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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are
inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its

Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. The illustrious Fourier transform

The following is a useful and fundamental collection of facts about the Fourier
transform. It may be useful to introduce the notations

F(f)(ξ) = f̂(ξ) = f̂(ξ).

Sometimes we feel like a wide hat, sometimes a narrow hat, and sometimes we need
that big F . It is useful to be fluent with all three equivalent notations.

Theorem 1 (Properties of the Fourier transform). Assume that everything below
is well defined. Then, the Fourier transform,

F(f)(ξ) := f̂(ξ) :=

∫
R
f(x)e−ixξdx

satisfies

(1) F(f(x− a))(ξ) = e−iaf̂(ξ).

(2) F(f ′)(ξ) = iξf̂(ξ)
(3) F(xf(x))(ξ) = iF(f)′(ξ)

(4) F(f ∗ g)(ξ) = f̂(ξ)ĝ(ξ)

Proof: We just compute (we are being a bit naughty, not bothering with issues
of convergence, but all such issues are indeed rigorously verifiable, so not to worry).
First

F(f(x− a))(ξ) =

∫
R
f(x− a)e−ixξdx.

Change variables. Let t = x− a, then dt = dx, and x = t+ a so

F(f(x− a))(ξ) =

∫
R
f(t)e−i(t+a)ξdt = e−iaξ f̂(ξ).

The next one will come from integrating by parts:∫
R
f ′(x)e−ixξdx = f(x)e−ixξ

∣∣∞
−∞ −

∫
R
−iξf(x)e−ixξdx = iξf̂(ξ).
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The boundary terms vanish because of reasons (again it is L1 and L2 theory stuff).
Similarly we compute∫

R
xf(x)e−ixξdx = −1

i

∫
R
f(x)

d

dξ
e−ixξdx = i

d

dξ

∫
R
f(x)e−ixξdx = iF(f)′(ξ).

Finally,

F(f ∗ g)(ξ) =

∫
R
f ∗ g(x)e−ixξdx =

∫
R

∫
R
f(x− y)g(y)e−ixξdydx.

We do a little sneaky trick

=

∫
R

∫
R
f(x− y)g(y)e−ixξe−iyξeiyξdydx

=

∫
R

∫
R
f(x− y)e−i(x−y)ξg(y)e−iyξdydx.

Let z = x− y. Then dz = −dy so

=

∫
R

∫ −∞
∞

f(z)e−izξ(−dz)g(y)e−iyξdy =

∫
R

∫
R
f(z)e−izξdzg(y)e−iyξdy

= f̂(ξ)ĝ(ξ).

It shall be quite useful to know how to “undo” the Fourier transform.

Theorem 2 (Extension of Fourier transform to L2). There is a well defined unique
extension of the Fourier transform to L2(R). The Fourier transform of an element
of L2(R) is again an element of L2(R). Moreover, for any f ∈ L2(R) we have the
FIT (Fourier Inversion Theorem):

eq:fiteq:fit (1.1) f(x) =
1

2π

∫
R
f̂(ξ)eixξdξ.

The theory item FIT is a Julklapp. All you need to know is the equation (
eq:fiteq:fit
1.1).

The next theorem is also a theory item, with a short proof. The key is to start on
the right side and use the FIT.

Theorem 3 (Plancharel). For any f ∈ L2(R), f̂ ∈ L2(R). Moreover,

〈f̂ , ĝ〉 = 2π〈f, g〉,
and thus

||f̂ ||2L2 = 2π||f ||2,
for all f and g in L2(R).

Proof: Start with the right side and use the FIT on f , to write

2π〈f, g〉 = 2π

∫
R

∫
R

1

2π
eixξ f̂(ξ)g(x)dξdx =

∫
R

∫
R
eixξ f̂(ξ)g(x)dξdx.

Move the complex conjugate to engulf the eixξ,

=

∫
R

∫
R
f̂(ξ)g(x)e−ixξdξdx.

Swap the order of integration and integrate x first:

=

∫
R

∫
R
f̂(ξ)g(x)e−ixξdxdξ =

∫
R
f̂(ξ)ĝ(ξ)dξ = 〈f̂ , ĝ〉.
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We may from time to time use the following cute fact as well.

Lemma 4 (Riemann & Lebesgue). Assume f ∈ L1(R). Then,

lim
ξ→±∞

f̂(ξ) = 0.

We shall indeed need to actually prove the next one, because it’s going to be
quite important for solving the heat equation on the real line.

1.1. The big bad convolution approximation theorem. This theory item is
Theorem 7.3, regarding approximation of a function by convoluting it with a so-
called “approximate identity.” This theorem and its proof are both rather long.
The proof relies very heavily on knowing the definition of limits and how to work
with those definitions, so if you’re not comfortable with ε and δ style arguments, it
would be advisable to brush up on these.

Theorem 5. Let g ∈ L1(R) such that∫
R
g(x)dx = 1.

Define

α =

∫ 0

−∞
g(x)dx, β =

∫ ∞
0

g(x)dx.

Assume that f is piecewise continuous on R and its left and right sided limits exist
for all points of R. Assume that either f is bounded on R or that g vanishes outside
of a bounded interval. Let, for ε > 0,

gε(x) =
g(x/ε)

ε
.

Then

lim
ε→0

f ∗ gε(x) = αf(x+) + βf(x−) ∀x ∈ R.

Proof. Idea 1: Do manipulations to get a “left side” statement and a “right side”
statement.

We would like to show that

lim
ε→0

∫
R
f(x− y)gε(y)dy = αf(x+) + βf(x−)

which is equivalent to showing that

lim
ε→0

∫
R
f(x− y)gε(y)dy − αf(x+)− βf(x−) = 0.

We now insert the definitions of α and β, so we want to show that

lim
ε→0

∫
R
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy −

∫ ∞
0

f(x−)g(y)dy = 0.

We can prove this if we show that

♥ : lim
ε→0

∫
−∞

f(x− y)gε(y)dy −
∫ 0

−∞
f(x+)g(y)dy = 0
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and also

? : lim
ε→0

∫ ∞
0

f(x− y)gε(y)dy −
∫ ∞
0

f(x−)g(y)dy = 0.

In the textbook, Folland proves that ? holds. So, for the sake of diversity, we
prove that ♥ holds. The argument is the same for both, so proving one of them is
sufficient.

Hence, we would like to show that by choosing ε sufficiently small, we can make∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy

as small as we like. To make this precise, let us assume that “as small as we like”
is quantified by a very small δ > 0. Then we show that for sufficiently small ε we
obtain ∣∣∣∣∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy

∣∣∣∣ < δ.

Idea 2: Smash the two integrals together:∫ 0

−∞
(f(x− y)gε(y)− f(x+)g(y)) dy.

Well, this is a bit inconvenient, because in the first part we have gε, but in the
second part it’s just g.

Idea 3: Sneak gε into the second term. We make a small observation,∫ 0

−∞
g(y)dy =

∫ 0

−∞
g(z/ε)

dz

ε
=

∫ 0

−∞
gε(z)dz

Above, we have made the substitution z = εy, so y = z/ε, and dz/ε = dy. The
limits of integration don’t change. By this calculation,∫ 0

−∞
f(x+)g(y)dy =

∫ 0

−∞
f(x+)gε(y)dy.

(Above the integration variable was called z, but what’s in a name? The name of
the integration variable doesn’t matter!). Moreover, note that f(x+) is a constant,
so it’s just sitting there doing nothing. Hence, we have computed that∫ 0

−∞
(f(x− y)gε(y)− f(x+)g(y)) dy =

∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy.

Remember that y ≤ 0 where we’re integrating. Therefore, x− y ≥ x.
Idea 4: Use the definition of right hand limit:

lim
y↑0

f(x− y) = f(x+) =⇒ lim
y↑0

f(x− y)− f(x+) = 0.

By the definition of limit there exists y0 < 0 such that for all y ∈ (y0, 0)

|f(x− y)− f(x+)| < δ̃.

We are using δ̃ for now, to indicate that δ̃ is going to be something in terms of
δ, engineered in such a way that at the end of our argument we get that for ε
sufficiently small, ∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣ < δ.
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To figure out this δ̃, we use our estimate on the part of the integral from y0 to 0,∣∣∣∣∫ 0

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy

≤ δ̃
∫ 0

y0

|gε(y)|dy ≤ δ̃
∫
R
|gε(y)|dy = δ̃||g||.

Above, we have used the same substitution trick to see that∫
R
|gε(y)|dy =

∫
R
|g(z)|dz = ||g||,

where ||g|| is the L1(R) norm of g. By assumption, g ∈ L1(R), so this L1 norm is
finite. Moreover, because we know that∫

R
g(y)dy = 1,

we know that

||g|| =
∫
R
|g(y)|dy ≥

∣∣∣∣∫
R
g(y)dy

∣∣∣∣ = 1.

So, let

δ̃ =
δ

2||g||
.

Note that we’re not dividing by zero, by the above observation that ||g|| ≥ 1. So,
this is a perfectly decent number. Then, we have the estimate (repeating the above
estimate)∣∣∣∣∫ 0

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy

≤ δ̃
∫ 0

y0

|gε(y)|dy ≤ δ̃
∫
R
|gε(y)|dy = δ̃||g|| = δ

2
.

Idea 5: To deal with the other part of the integral, from −∞ to y0, consider
the two cases given in the statement of the theorem separately. It is important to
remember that

y0 < 0.

So, we wish to estimate ∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ .
First, let us assume that f is bounded, which means that there exists M > 0 such
that |f(x)| ≤M holds for all x ∈ R. Hence

|f(x− y)− f(x+)| ≤ |f(x− y)|+ |f(x+)| ≤ 2M.

So, we have the estimate∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy ≤ 2M

∫ y0

−∞
|gε(y)|dy.

We shall do a substitution now, letting z = y/ε. Then, as we have computed before,∫ y0

−∞
|gε(y)|dy =

∫ y0/ε

−∞
|g(z)|dz.
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Here the limits of integration do change, because y0 < 0. Specifically y0 6= 0, which
is why the top limit changes. We’re integrating between −∞ and y0/ε. We know
that y0 < 0. So, when we divide it by a really small, but still positive number, like
ε, then y0/ε→ −∞ as ε→ 0. Moreover, we know that∫ 0

−∞
|g(y)|dy <∞.

What this really means is that

lim
R→−∞

∫ 0

R

|g(y)|dy =

∫ 0

−∞
|g(y)|dy <∞.

Hence,

lim
R→−∞

∫ 0

−∞
|g(y)|dy −

∫ 0

R

|g(y)|dy = 0.

Of course, we know what happens when we subtract the integral, which shows that

lim
R→−∞

∫ R

−∞
|g(y)|dy = 0.

Since
lim
ε→0

y0/ε = −∞,

this shows that

lim
ε→0

∫ y0/ε

−∞
|g(y)|dy = 0.

Hence, by definition of limit there exists ε0 > 0 such that for all ε ∈ (0, ε0),∫ y0/ε

−∞
|g(y)|dy < δ

4(M + 1)
.

Then, combining this with our estimates, above, which we repeat here,∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy ≤ 2M

∫ y0

−∞
|gε(y)|dy

< 2M
δ

4(M + 1)
<
δ

2
.

Therefore, we have the estimate that for all ε ∈ (0, ε0),∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣
≤
∫ 0

−∞
|gε(y)||f(x−y)−f(x+)|dy ≤

∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy+

∫ 0

y0

|f(x−y)−f(x+)||gε(y)|dy

<
δ

2
+
δ

2
= δ.

Finally, we consider the other case in the theorem, which is that g vanishes
outside a bounded interval. We retain the first part of our estimate, that is∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy < δ

2
.

Next, we again observe that

lim
ε↓0

y0
ε

= −∞.
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By assumption, we know that there exists some R > 0 such that

g(x) = 0∀x ∈ R with |x| > R.

Hence, we may choose ε sufficient small so that
y0
ε
< −R.

Specifically, let

ε0 =
1

−Ry0
> 0.

Then for all ε ∈ (0, ε0) we compute that
y0
ε
< −R.

Hence for all y ∈ (−∞, y0/ε) we have g(y) = 0. Thus, we compute as before using
the substitution z = y/ε,∫ y0

−∞
|f(x− y)− f(x+)||gε(y)|dy =

∫ y0/ε

−∞
|f(x− εz)− f(x+)||g(z)|dz = 0,

because g(z) = 0∀z ∈ (−∞, y0/ε). Thus, we have the total estimate that for all
ε ∈ (0, ε0), ∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣
≤
∫ 0

−∞
|gε(y)||f(x−y)−f(x+)|dy ≤

∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy+

∫ 0

y0

|f(x−y)−f(x+)||gε(y)|dy

< 0 +
δ

2
≤ δ.

�

1.2. Exercises for the week to be demonstrated. On Monday in the large
group we shall have:

(1) (7.2.13.b) Use Plancharel’s theorem to compute:∫
R

t2

(t2 + a2)(t2 + b2)
dt =

π

a+ b
.

(2) (Eö 12) Let

f(t) =

∫ 1

0

√
wew

2

cos(wt)dw.

Compute ∫
R
|f ′(t)|2dt.

(3) (7.4.1.a,b) Compute the Fourier sine and cosine transforms of e−kx. These
are defined, respectively, to be

Fs[f ](ξ) =

∫ ∞
0

f(x) sin(ξx)dx, Fc[f ](ξ) =

∫ ∞
0

f(x) cos(ξx)dx.

On Wednesday or Friday depending on your group we shall have:

(1) (Eö 6.a, b) Compute the Fourier transforms of:

t

(t2 + a2)2
,

1

(t2 + a2)2
.
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(2) (Eö 7) A function has Fourier transform

f̂(ξ) =
ξ

1 + ξ4
.

Compute ∫
R
tf(t)dt, f ′(0).

(3) (7.3.2) Use the Fourier transform to derive the solution of the inhomoge-
neous heat equation ut = kuxx+G(x, t) with initial condition u(x, 0) = f(x)
(assume f ∈ L2(R):

u(x, t) = f ∗Kt(x) +

∫
R

∫ t

0

G(y, s)Kt−s(x− y)dsdy.

Here

Kt(x) =
1√

4πkt
e−x

2/4kt.

1.3. Exercises for the week to be done oneself.

(1) (Eö 9) Compute (with help of Fourier transform)∫
R

sin(x)

x(x2 + 1)
dx.

(2) (Eö 67) Compute the Fourier transform of the characteristic function for
the interval (a, b) both directly and by using the known case for the interval
(−a, a).

(3) (7.2.8) Given a > 0 let f(x) = e−xxa−1 for x > 0, f(x) = 0 for x ≤ 0.

Show that f̂(ξ) = Γ(a)(1 + iξ)−a where Γ is the Gamma function.
(4) (7.2.12) For a > 0 let

fa(x) =
a

π(x2 + a2)
, ga(x) =

sin(ax)

πx
.

Use the Fourier transform to show that: fa∗fb = fa+b and ga∗gb = gmin(a,b).
(5) (Eö 6.d,e) Compute the Fourier transform of:

e−a|t| sin(bt), (a, b > 0),
t

t2 + 2t+ 5
.

(6) (Eö 15) Find a solution to the equation

u(t) +

∫ t

−∞
eτ−tu(τ)dτ = e−2|t|.

(7) (Eö 11) For the function

f(t) =

∫ 2

0

√
w

1 + w
eiwtdw,

compute ∫
R
f(t) cos(t)dt,

∫
R
|f(t)|2dt.
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