right\rangle=\frac{2}{l} \int_{0}^{l} 50 \sin \nu_{n} t d t=\frac{100}{l} \frac{1}{\nu_{n}}=\frac{200}{\pi(2 n+1)}
$$

so then

$$
u(x, t)=\frac{200}{\pi} \sum_{n=0}^{\infty} \frac{1}{2 n+1} e^{-k \nu_{n}^{2} t} \sin \nu_{n} x
$$

Open questions

Going back to sum computations, why is the following not working? Write

$$
t^{2}-\frac{\pi^{2}}{3}=\sum_{1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n t)
$$

so by Parseval's equality

$$
\left\|t^{2}-\frac{\pi^{2}}{3}\right\|^{2}=\sum_{1}^{\infty}\left|\frac{4(-1)^{n}}{n^{2}}\right|^{2}
$$

Now

$$
\left\|t^{2}-\frac{\pi^{2}}{3}\right\|^{2}=\int_{-\pi}^{\pi}\left(t^{2}-\frac{\pi}{3}\right)^{2} d x=\int_{-\pi}^{\pi}\left(t^{4}-2 t^{2} \frac{\pi}{3}+\frac{\pi^{2}}{9}\right) d x=\frac{2}{45} \pi^{3}\left(5-10 \pi+9 \pi^{2}\right)
$$

and

$$
\sum_{1}^{\infty}\left|\frac{4(-1)^{n}}{n^{2}}\right|^{2}=16 \sum_{1}^{\infty} \frac{1}{n^{4}}
$$

so Parseval's equality says that

$$
\sum_{1}^{\infty} \frac{1}{n^{4}}=\frac{1}{16} \frac{2}{45} \pi^{3}\left(5-10 \pi+9 \pi^{2}\right)=\frac{1}{360} \pi^{3}\left(5-10 \pi+9 \pi^{2}\right)
$$

