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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. SLPs

Recall the definition of a regular SLP:

(1) a formally self-adjoint differential operator

L(f) = (rf ′)′ + pf,

where r and p are real valued, r, r′, and p are continuous, and r > 0 on
[a, b].

(2) self-adjoint boundary conditions:

Bi(f) = αif(a) + α′if
′(a) + βif(b) + β′if

′(b) = 0, i = 1, 2.

The self adjoint condition further requires that the coefficients αi, α
′
i, βi, β

′
i

are such that for all f and g which satisfy these conditions

r(ḡf ′ − ḡ′f)|ba = 0.

(3) a positive, continuous function w on [a, b].

The SLP is to find all solutions to the BVP

L(f) + λwf = 0, Bi(f) = 0, i = 1, 2.

The eigenvalues are all numbers λ for which there exists a corresponding non-zero
eigenfunction f so that together they satisfy the above equation, and f satisfies
the boundary condition. The magical theorem about SLPs says that for such a
regular SLP, there exists solutions {φn}n≥1 with corresponding eigenvalues λn such
that these {φn}n≥1 are an orthogonal basis for the weighted L2 space, L2

w(a, b).
Moreover, these eigenvalues are all real. Let’s see just what makes this theorem so
magical...

1.1. SLP example for a PDE. Here is how the SLP theory can be useful in
practice. We are given the problem

ut − uxx = 0, ux(0, t) = αu(0, t), ux(l, t) = −αu(l, t), u(x, 0) = f(x).

Above, we assume that
α > 0, f ∈ L2.

These boundary conditions are based on Newton’s law of cooling: the temperature
gradient across the ends is proportional to the temperature difference between the
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ends and the surrounding medium. It is a homogeneous PDE, so we have good
chances of being able to solve it using separation of variables. Thus, we write

u(x, t) = X(x)T (t) =⇒ T ′(t)X(x)−X ′′(x)T (t) = 0 =⇒ T ′

T
=
X ′′

X
.

This means both sides are equal to a constant. Call it λ. We start with the x side,
because we have more information about that due to the BCs. Are they self-adjoint
BCs? Let’s check! In the definition of SLP, we are looking for X to satisfy

X ′′

X
= λ ⇐⇒ X ′′ = λX ⇐⇒ X ′′ − λX = 0.

OBS! The relationship between the constant we have named λ from the PDE has
the opposite sign as the corresponding term in an SLP. So, the SLP would look like

X ′′ + ΛX = 0 Λ = −λ.
The r and w are both 1 in the definition of SLP, and the p is 0. The a = 0 and

b = l. So, we need to check that if f and g satisfy

f ′(0) = αf(0), g′(l) = −αg(l)

then
(ḡf ′ − ḡ′f)|l0 = 0.

We plug it in
ḡ(l)f ′(l)− ḡ′(l)f(l)− ḡ(0)f ′(0) + ḡ′(0)f(0)

= −ḡ(l)αf(l) + ¯αg(l)f(l)− ḡ(0)αf(0) + ¯αg(0)f(0) = 0.

Yes, the BC is a self-adjoint BC. So, the SLP theorem says there exists an L2 OB
of eigenfunctions. What are they? We check the cases.

X ′′ = λX.

What if λ = 0? Then
X(x) = ax+ b.

To get

X ′(0) = αX(0) =⇒ a = αb =⇒ b =
a

α
.

Next,

X ′(l) = −αX(l) =⇒ a = −α
(
al +

a

α

)
= −a(αl + 1).

Presumably a 6= 0 because if a = 0 the whole solution is just 0. So, we can divide
by it and we get

=⇒ 1 = − (αl + 1) =⇒ αl = −2.

Since l > 0 and α > 0, this is impossible. So, no non-zero solutions for λ = 0.
Next we try λ > 0. Then the solution looks like

X(x) = ae
√
λx + be−

√
λx

or equivalently, we can use sinh and cosh, to write

X(x) = a cosh(
√
λx) + b sinh(

√
λx).

We try out the BCs. They require

X ′(0) = αX(0) ⇐⇒ a
√
λ sinh(0) + b

√
λ cosh(0) = α (a cosh(0) + b sinh(0))

⇐⇒ b
√
λ = αa =⇒ b =

αa√
λ
.
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We check out the other BC:

X ′(l) = −αX(l) ⇐⇒ a
√
λ sinh(

√
λl)+αa cosh(

√
λl) = −α

(
a cosh(

√
λl) +

αa√
λ

sinh(
√
λl)

)
.

⇐⇒ a
√
λ sinh(

√
λl) +

α2a√
λ

sinh(
√
λl) = −2αa cosh(

√
λl)

If a = 0 the whole solution is zero, so we presume that is not the case and divide
by a. Then this requires

sinh(
√
λl)

cosh(
√
λl)

=
−2α√

λ+ α2/
√
λ
.

The left side is positive, but the right side is negative.  
Thus, we finally try λ < 0. Then the solution looks like

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

To get

X ′(0) = αX(0) =⇒ b
√
|λ| = αa =⇒ b =

αa√
|λ|
.

Next we need

X ′(l) = −αX(l)

=⇒ −a
√
|λ| sin(

√
|λ|l)+ αa√

|λ|

√
|λ| cos(

√
|λ|l) = −α

(
a cos(

√
|λ|l) +

αa√
|λ|

sin(
√
|λ|l)

)
.

Presumably a 6= 0 because if that is the case then the whole solution is 0. So, we
may divide by a, and we need

2α cos
√
|λ| = sin(

√
|λ|l)

(√
|λ| − α2√

|λ|

)
.

This is equivalent to
2α√

|λ| − α2√
|λ|

= tan(
√
|λ|l)

⇐⇒
2α
√
|λ|

|λ| − α2
= tan(

√
|λ|l).

Well, that’s pretty weird, but according to the SLP theory, the sequence

{λn}n≥1 and {Xn(x)}n≥1, Xn(x) = an

(
cos(

√
|λn|x) +

α√
|λn|

sin(
√
|λn|x)

)
of eigenvalues and corresponding eigenfunctions is an orthogonal basis of L2. Here
since we are solving a PDE, it is most convenient to leave the coefficients simply as
an and solve for them according to the initial conditions of the PDE.

The partner functions

Tn(t) satisfy T ′n(t) = λnTn(t) =⇒ Tn(t) = eλnt.

Here it is good to note that the λn < 0 and tend to −∞ as n → ∞ which follows
from the Adult Spectral Theorem, because in the SLP terminology,

Λn = −λn →∞ =⇒ λn → −∞.
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So, for heat, that is realistic. We build the solution using superposition because
the PDE is linear and homogeneous, so

u(x, t) =
∑
n≥1

Tn(t)Xn(x).

Since we wish this to be equal to the initial data at t = 0, we demand

u(x, 0) =
∑
n≥1

an

(
cos(

√
|λn|x) +

α√
|λn|

sin(
√
|λn|x)

)
= f(x).

By the SLP theory, the functions above form an OB, so we can expand our initial
data function in terms of this OB. To do this we compute

an =
〈f(x), cos(

√
|λn|x) + α√

|λn|
sin(

√
|λn|x)〉

|| cos(
√
|λn|x) + α√

|λn|
sin(

√
|λn|x)||2

,

where

〈f(x), cos(
√
|λn|x)+

α√
|λn|

sin(
√
|λn|x)〉 =

∫ l

0

f(x)(cos(
√
|λn|x) +

α√
|λn|

sin(
√
|λn|x))dx,

|| cos(
√
|λn|x)+

α√
|λn|

sin(
√
|λn|x)||2 =

∫ l

0

| cos(
√
|λn|x)+

α√
|λn|

sin(
√
|λn|x)|2dx.

1.2. SLP example. SLPs may come from solving a PDE, but to avoid overcompli-
cating things, sometimes you will just need to solve an SLP by itself. For example:

(xf ′)′ + λx−1f = 0, f(1) = f(b) = 0, b > 1.

In this example the function r(x) = x, and the function p(x) = 0, whilst the weight
function w(x) = x−1. Let us consider three cases for λ.

Case λ = 0: If λ = 0, then the equation becomes

xf ′′ + f ′ = 0,

which we can re-arrange to
f ′′

f ′
= − 1

x
.

The left side is the derivative of log(f ′). So, integrating both sides (saving the
constant for later):

log(f ′) = − log(x).

Exponentiating both sides we get

f ′ =
1

x
=⇒ f(x) = A log(x) +B,

for some constants A and B. The boundary conditions demand that

f(1) = 0 =⇒ B = 0.

The other boundary condition demands that

f(b) = 0 =⇒ A = 0, since b > 1 so log(b) > 0.

We are left with the zero function. That is never an eigenfunction. So λ = 0 is not
an eigenvalue for this SLP.

Case λ > 0: If λ > 0, we observe that the equation we have is something called
an Euler equation. (Or we look up the ODE section of Beta and search for this
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type of ODE, and see that Beta tells us this is an Euler equaiton). Consequently,
we look for solutions of the form

f(x) = xν .

The differential equation we wish to solve is:

xf ′′ + f ′ + λx−1f = 0 =⇒ x2f ′′ + xf ′ + λf = 0,

so substituting f(x) = xν , this becomes

x2(ν)(ν − 1)xν−2 + xνxν−1 + λxν = 0.

This simplifies to:

xν
(
ν2 − ν + ν + λ

)
= 0 =⇒ ν2 = −λ.

Since λ > 0, this means

ν = ±i
√
λ.

So, a basis of solutions is xi
√
|λ| and x−i

√
λ. Note that

x±i
√
λ = e±i

√
λ log(x).

By Euler’s formula, an equivalent basis of solutions is

cos(
√
λ log(x)), sin(

√
λ log(x)).

Hence in this case our solution is of the form:

f(x) = A cos(
√
λ log(x)) +B sin(

√
λ log(x)).

The boundary conditions demand that

f(1) = 0 =⇒ A = 0.

The second boundary condition demands that

B sin(
√
λ log(b)) = 0.

Since we do not seek the zero function, we presume that B 6= 0 and thus require

sin(
√
λ log(b)) = 0 =⇒

√
λ log(b) = nπ, n ∈ N.

We therefore have countably many eigenfunctions and eigenvalues, which we may
index by the natural numbers, writing

λn =
n2π2

(log b)2
, fn(x) = sin

(
nπ log(x)

log(b)

)
.

Nice.
The last case to consider is case λ < 0: We proceed similarly as above and

obtain that a basis of solutions is

x±
√
|λ|.

Write our solution as

f(x) = Ax
√
|λ| +Bx−

√
|λ|.

The boundary conditions demand that:

f(1) = 0 =⇒ A+B = 0 =⇒ B = −A.
The next boundary condition demands that:

f(b) = Ab
√
|λ|−Ab−

√
|λ| = 0 =⇒ A = 0 or b

√
|λ| = b−

√
|λ| =⇒ b2

√
|λ| = 1 =⇒

√
|λ| = 0 .
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Thus the only way for the boundary conditions to be satisfied is if the eigenfunction
is the zero function, but this is not an eigenfunction! Hence no negative λ solutions.

The magical SLP theorem tells us that these rather peculiar functions

{fn(x)}n≥1
are an orthogonal basis for L2

1/x(1, b). This means that for any g ∈ L2
1/x(1, b), we

can expand it as a Fourier series with respect to this basis. The coefficients will be

〈g, fn〉1/x
||fn||21/x

, 〈g, fn〉1/x =

∫ b

1

g(x)fn(x)x−1dx, ||fn||21/x =

∫ b

1

|fn(x)|2x−1dx.

If the function we wish to expand is specified, we could compute these integrals.

1.3. Another SLP example. Consider the problem

(x2f ′)′ + λf = 0, f(1) = f(b) = 0, b > 1.

Here we have r(x) = x2 and w(x) = 1. The equation is:

2xf ′ + x2f ′′ + λf = 0.

We shall consider the three cases for λ.
Case λ = 0: In this case the equation simplifies to

x2f ′′+2xf ′ = 0 =⇒ f ′′

f ′
= − 2

x
=⇒ (log(f ′))′ = − 2

x
=⇒ log(f ′) = −2 log x =⇒ f ′ = e−2 log x = x−2.

So, this gives us a solution of the form

f(x) = −A 1

x
+B.

Let us verify the boundary conditions. We require f(1) = 0 so this means

−A+B = 0 =⇒ B = A.

We also require f(b) = 0 so this means

−A1

b
+B = 0 =

−A
b

+A =⇒ A

b
= A =⇒ b = 1 or A = 0.

So since b > 1 the only solution here is the zero function which is not an eigenfunc-
tion.

Case λ > 0: We consider the fact that this is an Euler equation, so we look for
solutions of the form f(x) = xν . Then the equation looks like:

x2(ν)(ν − 1)xν−2 + 2x(ν)xν−1 + λxν = 0 ⇐⇒ xν
(
ν2 − ν + 2ν + λ

)
= 0

so we need ν to satisfy:
ν2 + ν + λ = 0.

This is a quadratic equation, so we solve it:

ν = −1

2
±
√

1

4
− λ.

So, actually the cases λ > 0 and λ < 0 really should split up into whether λ = 1
4

or is larger or smaller. If λ = 1
4 , then we are only getting one solution this way,

x−1/2. To get a second solution we multiply by log x.

Exercise 1. Plug the function x−1/2 log x into the SLP for the value λ = 1
4 . Verify

that it satisfy the equation.
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Now, let’s see if such a function will satisfy the boundary conditions. We need

Ax−1/2 +Bx−1/2 log(x)
∣∣∣
x=1

= 0 =⇒ A = 0.

We also need

Bb−1/2 log(b) = 0, b > 1 =⇒ B = 0.

So we only get the zero solution in this case.
When λ < 1

4 , solutions are of the form

Axν+ +Bxν− , ν± = −1

2
±
√

1

4
− λ.

Exercise 2. Check the boundary conditions. Verify that they are satisfied if and
only if A = B = 0.

Finally we consider λ > 1
4 . Then we have

ν± = −1

2
± i
√
λ− 1

4
=⇒ f(x) =

A√
x
xi
√
λ−1/4 +

B√
x
x−i
√
λ−1/4.

Using Euler’s formula, this is equivalently expressed as

α√
x

cos(
√
λ− 1/4 log x) +

β√
x

sin(
√
λ− 1/4 log x).

Due to the boundary condition at x = 1 we must have α = 0. So to obtain the
other boundary condition, we need

sin(
√
λ− 1/4 log b) = 0 =⇒

√
λ− 1/4 log b = nπ, n ∈ N.

Hence

λ = λn =
1

4
+

n2π2

(log b)2
, fn(x) = x−1/2 sin

(
nπ log x

log b

)
.

Note that in general we are not bothering to normalize our eigenfunctions because
it is rather tedious and not fundamental to our learning experience in this subject.

1.4. Exercises for the week: Answers. Those exercises from [
folland
1] which one

should solve are:

(1) (3.3.1) Show that if {fn}n≥1 are elements of a Hilbert space, H, and we
have for some f ∈ H that

lim
n→∞

fn = f,

then for all g ∈ H we have

lim
n→∞

〈fn, g〉 = 〈f, g〉.

Answer: we would like to prove

lim
n→∞

〈fn, g〉 = 〈f, g〉.

This is equivalent to proving

lim
n→∞

〈fn, g〉 − 〈f, g〉 = 0.

So, next we follow the hint and estimate

|〈fn, g〉 − 〈f, g〉| = |〈(fn − f), g〉| ≤ ||fn − f ||||g||.



8 JULIE ROWLETT

The meaning of

lim
n→∞

fn = f

in a Hilbert space is that

lim
n→∞

||fn − f || = 0.

Hence, by some theorem about the product of limits, as long as they exist
(obs! limn→∞ ||g|| = ||g||, it’s just not changing at all), we have

lim
n→∞

||fn − f ||||g|| = ||g|| lim
n→∞

||fn − f || = 0.

(2) (3.3.2) Show that for all f , g in a Hilbert space one has

|||f || − ||g||| ≤ ||f − g||.

Answer: We follow the hint. For any real numbers a and b,

|a− b|2 = a2 − 2ab+ b2.

Next, we apply this fact with a = ||f || and b = ||g|| to obtain that

|||f || − ||g|||2 = ||f ||2 − 2||f ||||g||+ ||g||2.

We compare this to

||f − g||2 = ||f ||2 − 2<〈f, g〉+ ||g||2,

since

||f ||||g|| ≥ <〈f, g〉 =⇒ ||f ||2 − 2<〈f, g〉+ ||g||2 ≥ ||f ||2 − 2||f ||||g||+ ||g||2.

Thus we obtain

||f − g||2 ≥ |||f || − ||g|||2.
Taking the square root of both sides completes the proof.

(3) (3.3.10.d) Use Parseval’s equation to compute∑
n≥1

sin2(na)

n4
.

Answer:
a2(π − a)2

6
.

(4) (3.4.1) Show that {e2πi(mx+ny)}n,m∈Z is an orthogonal set in L2(R) where R
is any square whose sides have length one and are parallel to the coordinate
axes. Answer:∫ a+1

x=a

∫ b+1

y=b

e2πi(mx+ny)e−2πi(kx+`y)dxdy =

∫ a+1

x=a

e2πi(m−k)xdx

∫ b+1

y=b

e2πi(n−`)ydy.

For m 6= k, ∫ a+1

x=a

e2πi(m−k)xdx =
e2πi(m−k)x

2πi(m− k)

∣∣∣∣a+1

a

.

The function above is 1 periodic, so this is zero. Same holds for n 6= `.
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(5) (3.4.6) Find an example of a sequence {fn} in L2(0,∞) such that fn(x)→ 0
uniformly for all x > 0 but fn 6→ 0 in the L2 norm. Answer: let

fn(x) :=

{
1√
x+
√
n

0 ≤ x ≤ n

0 x > n
.

Then

0 ≤ lim
n→∞

fn(x) ≤ lim
n→∞

1√√
n

= 0.

So the convergence to zero is uniform on [0,∞). On the other hand

||fn||2L2 =

∫ ∞
0

|fn(x)|2dx =

∫ n

0

1

x+
√
n
dx = ln(x+

√
n)
∣∣n
x=0

= ln(n+
√
n)− ln(

√
n) = ln

(
n+
√
n√

n

)
= ln(

√
n+ 1).

This simultaneously shows that fn ∈ L2(0,∞) for all n, as well as that the
L2 norm of fn tends to infinity.

(6) (3.5.7) Find all solutions f on [0, 1] and all corresponding λ to the equation:

f ′′ + λf = 0, f(0) = 0, f ′(1) = −f(1).

Answer: the eigenvalues are λn = ν2n where νn are the positive solutions
of tan(ν) = −ν, and the eigenfunctions are sin(νnx).

(7) (4.2.3) Let f(x) be the initial temperature at the point x in a rod of length
`, mathematicized as the interval [0, `]. Assume that heat is supplied at
a constant rate at the right end, in particular ux(`, t) = A for a constant
value A, and that the left end is held at the constant temperature 0, so
that u(0, t) = 0. Find a series expansion for the temperature u(x, t) such
that the initial temperature is given by f(x). Answer:

u(x, t) = Ax+
∑
n≥1

(
bn +

(−1)n8A`

(2n− 1)2π2

)
e−(n−1/2)

2π2kt/(`2) sin((n− 1/2)πx/`).
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