Dugga

Fourieranalys/Fourier Metoder 2020

Namn och personnummer:

1. (1P) How many linearly independent solutions are there which satisfy:

$$
u_{t}=k u_{x x}, \quad t>0, \quad x \in(0, \ell), \quad u(0, t)=0, \quad u_{x}(\ell, t)=0 ?
$$

(a) there are no solutions
(b) there is precisely one solution
(c) there are infinitely many solutions
(d) there are precisely 42 solutions
2. (1P) Consider the following problem:

$$
\begin{cases}u_{t t}(x, t)-u_{x x}(x, t)=0 & 0<t, 0<x<1 \\ u(x, 0)=\sin (\pi x) & x \in[0,1] \\ u_{t}(x, 0)=0 & x \in[0,1] \\ u(0, t)=0=u(1, t) & t>0\end{cases}
$$

How can we solve this problem?
(a) take the Fourier transform of the PDE in the x variable
(b) solve a regular Sturm-Liouville problem and take the Laplace transform in the t variable
(c) use separation of variables, superposition and a Fourier series
(d) none of these will work
3. (1P) The Fourier series of the function which is equal to e^{x} on the interval $[-\pi, \pi]$ is

$$
\sum_{n \in \mathbb{Z}} \frac{(-1)^{n} \sinh \left(\pi^{2}\right)}{\pi(\pi-i n)} e^{i n x}
$$

Compute

$$
\sum_{n \in \mathbb{Z}} \frac{\sinh \left(\pi^{2}\right)}{\pi(\pi-i n)}
$$

(a) the series does not converge
(b) the series converges to e^{π}
(c) the series converges to $\frac{e^{\pi}+e^{-\pi}}{2}$
(d) none of these are correct
4. (1P) Let

$$
c_{n}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x e^{-i n x} d x
$$

Compute

$$
\sum_{n \in \mathbb{Z}}\left|c_{n}\right|^{2}
$$

(a) the series does not converge
(b) the series converges to 2π
(c) the series converges to π^{3}
(d) none of these are correct
5. (1P) Let

$$
c_{n}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin (x) e^{-i n x}
$$

Compute:

$$
\lim _{n \rightarrow \infty} c_{n} n^{42}
$$

(a) the limit does not exist
(b) the limit exists but there is insufficient information to compute its value
(c) the limit exists and is equal to 1
(d) none of these are correct

