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1. Lös problemet: 
u(0, t) = 0 t > 0

ut(x, t)− uxx(x, t) = 0 t, x > 0

u(x, 0) = xe−x x > 0

Does this look familiar? Indeed it is quite similar to the first problem
on the exam in March. So hopefully by now you can solve this type
of problem! To figure out what we should do, let’s investigate the
boundary condition. The boundary condition is that

u(0, t) = 0.

To achieve such a condition, we should extend the initial data oddly.
The initial data is the function

xe−x, x > 0.

This is in L2 for x > 0. Extending oddly, we write

fo(x) = f(x) = xe−x, x > 0, fo(x) = −f(−x) = xex x < 0.

Note that this function is still in L2, in fact it is simply the function
xe−|x|.

Let’s apply the Fourier transform to the PDE in the x variable:

ût(ξ, t)− ûxx(ξ, t) = 0.

The properties of the Fourier transform say that

ûxx(ξ, t) = (−iξ)2û(ξ, t),



so our equation becomes

ût(ξ, t) + ξ2û(ξ, t) = 0 =⇒ û(ξ, t) = a(ξ)e−ξ
2t.

Above we have solved the ODE for the Fourier transform where the
ODE variable is the variable t, and the variable ξ is an independent
variable. The initial condition is that

û(ξ, 0) = a(ξ) = f̂o(ξ).

So,
û(ξ, t) = f̂o(ξ)e

−ξ2t.

The Fourier transform sends a convolution to a product. We look at
the table to find a function whose Fourier transform is e−ξ

2t. We know
a function whose Fourier transform is f̂o(ξ), simply fo. So,

u(x, t) =
1√
4πt

∫
R
fo(y)e−(x−y)

2/(4t)dy.

To put this in terms of the original function, and verify the boundary
condition, we recall the definition of fo as being an odd extension, so

u(x, t) =
1√
4πt

(∫ 0

−∞
fo(y)e−(x−y)

2/(4tdy +

∫ ∞
0

f(y)e−(x−y)
2/(4t)dy

)
.

We can turn the integral on the negative real axis into an integral on
the positive real axis. To do this, let z = −y, then∫ 0

−∞
fo(y)e−(x−y)

2/(4tdy =

∫ 0

∞
fo(−z)e−(x+z)

2/(4t)(−dz) =

∫ ∞
0

fo(−z)e−(x+z)
2/(4t)dz.

Since
fo(−z) = −fo(z) z > 0,

this is

−
∫ ∞
0

f(z)e−(x+z)
2/(4t)dz.

Now, the name of the variable of integration is irrelevant, so we may
as well re-name it back to y, and then we have

u(x, t) =
1√
4πt

∫ ∞
0

f(y)
(
e−(x−y)

2/(4t) − e−(x+y)2/(4t)
)
dy



=
1√
4πt

∫ ∞
0

ye−y
(
e−(x−y)

2/(4t) − e−(x+y)2/(4t)
)
dy

If x = 0 then the two terms in parentheses cancel. So we see that
the boundary condition is satisfied. Since we worked always with L2

functions, the convolution approximation theorem guarantees that the
initial condition is also satisfied.

Since it might be helpful, here is basically how partial credit will be
dished out. In case any of these items is somewhat messed up, but
half-right, you’d get 1p instead of 2p.

(a) (2p) Using Fourier transform method in the x variable.

(b) (2p) Extending the initial condition oddly.

(c) (2p) Correctly Fourier transforming the PDE.

(d) (2p) Solving the ODE for the Fourier transform of the solution
correctly.

(e) (2p) Correctly inverting the Fourier transform to obtain the solu-
tion (going backwards correctly).

2. Lös problemet: 
u(0, t) = sin(t)et t > 0

ut(x, t)− uxx(x, t) = 0 t, x > 0

u(x, 0) = 0 x > 0

This should also look pretty familiar. In this case we have that strange
x = 0 boundary condition which depends on t. This tells us to use
Laplace transform methods. We Laplace transform the PDE in the t
variable:

ũt(x, z)− ũxx(x, z) = 0.

We use the properties of the Laplace transform and the nice homoge-
neous initial condition to obtain:

zũ(x, z)− ũxx(x, z) = 0.

We solve this ODE to obtain:

ũ(x, z) = a(z)e−x
√
z + b(z)ex

√
z.



The properties of the Laplace transform imply (indeed it was a Theo-
rem) that anything which is Laplace-transformable will→ 0 as the real
part of z tends to infinity. For x > 0 (which it is since we work in the
positive real line on this problem) the second term will not satisfy that
unless b has some really great decay properties. However b doesn’t de-
pend on x so if x→∞ also, then b cannot save this term from growing
exponentially. Thus, we try to solve the problem using only the other
term. The boundary condition says:

ũ(0, z) = ˜sin(t)et(z) = a(z) =⇒ ũ(x, z) = ˜sin(t)et(z)e−x
√
z.

We know that the Laplace transform takes a convolution to a product.
We know where the first term came from, so we look for a function
whose Laplace transform is e−x

√
z. We look at the lovely table. We

see that to get 2a−1
√
πe−a

√
z as the Laplace transform we should start

with H(t)t−3/2e−a
2/(4t). So with our problem, we would want a = x,

and to obtain e−x
√
z as the Laplace transform we should start with

x

2
√
πt3/2

H(t)e−x
2/(4t).

Hence

u(x, t) =

∫
R
H(s) sin(s)esH(t− s) x

2
√
π(t− s)3/2

e−x
2/(4(t−s))ds.

This is because the Laplace transform is in the t variable, so that’s the
variable for the convolution, and also because the Laplace transform
needs the functions inside to be zero for negative values (hence the
Heavyside factors). With these Heavyside factors in mind, we obtain

u(x, t) =

∫ t

0

sin(s)es
x

2
√
π(t− s)3/2

e−x
2/(4(t−s))ds.

Here is how partial credit will be dished out. In case any of these items
is somewhat messed up, but half-right, you’d get 1p instead of 2p. The
main idea is that you get points for things you do which bring you
closer to the solution. If you do something which will not get you any
closer to the solution, no points are awarded for such useless steps.



(a) (2p) Choosing to use Laplace transform methods (in the correct
variable of course).

(b) (2p) Correctly Laplace transforming the PDE.

(c) (2p) Solving the ODE for the Laplace transform of the solution
correctly to get the general solution.

(d) (2p) Discarding the non-Laplace-transformable part of the solu-
tion and using the BC to determine the Laplace transform of the
solution to the PDE. (Basically going from the general solution of
the ODE to the particular solution correctly here).

(e) (2p) Correctly inverting the Laplace transform to obtain the so-
lution (going backwards correctly).

3. Lös ekvationen:

u(t) +

∫ ∞
−∞

e−(t−τ)
2

u(τ)dτ = e−|t|.

The déjà vu continues. This is intentional. Each year three exams will
be created which are all rather similar. The idea is that if you try once
but do not succeed, you study for the second exam. You should study
carefully the problems which foiled you on the first exam. Hopefully
the second time around you will succeed with these problems. If not,
keep calm and study on. Again, you should study the problems that
you missed in the first and second exams. By the way, if you are having
trouble with these, you should ask for help, always happy to help stu-
dents who are studying and trying to learn, and sympathetic to the fact
that this is not easy math! Anyhow, by the third time around, we re-
ally really hope that you’ve mastered the problems which stumped you
on the first and second exams, so that you’ll pass the third exam. So,
the exams will be in this sort of similar-but-not-identical-triplets, with
the goal of helping you all learn the material and eventually succeed
with it.

Let’s continue with the solution. The second term is a convolution,
and the term on the right is one of the items on our list of Fourier
transforms. So let us transform this entire equation:

û(ξ) + û(ξ)
√
πe−ξ

2/4 =
2

ξ2 + 1
.



This is because the Fourier transform of a convolution is the product
of the Fourier transforms, and the Fourier transform of e−|x| as well as
e−x

2
are given in the handy table at the end. We solve this equation

for û(ξ):

û(ξ)
(

1 +
√
πe−ξ

2/4
)

=
2

ξ2 + 1
=⇒ û(ξ) =

2

(ξ2 + 1)(1 +
√
πe−ξ2/4)

.

Finally, we use the Fourier Inversion Theorem to write

u(x) =
1

2π

∫
R
eixξ

2

(ξ2 + 1)(1 +
√
πe−ξ2/4)

dξ.

Points:

(a) (2p) Choosing to use Fourier transform methods.

(b) (2p) Correctly Fourier transforming the equation.

(c) (3p) Correctly solving for the Fourier transform of u.

(d) (3p) Correctly giving the Fourier inversion formula.

4. Lös problemet:
utt(x, t)− uxx(x, t) = xex 0 < t, 0 < x < 1

u(x, 0) = 0 x ∈ [0, 1]

ut(x, 0) = h(x) ∈ C0[0, 1] x ∈ [0, 1]

u(0, t) = 0 = u(1, t) t > 0

Now we are in the world of bounded intervals. The boundary conditions
are fantastic. The initial conditions are fine. The only issue is that the
PDE is not homogeneous. However, it is time independent. So we can
attempt to deal with this by finding a steady state (that means time
independent) solution. So we first seek a function φ which satisfies

−φ′′(x) = xex.

We would also like to preserve the beautiful boundary conditions, so
we politely request that

φ(0) = φ(1) = 0.



To solve the ODE, note that xex has derivative xex+ex. So the function
xex − ex has derivative equal to xex. Repeating this idea, the function
xex − 2ex has second derivative equal to xex. So a particular solution
to the ODE is

−xex + 2ex.

Solutions to the homogeneous version of this ODE are linear functions.
So a general solution is

φ(x) = −xex + 2ex + ax+ b,

for some constants a and b. To achieve the boundary condition at
x = 0, we need b = −2. To achieve the boundary condition at x = 1
we need

0 = −e+ 2e+ a+−2 =⇒ a = 2− e.
So we define

φ(x) = −xex + 2ex + (2− e)x− 2.

Now, we just need to solve a nicer problem:
vtt(x, t)− vxx(x, t) = 0 0 < t, 0 < x < 1

v(x, 0) = −φ(x) x ∈ [0, 1]

vt(x, 0) = h(x) ∈ C0[0, 1] x ∈ [0, 1]

v(0, t) = 0 = v(1, t) t > 0

.

Then, the full solution will be

u(x, t) = φ(x) + v(x, t).

Note that our initial data is still beautiful, continuous, and certainly
therefore in L2(0, 1). Moreover, the boundary conditions are fantastic
(self adjoint in particular). So Fourier series methods ought to work
here.

We approach the problem at hand now by separating variables writing

v = X(x)T (t).

We put this into the PDE:

T ′′(t)X(x)−X ′′(x)T (t) = 0.



We tidy it up so that all time dependent terms are on one side, and
all space dependent terms are on the other side. So, to achieve this we
first divide by XT and then re-arrange:

T ′′

T
=
X ′′

X
.

Since the two sides depend on different variables, they must both be
constant. So, we look for solutions to

T ′′

T
= constant =

X ′′

X
.

We start with the X side because its conditions are homogeneous and
simple. In particular, we seek to solve

X ′′ = λX, X(0) = X(1) = 0.

If you recognize the solutions will be sines, you can “skip to the good
bit.” Otherwise one needs to check all cases. First case, λ = 0. Then
X would be a linear function. Linear functions cannot go up and then
down. They either go up, down, or lie flat. In this case, to have
X(0) = X(1) = 0, we need the flatline zero linear function. That will
not contribute anything non-zero to our solution.

In the next case λ > 0. So, the solution to the equation could be written
as either a linear combination of e±

√
λx or as a linear combination of

hyperbolic sine and cosine. Let us use the latter, because 0 is in our
interval. Writing

a cosh(
√
λx) + b sinh(

√
λx)

the condition to vanish at x = 0 requires that a = 0. The condition to
vanish at x = 1 would require (if we want b 6= 0) that sinh(

√
λ) = 0.

The only real number at which the sinh vanishes is at zero. So we would
need λ = 0. However that contradicts the case we are in. Therefore
the case λ > 0 yields no non-zero solutions.

Finally, we have the case λ < 0. In this case the solutions are linear
combinations of sin(

√
|λ|x) and cos(

√
|λ|x). The condition to vanish at

zero means that there cannot be a cosine term. Moreover, the condition
to vanish at x = 1 means that we need

√
|λ| to be an integer multiple



of π. Consequently, all solutions we find in this way are, up to constant
factors,

Xn(x) = sin(nπx), λn = −n2π2.

This informs us what the T function must be since

T ′′n
Tn

= λn = −n2π2 =⇒ Tn(t) = a linear combination of sin(nπt) and cos(nπt).

In the last step, we put together all theXnTn pairs, by the superposition
principle, because the PDE is homogeneous, thereby creating our super
solution:

v(x, t) =
∑
n≥1

Xn(x) (an cos(nπt) + bn sin(nπt)) .

We shall need the constant factors now to guarantee that the initial
conditions are satisfied. First we have the condition at t = 0 for the
function,

v(x, 0) =
∑
n≥1

anXn(x) = −φ(x) =⇒ an =

∫ 1

0
−φ(x)Xn(x)∫ 1

0
|Xn|2

.

The reason we can expand the function −φ(x) in a Fourier Xn series is
that the SLP theory guarantees that the functions Xn form an orthog-
onal basis for L2 on the interval [0, 1].

Next we have the condition for the derivative at zero, so

vt(x, 0) =
∑
n≥1

bn(nπ)Xn(x) = h(x) =⇒ bn =

∫ 1

0
hXn

nπ
∫ 1

0
|Xn|2

.

Similar considerations justify the expansion of h in a Fourier Xn series.
We have therefore specified all quantities in our solution.

Points:

(a) (1p) Choosing to find a steady state solution to deal with the
inhomogeneity in the PDE.

(b) (2p) Correctly solving for the steady state solution to solve the
inhomogeneous PDE and not screw up the nice BC.



(c) (1p) Setting up the next problem to solve correctly. (homog. PDE,
modified IC, same BC, then observe full solution will be sum of
these two).

(d) (2p) Choosing to use separation of variables.

(e) (2p) Obtaining the Xn part of the solution correctly.

(f) (2p) Obtaining the Tn part of the solution, in particular getting
the an and the bn coefficients correctly.

5. Beräkna:

lim
N→∞

N∑
n=−N

1

π + n
.

(Tips: beräkna Fourier-serien av den 2π periodiska funktionen som är
lika med cos(πx) i intervallet (−π, π).)

Let’s follow the hint. The Fourier coefficients are

cn =
1

2π

∫ π

−π
cos(πx)e−inxdx.

For me, it is easier to turn the cosine into

cos(πx) =
eiπx + e−iπx

2
.

So I will do this and then compute

cn =
1

4π

∫ π

−π
eiπx−inx + e−iπx−inxdx

=
1

4π(iπ − in)

(
eπ(iπ−in) − e−π(iπ−in)

)
+

1

4π(−iπ − in)

(
eπ(−iπ−in) − e−π(−iπ−in)

)
.

=
1

2π(π − n)
(−1)n sin(π2) +

1

2π(π + n)
(−1)n sin(π2)

=
(−1)n sin(π2)

2π

(
π + n+ (π − n)

(π − n)(π + n)

)
=

(−1)n sin(π2)

2π

2π

π2 − n2
.



So the Fourier series for the function which is equal to cos(πx) in the
interval (−π, π) and is 2π periodic is∑

n∈Z

(−1)n sin(π2)

(π2 − n2)
einx.

Now we are going to have to think a bit. We want to use this somehow
to compute the rather mysterious sum

N∑
n=−N

1

π + n
,

when N →∞. Note that we can pair up terms of the form ±n for all
non-zero n. When we do this we get:

1

π
+

N∑
n=1

1

π + n
+

1

π − n
=

1

π
+

N∑
n=1

π − n+ π + n

π2 − n2
=

1

π
+

N∑
n=1

2π

π2 − n2
.

Hope springs eternal! To get our Fourier series looking like this we
want to get rid of the pesky alternation (−1)n. To do that we choose
to evaluate the series at x = π. What is the limit of the series? We
must use the theorem on the pointwise convergence of Fourier series.
When we do this, we get that the series at x = π converges to the sum
of the left and right limits of our function. It is 2π periodic. So

lim
x→π,x<π

is cos(π2).

On the other hand

lim
x→π,x>π

is lim
x→−π,x>−π

= cos(−π2).

(maybe draw a picture to see this? It is because of the 2π periodicity.)
So the average of these limits gives us that the Fourier series converges
to

cos(π2) + cos(−π2)

2
=
∑
n∈Z

(−1)n sin(π2)

(π2 − n2)
einπ.

Note that einπ = (−1)n. So this series simplifies to∑
n∈Z

sin(π2)

(π2 − n2)
.



The terms are the same for n = ±1,±2, . . ., so the series simplifies to

sin(π2)

π2
+
∑
n≥1

2 sin(π2)

(π2 − n2)
.

Hence we have the equality

cos(π2) + cos(−π2)

2
=

sin(π2)

π2
+
∑
n≥1

2 sin(π2)

(π2 − n2)
.

The cosine is even, so we can simplify and re-arrange things a bit to
obtain

cos(π2)− sin(π2)

π2
= sin(π2)

∑
n≥1

2

π2 − n2
.

We therefore obtain:∑
n≥1

2

π2 − n2
=

(
cos(π2)− sin(π2)

π2

)
1

sin(π2)
= cot(π2)− 1

π2
.

So, we therefore have that

lim
N→∞

N∑
n=−N

1

π + n
= lim

N→∞

1

π
+

N∑
n=1

2π

π2 − n2
=

1

π
+π

(
cot(π2)− 1

π2

)
= π cot(π2).

Points:

(a) (1p) Correct definition of Fourier coefficient cn for the function
cos(πx).

(b) (1p) Correctly computing these coefficients.

(c) (4p) Correctly applying the theorem on pointwise convergence of
Fourier series to evaluate the series at x = π.

(d) (2p) Correctly manoeuvring the series in question from the state-
ment of the problem to make it look like the Fourier series.

(e) (2p) Solving for the sum and getting it right.



6. Visa att om n ∈ N

πJn(z) =

∫ π

0

cos(z sin θ − nθ)dθ.

(Tips: nästa uppgift med z = eiθ.)

You know how in WatchMojo there is the “one per list?” Well this is
the “one per exam” problem that is a little unpredictable. Each exam
should have a problem which is a little bit original, to keep things
interesting. So that you all have good chances of passing the exam, the
other problems should be more on the predictable side.

We follow the hint. We use the following exercise and make the special
choice of z = eiθ. Then you have the equality:

∞∑
n=−∞

Jn(x)einθ = e
x
2
(eiθ− 1

eiθ
) = e

x
2
(eiθ−e−iθ) = eix sin(θ).

This means that the Fourier coefficients of the function which is equal
to eix sin(θ) on (−π, π) and extended to be 2π periodic is equal to Jn(x).
So, by definition of Fourier coefficient we have

Jn(x) =
1

2π

∫ π

−π
eix sin(θ)e−inθdθ.

Now we use Euler’s formula to re-write this in terms of cosine and sine
to get closer to the integral expression given in the problem

Jn(x) =
1

2π

∫ π

−π
cos(x sin θ − nθ) + i sin(x sin θ − nθ)dθ.

Due to the oddness of the sine, the integral with the sine vanishes. Due
to the evenness of the cosine, that term is

1

π

∫ π

0

cos(x sin θ − nθ)dθ.

Hence in conclusion

πJn(x) =

∫ π

0

cos(x sin θ − nθ)dθ.

Points:



(a) (4p) Recognizing that when you follow the hint and set z = eiθ

you obtain a Fourier series.

(b) (2p) Correctly giving the definition of the Fourier series for the
function eix sin θ.

(c) (2p) Using Euler’s formula correctly to obtain the integral in terms
of sines and cosines.

(d) (2p) Correctly simplifying the integral to obtain the expression.

7. Bevisa att för z 6= 0, de Bessel funktionerna uppfyller:

∞∑
n=−∞

Jn(x)zn = e
x
2
(z− 1

z
).

The proof is contained in the proofs of theory items documents for the
generating function for the Bessel functions.

Points:

(a) (2p) Idea to Taylor expand the exponential function on the right
side.

(b) (2p) Idea to expand each of the two functions,

exz/2 =
∑
j≥0

(
xz
2

)j
j!

,

and

e−x/(2z) =
∑
k≥0

(−x
2z

)k
k!

as their own Taylor series.

(c) (2p) One point each for getting these expansions right.

(d) (2p) Variable change to get a sum from −∞ to ∞ rather than 0
to ∞. (1p for the idea and 1p for doing it right).

(e) (2p) Correct algebraic manipulations to make the series expansion
for the Bessel functions to appear.



8. L̊at {φn}n∈N vara en ortonormal mängd i ett Hilbert-rum, H. Om
f ∈ H,

||f −
∑
n∈N

〈f, φn〉φn|| ≤ ||f −
∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

och = gäller ⇐⇒ cn = 〈f, φn〉 gäller ∀n ∈ N.

The proof is contained in the proofs of theory items documents for the
best approximation theorem.

(a) (2p) Defining

g =
∑

f̂nφn

and giving some explanation about it being an element of H. (Of
course I do not care if you call it g or Bob or something else).

(b) (2p) Defining

ϕ =
∑

cnφn

and giving some explanation about it being an element of H. (Of
course I do not care if you call it ϕ or Anne or something else).

(c) (2p) The trick:

||f − ϕ||2 = ||f − g + g − ϕ||2.

(d) (2p) The calculation of:

||f − g + g − ϕ||2 = 〈f − g + g − ϕ, f − g + g − ϕ〉

and obtaining that it simplifies to

||f − ϕ||2 = ||f − g||2 + ||g − ϕ||2.

(e) (1p) Using this to conclude that

||f − ϕ||2 ≥ ||f − g||2

with equality if and only if ||g − ϕ||2 = 0.

(f) (1p) Explaining that ||g−ϕ||2 = 0 if and only if cn = f̂n for all n.



Fourier transforms
In these formulas below a > 0 and c ∈ R.

f(x) f̂(ξ)

f(x− c) e−icξf̂(ξ)

eixcf(x) f̂(ξ − c)
f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)

e−ax
2/2

√
2π/ae−ξ

2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a



H(t) :=

{
0 t < 0

1 t > 0

Laplace transforms
In these formulas below, a > 0 and c ∈ C.

H(t)f(t) f̃(z)

H(t− a)f(t− a) e−azf̃(z)

H(t)ectf(t) f̃(z − c)
H(t)f(at) a−1f̃(a−1z)

H(t)f ′(t) zf̃(z)− f(0)

H(t)
∫ t
0
f(s)ds z−1f̃(z)

H(t)(f ∗ g)(t) f̃(z)g̃(z)

H(t)t−1/2e−a
2/(4t)

√
π/ze−a

√
z

H(t)t−3/2e−a
2/(4t) 2a−1

√
πe−a

√
z

H(t)J0(
√
t) z−1e−1/(4z)

H(t) sin(ct) c/(z2 + c2)
H(t) cos(ct) z/(z2 + c2)

H(t)e−a
2t2 (

√
π/(2a))ez

2/(4a2) erfc(z/(2a))

H(t) sin(
√
at)

√
πa/(4z3)e−a/(4z)

Lycka till! May the force be with you! ♥ Julie Rowlett.


