FOURIER ANALYSIS & METHODS 2020.02.07

JULIE ROWLETT

ABSTRACT. Caveat Emptor! These are just informal lecture notes. Errors are
inevitable! Read at your own risk! Also, this is by no means a substitute
for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing
this? Good question...

1. SLPs

Recall the definition of a regular SLP:
(1) a formally self-adjoint differential operator
L(f) = (rf") +»pf,
where r and p are real valued, r, r’, and p are continuous, and r > 0 on
[a, b].
(2) self-adjoint boundary conditions:
Bi(f) = aif(a) + i f'(a) + Bif(b) + Bif () =0, i=1,2.
The self adjoint condition further requires that the coeflicients o, o/}, 8;, Bi
are such that for all f and g which satisfy these conditions

r@f =g fle=0.
(3) a positive, continuous function w on [a, b].
The SLP is to find all solutions to the BVP
L(f)+ wf=0, Bi(f)=0, i=12.

The eigenvalues are all numbers A for which there exists a corresponding non-zero
eigenfunction f so that together they satisfy the above equation, and f satisfies
the boundary condition. The magical theorem about SLPs says that for such a
regular SLP, there exists solutions {¢y, }»>1 with corresponding eigenvalues A,, such
that these {¢,},>1 are an orthogonal basis for the weighted £* space, £2 (a,b).
Moreover, these eigenvalues are all real. Let’s see just what makes this theorem so
magical...

1.1. SLP example for a PDE. Here is how the SLP theory can be useful in
practice. We are given the problem
U — Uge =0,  uz(0,t) = au(0,t), wu.(l,t) =—au(l,t), u(z,0)=f(z).
Above, we assume that
a>0, fer?
These boundary conditions are based on Newton’s law of cooling: the temperature

gradient across the ends is proportional to the temperature difference between the
1
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ends and the surrounding medium. It is a homogeneous PDE, so we have good
chances of being able to solve it using separation of variables. Thus, we write
T/ X//
w(z,t) = X(x)T(t) = T't)X(z) - X"(2)T(t) =0 = =%
This means both sides are equal to a constant. Call it A. We start with the z side,
because we have more information about that due to the BCs. Are they self-adjoint
BCs? Let’s check! In the definition of SLP, we are looking for X to satisfy

X//
7:)\ — X'"=)0X <<= X"-)\X=0.
OBS! The relationship between the constant we have named A from the PDE has

the opposite sign as the corresponding term in an SLP. So, the SLP would look like
X"+AX =0 A=-\

The r and w are both 1 in the definition of SLP, and the p is 0. The a = 0 and
b= 1. So, we need to check that if f and g satisfy

£1(0) = af(0), g'(1) =—ag(l)
then
(af — 7' Plo="0.
We plug it in
g f' (1) —g' D) f(1) — g(0)f'(0) + 5'(0) £(0)
= —g(Daf(l) + ag(l)f(1) — g(0)af(0) + ag(0)f(0) = 0.
Yes, the BC is a self-adjoint BC. So, the SLP theorem says there exists an £2 OB
of eigenfunctions. What are they? We check the cases.

X" =\X.
What if A =07 Then
X(z) =ax+b.
To get
X'(0)=aX(0) = a=ab = b= %
Next,

X'(1) = —aX(l) = a=—a(al+ %) — —alal +1).

Presumably a # 0 because if a = 0 the whole solution is just 0. So, we can divide
by it and we get
= 1l=—(al+1) = aol=-2.
Since [ > 0 and « > 0, this is impossible. So, no non-zero solutions for A = 0.
Next we try A > 0. Then the solution looks like

X(z) = aeV ™ 4 pe~ VA
or equivalently, we can use sinh and cosh, to write
X (z) = acosh(VAz) 4 bsinh(VAz).
We try out the BCs. They require
X'(0) = aX(0) <= aVAsinh(0) + bv/Acosh(0) = & (a cosh(0) + bsinh(0))

— WA=aa = b=

ea
o5
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‘We check out the other BC:

X'(I) = —aX(l) <= aVAsinh(VAl)+aacosh(VA) = —a (a cosh(VAI) + % sinh(x&l)) .

<~ aVAsinh(VAl) + Wsmh(ﬁl) = —2aa cosh(vV/Al)

If a = 0 the whole solution is zero, so we presume that is not the case and divide
by a. Then this requires

sinh(v/Al) B —2a
cosh(VA)  VA+a2/VA

The left side is positive, but the right side is negative. 4
Thus, we finally try A < 0. Then the solution looks like

X (z) = acos(y/|Alx) + bsin(/|A|x).

To get
aa

Nk

X'(0) =aX(0) = by/[N=aa = b=

Next we need
X'(I) =—-aX(l)

—av/| A sin(y/|All)+ [Al cos(\/|A]]) = —a (acos VIAID + sm (VA )
1/ | 1/

Presumably a # 0 because if that is the case then the whole solution is 0. SO7 we
may divide by a, and we need

20 cos v/|A| = sin(y/|A]l) <\/T|— ;W) .

This is equivalent to

= tan(y/|All)

aEs ﬁ
2
= e = /D,

Well, that’s pretty weird, but accordlng to the SLP theory, the sequence

a sin(v/| A\, |x
Tl (VI |)>

of eigenvalues and corresponding eigenfunctions is an orthogonal basis of £2. Here
since we are solving a PDE, it is most convenient to leave the coefficients simply as
an and solve for them according to the initial conditions of the PDE.

The partner functions

T, (t) satisfy T/ (t) = MTn(t) = T, (t) = e?

{Mntn>1 and { X, (2)} 1, Xan(z) =ayp (cos(\/ |Anlz) +

Here it is good to note that the A, < 0 and tend to —oo as n — oo which follows
from the Adult Spectral Theorem, because in the SLP terminology,

A, =)\, 200 = N\, = —00.
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So, for heat, that is realistic. We build the solution using superposition because
the PDE is linear and homogeneous, so

u(a,t) = Tn(t)Xn().

n>1

Since we wish this to be equal to the initial data at ¢ = 0, we demand
u(zr,0) = Z an, (COS(\/ [Anlz) + \/|O;\7| sin(\/|)\nx)> = f(z).

n>1
By the SLP theory, the functions above form an OB, so we can expand our initial
data function in terms of this OB. To do this we compute

_ (f(x), cos(v/[Anl) + \/f;—nlsin(\/wlxﬁ
|| cos(v/|Anl2) + \/l‘i—nlsm(\/l/\nlx)IIQ

where

(f(x), cos(v/[Anfz)+

l
sin(y/|\n|x)) = /0 f(z)(cos(v/|Anl|x) + sin(y/|An|z))dz,

«
VIAn|

1

@ @

|| cos(v/|An|z)+ —— sin(y/| \n|z)||* = / | cos(v/|An]z)+ sin(y/|\n|2z)|2da.
\/ |)\n| 0 \/ |An|

1.2. SLP example. SLPs may come from solving a PDE, but to avoid overcompli-

cating things, sometimes you will just need to solve an SLP by itself. For example:

(xf) + X f=0, f1)=f(b)=0b>1.

In this example the function r(z) = z, and the function p(x) = 0, whilst the weight
function w(z) = 2~!. Let us consider three cases for .
Case A = 0: If A =0, then the equation becomes

[An]

of 4+ f =0,
which we can re-arrange to
f/l 1
T

The left side is the derivative of log(f’). So, integrating both sides (saving the
constant for later):

log(f') = —log(x).
Exponentiating both sides we get

f = % = f(x) = Alog(z) + B,
for some constants A and B. The boundary conditions demand that
f(1)=0 = B=0.
The other boundary condition demands that
f(b)=0 = A =0, since b > 1 so log(b) > 0.

We are left with the zero function. That is never an eigenfunction. So A = 0 is not
an eigenvalue for this SLP.

Case A > 0: If A > 0, we observe that the equation we have is something called
an Euler equation. (Or we look up the ODE section of Beta and search for this
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type of ODE, and see that Beta tells us this is an Euler equaiton). Consequently,
we look for solutions of the form

f(z) =2a".
The differential equation we wish to solve is:
cf '+ f +x7lf =0 = 22f +af + A \f =0,
so substituting f(x) = ¥, this becomes
22(W)(v — 1)z "% 4 ava” ™t + Xa¥ = 0.
This simplifies to:
x”(uz—y—l—u—l—/\) =0 = 12 =-\
Since A > 0, this means
v =+iVA

So, a basis of solutions is VAl and 2=*V*. Note that

,Iiiﬁ _ e:l:i\/Xlog(a:).
By Euler’s formula, an equivalent basis of solutions is

cos(vVAlog(z)), sin(vAlog(z)).
Hence in this case our solution is of the form:
f(x) = Acos(VAlog(z)) + Bsin(v/Alog(z)).

The boundary conditions demand that

f)=0 = A=0.
The second boundary condition demands that

Bsin(vAlog(b)) = 0.
Since we do not seek the zero function, we presume that B # 0 and thus require

sin(VAlog(h)) =0 = VAlog(b) = nm, neN.

We therefore have countably many eigenfunctions and eigenvalues, which we may
index by the natural numbers, writing

n?m? nmlog(z)

= gy o) =sin (76 ).
Nice.

The last case to consider is case A < 0: We proceed similarly as above and
obtain that a basis of solutions is

2=V
Write our solution as
f(@) = AzVI 4+ Bp=VIM
The boundary conditions demand that:
f1)=0 = A+B=0 = B=-A.

The next boundary condition demands that:

FO) =AWV A VN =0 = A=00r 2V =p VN — VI =1 — /]| = 04.
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Thus the only way for the boundary conditions to be satisfied is if the eigenfunction
is the zero function, but this is not an eigenfunction! Hence no negative \ solutions.
The magical SLP theorem tells us that these rather peculiar functions

{fn (‘r)}n21
are an orthogonal basis for £2 /I(l, b). This means that for any g € £3 /x(l, b), we
can expand it as a Fourier series with respect to this basis. The coefficients will be

b - b
W, <ng”“>1/%=/1 9(x) fu(x)z™ da, \|fn||§/m:/1 | fo ()22 d.

If the function we wish to expand is specified, we could compute these integrals.

1.3. Another SLP example. Consider the problem
(@Y +Nf=0, f(1)=f(b)=0, b>1.
Here we have 7(r) = 2% and w(x) = 1. The equation is:
2 f + 22" + \f =0.

We shall consider the three cases for A.
Case A = 0: In this case the equation simplifies to

"
2
22 2uf =0 = —J}/ =—_ = (log(f'))’:—g — log(f') = —2logz = f/ =e 28

So, this gives us a solution of the form
1
f(z)=—-A—+B.
x
Let us verify the boundary conditions. We require f(1) = 0 so this means
—-A+B=0 = B=A.
We also require f(b) = 0 so this means

1 —A A

So since b > 1 the only solution here is the zero function which is not an eigenfunc-
tion.

Case A > 0: We consider the fact that this is an Euler equation, so we look for
solutions of the form f(z) = x¥. Then the equation looks like:

W) (v —1)2" 2 +22(w)z"  + X" =0 <= 2" (VP —v+20+ ) =0
so we need v to satisfy:
V4+rv+A=0.

This is a quadratic equation, so we solve it:

1 /1

So, actually the cases A > 0 and A < 0 really should split up into whether A = i
or is larger or smaller. If A = %, then we are only getting one solution this way,
712, To get a second solution we multiply by log .

Exercise 1. Plug the function =/ log x into the SLP for the value \ = i. Verify
that it satisfy the equation.
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Now, let’s see if such a function will satisfy the boundary conditions. We need

Az~Y? 4 Be=?log(x) L= 0 = A=0.

We also need
Bb~210g(b) =0, b>1 = B=0.
So we only get the zero solution in this case.
When A < %, solutions are of the form

1 1
Az"+ 4 Ba"- = 44/- =\
x’t +Dbx", vy 2 1

Exercise 2. Check the boundary conditions. Verify that they are satisfied if and
only if A= B =0.

Finally we consider A\ > %. Then we have

1 1 A B )
= _—Z 43 _ _ i/ A—1/4 774/)\71/4.
vy 5 Tt A 1 = f(x) —\/Ex + 753;

Using Euler’s formula, this is equivalently expressed as

% cos(y/ A —1/4logx) + %sin(\/)\ —1/4logz).

Due to the boundary condition at x = 1 we must have a = 0. So to obtain the
other boundary condition, we need

sin(v/A—1/4logh) =0 = /A —1/4logb=nm, neN.

Hence -

1 nemw 179 .
-+ —, z) =z 1/?sin
Note that in general we are not bothering to normalize our eigenfunctions because
it is rather tedious and not fundamental to our learning experience in this subject.

1
N AL — nm ogm).

logb

) . ifolland
1.4. Exercises for the week: Answers. Those exercises from [I] which one
should solve are:

(1) (3.3.1) Show that if {f,},>1 are elements of a Hilbert space, H, and we
have for some f € H that

lim f, = f,

n—oo

then for all g € H we have
lim <fnvg> = <f7g>'

n—o0

Answer: we would like to prove
Jim (fn, 9) = (/,9)-
This is equivalent to proving

n—oo

So, next we follow the hint and estimate

[(frs 9) = (9 = U(f = 1)) < I = FlllIgII-
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The meaning of

n—oo

in a Hilbert space is that
lim || f, — f|| = 0.
n—oo
Hence, by some theorem about the product of limits, as long as they exist
(obs! lim,— o ||g]] = |lg]], it’s just not changing at all), we have
lim || £ = fllllgll = llgl| lim [ fn — fI| = 0.
n o0 n—oo
(2) (3.3.2) Show that for all f, g in a Hilbert space one has
LA = Tlglll < 11 = gll-

Answer: We follow the hint. For any real numbers a and b,
la — b* = a® — 2ab + b2
Next, we apply this fact with a = ||f|| and b = ||g|| to obtain that
A1 = Mlgll1* = £ = 211f 1119l + gl

We compare this to

1f = gll* = 11 = 2R(f, 9) + llall?,

since

A9l = R F gy = IFI1° = 2R(f, 9) + Hgll? = 1£112 = 211 £ gl + [lgl]-
Thus we obtain

I1f = gll> = 11£1] = [lgllI*.

Taking the square root of both sides completes the proof.
(3) (3.3.10.d) Use Parseval’s equation to compute

in%(na
PR

n>1

Answer:
a?(m —a)?
6
(4) (3.4.1) Show that {e?i(m=+m)1 - is an orthogonal set in £2(R) where R
is any square whose sides have length one and are parallel to the coordinate

axes. Answer:

a+1 b+1 ) ) a+1 ) b+1 )
/ / e27r7,(m93+ny) 6727rz(kac+Zy) dIdy — / 6271'2(777,7k):vd'r / 62772(nfl)ydy.
rz=a Jy=b y=>b

r=a

For m # k,

a+1

a+1 2mi(m—k)x
/ e27r7i(m7k:)zdl, —_ € ( :
- 2mi(m — k)

=a a

The function above is 1 periodic, so this is zero. Same holds for n # £.
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(3.4.6) Find an example of a sequence { f,, } in £2(0, 0o) such that f,,(x) — 0
uniformly for all z > 0 but f,, 4 0 in the £2 norm. Answer: let

0 r>n

Then
0.

< I ) <
0= i, fa2) —,};H;or

So the convergence to zero is uniform on [0,00). On the other hand

(oo} n 1 n
1= [ i@l = [ e = m@+ v,

=In(n++/n) —In(v/n) =In <n J\r/ﬁﬁ> =In(vn+1).

This simultaneously shows that f,, € £2(0,00) for all n, as well as that the
£? norm of f,, tends to infinity.
(3.5.7) Find all solutions f on [0, 1] and all corresponding X to the equation:
ffHAf =0, f(0)=0, f(1)=-f(1).

Answer: the eigenvalues are )\, = 1/2 where v, are the positive solutions
of tan(v) = —v, and the eigenfunctions are sin(v,x).
(4.2.3) Let f(x) be the initial temperature at the point = in a rod of length
¢, mathematicized as the interval [0,¢]. Assume that heat is supplied at
a constant rate at the right end, in particular u,(¢,t) = A for a constant
value A, and that the left end is held at the constant temperature 0, so
that u(0,¢) = 0. Find a series expansion for the temperature u(z,t) such
that the initial temperature is given by f(x). Answer:

=Az+Y (b + ) sAL ) e (=12 TR/ () gin (n — 1/2) 7z /0).

2
n>1 1) g
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