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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. Applications of the Fourier transform

We will use the Fourier transform to solve both the homogeneous heat equation as
well as the inhomogeneous heat equation. To do this, we briefly recall an important
calculation. We would like to compute∫

R
e−x

2

dx.

There is a beautiful trick for doing this calculation. Here is where the idea origi-
nates. If this integral were ∫

R
xe−x

2

dx

we would know how to compute it. So we would like to be integrating against xdx
not just dx. When do we have something like xdx? We have something of this form
when we are working in polar coordinates in R2, because there we have rdrdθ. So,
we could compute the integral∫

R2

e−r
2

rdrdθ = 2π

∫ ∞
0

e−r
2

rdr = 2π
e−r

2

−2

∣∣∣∣∣
∞

0

= π.

On the other hand∫
R2

e−r
2

rdrdθ =

∫
R2

e−x
2−y2dxdy =

∫
R
e−x

2

dx

∫
R
e−y

2

dy =

(∫
R
e−x

2

dx

)2

.

Thus ∫
R
e−x

2

dx =
√
π.

1.1. Homogeneous heat equation. We wish to solve:{
ut(x, t)− uxx(x, t) = 0, x ∈ R, t > 0

u(x, 0) = v(x),

where our initial data v is assumed to be bounded, continuous, and also in L2(R).

Idea: Fourier transform the PDE with respect to the x variable,
because x ∈ R, whereas t > 0, but the Fourier transform integrates
over all of R, thus x is the wise choice.
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We obtain
ût(ξ, t)− ûxx(ξ, t) = 0.

Now, we use the theorem which gave us the properties of the Fourier transform. It

says that if we take the Fourier transform of a derivative, f̂ ′(ξ) = iξf̂(ξ). Using
this twice,

ûxx(ξ, t) = −ξ2û(ξ, t).

Now, those of you who are picky about switching limits may not like this, but it is
in fact rigorously valid:

∂tû(ξ, t) + ξ2û(ξ, t) = 0.

Hence
∂tû(ξ, t) = −ξ2û(ξ, t).

This is a first order homogeneous ODE for u in the t variable. We can solve it!!!
We do that and get

û(ξ, t) = e−ξ
2tc(ξ).

The constant can depend on ξ but not on t. To figure out what the constant should
be, we use the IC:

û(ξ, 0) = v̂(ξ) =⇒ c(ξ) = v̂(ξ).

Thus, we have found

û(ξ, t) = e−ξ
2tv̂(ξ).

Now, we use another property of the Fourier transform which says

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

So, if we can find a function whose Fourier transform is e−ξ
2t, then we can express

u as a convolution of that function and v. So, we are looking to find

g(x, t) such that ĝ(x, t) = e−ξ
2t.

We use the FIT:

g(x, t) =
1

2π

∫
R
eixξe−ξ

2tdξ.

We can use some complex analysis to compute this integral. To do this, we shall
complete the square in the exponent:

−ξ2t+ ixξ = −
(
ξ
√
t− ix

2
√
t

)2

− x2

4t
.

Therefore we are computing∫
R

exp

(
−
(
ξ
√
t− ix

2
√
t

)2

− x2

4t

)
dξ.

Using a contour integral, we can in fact ignore the imaginary part. To see this,
first note that we are integrating with respect to ξ, so we can for the moment just
consider: ∫ ∞

−∞
exp

(
−
(
ξt− ix

2
√
t

)2
)
dξ.

We draw a box. The box has vertices in the complex plane at the points ±R and
±R+ ix

2
√
t
. The integrand above is holomorphic for all ξ inside this box. Therefore

the integral around the boundary of the box is zero. When ξ = ±R, the integrand
is very small, thus the integrals on the vertical sides of the box tend to zero. Hence
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the integrals along the two horizontal sides of the box are also adding up to zero,
which shows that∫ ∞

−∞
exp

(
−
(
ξt− ix

2
√
t

)2
)
dξ =

∫ ∞
−∞

exp(−ξ2t2)dξ.

So, we compute (using a change of variables to y = ξ
√
t so t−1/2dy = dξ)∫

R
e−ξ

2tdξ =
1√
t

∫
R
e−y

2

dy =

√
π√
t
.

Hence, ∫
R

exp

(
−
(
ξ
√
t− ix

2
√
t

)2

− x2

4t

)
dξ =

√
π√
t
e−

x2

4t .

Recalling the factor of 1/(2π) we have

g(x, t) =
1

2π

√
π√
t
e−

x2

4t =
1

2
√
πt
e−

x2

4t .

Hence the solution is

u(x, t) = g ∗ v(x) =

∫
R

1

2
√
πt
e−(x−y)

2/(4t)v(y)dy.

Exercise 1. Verify that for all x ∈ R and t > 0 our solution satisfies the homoge-
neous heat equation.

Question 1. Why is our solution equal to v when t = 0?

If we naively set t = 0, we obtain an expression that does not make sense. So,
how do we know that this expression indeed gives us our initial data at t = 0? We
use the big bad convolution approximation theorem! Consider the function

ϕ(x) =
e−x

2/4

2
√
π
.

This function satisfies ∫
R
ϕ(x)dx =

1√
π

∫
R
e−z

2

dz = 1,

using the change of variables z = x
2 . This function satisfies the hypotheses of the

theorem (the so-called g function). We have assumed that v is bounded. Therefore
the convolution approximation theorem says that

lim
ε↓0

ϕε ? v(x) = v(x) ∀x ∈ R.

Let’s re-name ε to
√
t, so that

lim√
t↓0
ϕ√t ? v(x) = v(x).

Let’s write out the

ϕ√t ? v(x) =

∫
R

e
− (x−y)2

(2
√

t)2

2
√
π
√
t
v(y)dy.

The theorem says

lim√
t↓0

∫
R

e
− (x−y)2

(2
√

t)2

2
√
π
√
t
v(y)dy = lim

t↓0

∫
R

e−(x−y)
2/(4t)

2
√
πt

v(y)dy = lim
t↓0

u(x, t) = v(x) ∀x ∈ R.
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We therefore understand

u(x, 0) := lim
t↓0

u(x, t) = v(x)∀x ∈ R.

With some abstract uniqueness theory, beyond the scope of this humble course, we
could also prove that our solution u(x, t) is the unique solution to the heat equation
which has initial data equal to v(x) and which is in L2 for all t > 0.

1.2. Inhomogeneous heat equation. If you have an inhomogeneous IVP for the
heat equation, here are two ways to deal with that:

(1) If the inhomogeneity is time independent, look for a steady state solution to
solve the inhomogeneous equation. Then, solve the homogeneous equation,
but change your initial data. If f is your steady state solution and v was
your initial data (before f came along), solve the IVP for the homogeneous
heat equation with IC v − f rather than just v.

(2) If the inhomogeneity is time dependent, you can try to solve by Fourier
transforming the whole PDE.

Since we know how to do the first type of example, let us consider the second
type of example. We want to solve an inhomogeneous heat equation on R:

ut − uxx = G(x, t), u(x, 0) = v(x) is continuous, bounded, and in L2.

Let’s try the Fourier transform method:

∂tû(ξ, t) + ξ2û(ξ, t) = Ĝ(ξ, t).

This is a first order ODE. If you are a CHEMIST, then you did the special extra
part of the course and actually learned how to solve this ODE in t. Pretty cool.
To see how this works, treat ξ like a constant, and write

f ′(t) + ξ2f(t) = Ĝ(ξ, t).

The mµthod says to first compute

e
∫
ξ2dt = eξ

2t.

Next compute ∫
eξ

2tĜ(ξ, t)dt.

Then, the solution is∫
eξ

2tĜ(ξ, t)dt+ C(ξ)

eξ2t
= e−ξ

2t

∫
eξ

2sĜ(ξ, s)ds+ C(ξ)e−ξ
2t.

We would like the initial condition to be satisfied, so when t = 0 we should obtain
that this is equal to the Fourier transform of the initial data,

v̂(ξ).

We are free to choose any primitive function of e−ξ
2sĜ(ξ, s). It is very convenient

to choose the one which vanishes when t = 0, namely∫ t

0

e−ξ
2sĜ(ξ, s)ds.
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Then to obtain the initial condition, we just let C(ξ) = v̂(ξ). Thus, our Fourier
transformed solution is

e−ξ
2t

∫ t

0

e−ξ
2sĜ(ξ, s)ds+ v̂(ξ)e−ξ

2t.

We need to figure out from whence this Fourier transform came (equivalently,
invert the Fourier transform). This is a linear process, so we can deal with each
piece separately and then add them. Well, the second part we did last time. We
saw that the Fourier transform of

1

2
√
πt

∫
R
e−

(x−y)2

4t v(y)dy

is

v̂(ξ)e−ξ
2t.

Similarly, let’s look at the first part. It is

e−ξ
2t

∫ t

0

eξ
2sĜ(ξ, s)ds =

∫ t

0

e−ξ
2(t−s)Ĝ(ξ, s)ds.

By the same calculations, the Fourier transform of

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4(t−s) G(y, s)dy = e−ξ
2(t−s)Ĝ(ξ, s).

Yet again playing switch-a-roo with limits1,

F

(∫ t

0

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4(t−s) G(y, s)dyds

)
(ξ) =

∫ t

0

e−ξ
2(t−s)Ĝ(ξ, s)ds.

Therefore, our full solution is∫ t

0

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4(t−s) G(y, s)dyds+

∫
R

1

2
√
πt
e−

(x−y)2

4t v(y)dy.

This solution satisfies our initial data because

lim
t↓0

∫ t

0

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4(t−s) G(y, s)dyds = 0,

and just as in the homogeneous heat equation, we have by the convolution approx-
imation theorem that

lim
t↓0

∫
R

1

2
√
πt
e−

(x−y)2

4t v(y)dy = v(x) ∀x ∈ R.

1.3. Computing tricky integrals (sometimes you can compute integrals
that computers cannot!) The following is a very useful observation:

f̂(0) =

∫
R
f(x)dx.

So, if you have the integral of a function, this is equal to the value of its Fourier
transform at ξ = 0. So, if you can look up the Fourier transform of the function,
like in Beta or Folland, then to compute the integral, no need for fancy contour
integrals, simply pop ξ = 0 into the Fourier transform.

1Trust me!
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Here is an example:

compute:

∫
R

1

x2 + 9
dx.

We see this is # 10 in Folland’s TABLE 2. On the right side, we get the Fourier
transform (with a = 3) is given by

π

3
e−3|ξ|.

So, this integral is the Fourier transform with ξ = 0, hence the value of the integral
is

π

3
.

That was pretty easy right? For something more complicated, you could have say∫
R
f(x)g(x)dx,

with some icky functions f and g (see extra övning # 9). Now, you can use that
the Fourier transform of a product is

(2π)−1(f̂ ∗ ĝ)(ξ).

Hence, what you have above is∫
R
f(x)g(x)dx =

∫
R
e−i(0)xf(x)g(x)dx = (2π)−1(f̂ ∗ ĝ)(0).

So, if the Fourier transforms of these functions are somewhat better than the func-
tions f and g, then the stuff on the right could be nicely computable and give you
the integral on the left. Try # 9 to see how this works. (If you get stuck, Team
Fourier is here to help! Just ask us!)

As another example, there is extra exercise number 10. It says you know the
Fourier transform of f(t) is 1

|w|3+1 . We are then asked to compute∫
R
|f ∗ f ′|2dt.

By the Plancharel theorem,∫
R
|f ∗ f ′|2dt =

1

2π

∫
R
|f̂ ∗ f ′|2dt.

Now we use the theorem on the properties of the Fourier transform which says

f̂ ∗ f ′(ξ) = f̂(ξ)f̂ ′(ξ).

Now we use that same theorem to say that

f̂ ′(ξ) = iξf̂(ξ).

So, the stuff on the right is

1

2π

∫
R
|f̂(ξ)iξf̂(ξ)|2dξ.

We are given what the Fourier transform is, so we put it in there:

1

2π

∫
R

ξ2

(|ξ|3 + 1)4
dξ.
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Now this isn’t so terrible. It’s an even function so this is

1

π

∫ ∞
0

ξ2

(ξ3 + 1)4
dξ.

It just so happens that the derivative of

1

(ξ3 + 1)3
is
−9ξ2

(ξ3 + 1)4
,

so
1

π

∫
R

ξ2

(ξ3 + 1)4
dξ =

−1

9π

1

(ξ3 + 1)3

∣∣∣∣∞
0

=
1

9π
.

1.4. Exercises for the week to be done oneself: hints.

(1) (Eö 9) Compute (with help of Fourier transform)∫
R

sin(x)

x(x2 + 1)
dx.

Hint: There are disguised zeros and ones hiding all over the place in
mathematics. The above is equal to∫

R

sin(x)

x(x2 + 1)
e−i(0)xdx = F

(
sinx

x

1

x2 + 1

)
(0).

So, we now look at Table 2 in Folland, especially item number 8. It says
that the Fourier transform of a product is a convolution of the Fourier
transforms. So, we apply this to say

F
(

sinx

x

1

x2 + 1

)
(0) =

1

2π
F
(

sinx

x

)
∗ F

(
1

x2 + 1

)
(0).

Now we use items 10 and 13 from the same table, together with the def-
inition of the convolution, to substitute for the Fourier transforms on the
right side:

1

2π

∫
R
πχ1(0− y)πe−|y|dy.

Recalling what χ1 means:

=
π

2

∫ 1

−1
e−|y|dy.

I leave it to you do compute the integral!
(2) (Eö 67) Compute the Fourier transform of the characteristic function for

the interval (a, b) both directly and by using the known case for the interval
(−a, a).

Hint: Well, doing it directly we are computing∫ b

a

e−ixξdx =

{
b− a ξ = 0
i
ξ

(
e−biξ − e−aiξ

)
ξ 6= 0

To do it the other way, it’s convenient to introduce some notations:

m :=
a+ b

2
, ` :=

b− a
2

.
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Then our interval is [m− `,m+ `]. So we are computing∫ m+`

m−`
e−ixξdx.

To make this more familiar let’s do a change of variables so that the integral
goes from −` to `, so we let t = x−m, then dt = dx, so we are computing∫ `

−`
e−i(t+m)ξdt = e−imξ

∫ `

−`
e−itξdt = e−imξχ̂[−`,`](ξ).

So now for the Fourier transform of the characteristic function of the inter-
val, that is the function χ[−`,`] we can use the item 12 in Table 2 of Folland.
With a little algebraic manipulations, one can show that these both roads
lead to the same answer.

(3) (7.2.8) Given a > 0 let f(x) = e−xxa−1 for x > 0, f(x) = 0 for x ≤ 0.

Show that f̂(ξ) = Γ(a)(1 + iξ)−a where Γ is the Gamma function.
Hint: one is computing∫ ∞

0

e−xe−ixξxa−1dx =

∫ ∞
0

e−x(1+iξ)xa−1dx.

On the other hand,

Γ(a) =

∫ ∞
0

ta−1e−tdt.

Try doing a substitution to relate these integrals...
(4) (7.2.12) For a > 0 let

fa(x) =
a

π(x2 + a2)
, ga(x) =

sin(ax)

πx
.

Use the Fourier transform to show that: fa∗fb = fa+b and ga∗gb = gmin(a,b).
Hint: The idea is basically repeated use of the items in Folland’s Table

2, and using the FIT. First, compute the Fourier transform of fa ∗ fb which

is f̂a(ξ)f̂b(ξ), so you can write this stuff down. You will get something like
e−|x|.... Next, use the FIT to return to fa ∗ fb. Note that one way to write
the FIT is

f(x) =
1

2π
̂̂
f(−x).

Do something similar for the second one...
(5) (Eö 6.d,e) Compute the Fourier transform of:

e−a|t| sin(bt), (a, b > 0),
t

t2 + 2t+ 5
.

Hint: I might deal with the first one by splitting up the sine into its com-
plex exponentials, using definition of Fourier transform, and just directly
integrating. As for the second one, note that t2 + 2t + 5 = (t + 1)2 + 4.
Do a substitution in the definition of the Fourier transform, let x = t + 1.
Then use item 10 on Folland’s Table 2.

(6) (Eö 15) Find a solution to the equation

u(t) +

∫ t

−∞
eτ−tu(τ)dτ = e−2|t|.
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Hint: This is a tricky one! First turn the integral into a convolution. How
to do that? Try using Θ(τ)e−|τ |. Write out the convolution of that function
together with u(τ). Next, Fourier transform both sides of the equation. So
you will get

û(ξ) + ̂(Θ(τ)e−|τ |)(ξ)û(ξ) = ê−2|t|(ξ).

Compute the Fourier transforms of everything except u. Solve the equation
for û(ξ). Then use the FIT. When you use the FIT, if you do it using
contour integrals and the residue, you will need to think about the cases
x > 0 and x < 0 separately. For x > 0 the up-rainbow will work. For x < 0
the down-rainbow will work.

(7) (Eö 11) For the function

f(t) =

∫ 2

0

√
w

1 + w
eiwtdw,

compute ∫
R
f(t) cos(t)dt,

∫
R
|f(t)|2dt.

Hint: This is tricky also. Let me define a new function for us:

φ(w) := χ[0,2](w)

√
2

1 + w
.

Then
f(t) = φ̂(−t).

Oh no she didn’t. Yeah. So, for the first one, note that this integral is,
expanding the cosine as a sum of complex exponentials∫

R
f(t) cos(t)dt =

1

2

(
f̂(1) + f̂(−1)

)
.

Play around with the FIT and the fact that f(t) = φ̂(−t) to figure out the
right side. Next, note that∫

R
|f(t)|2dt =

∫
R
|φ̂(−t)|2dt = 2π

∫
R
|φ(t)|2dt.

The integral of |φ|2 is hopefully not that terrible...
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