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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.03.04

There are several interesting facts about Bessel functions. Entire books have
been written on these special functions.

1.1. Fun facts about Bessel functions.

Theorem 1 (Recurrence Formulas). For all x and ν

(x−νJν(x))′ = −x−νJν+1(x)

(xνJν(x))′ = xνJν−1(x)

xJ ′ν(x)− νJν(x) = −xJν+1(x)

xJ ′ν(x) + νJν(x) = xJν−1(x)

xJν−1(x) + xJν+1(x) = 2νJν(x)

Jν−1(x)− Jν+1(x) = 2J ′ν(x)

Proof: Can you guess what we do? That’s right - use the definition!!!! First,

x−νJν(x) =
∑
n≥0

(−1)n x2n

22n+ν

n!Γ(n+ ν + 1)
.

Take the derivative of the sum termwise. This is totally legitimate because this
series converges locally uniformly in C. So, we compute∑

n≥1

(−1)n2nx
2n−1

22n+ν

n!Γ(n+ ν + 1)
=
∑
m≥0

(−1)m+12(m+ 1) x2m+1

22m+2+ν

(m+ 1)!Γ(m+ 2 + ν)
.

Above we re-indexed the sum by defining n = m+ 1. Next we do some simplifying
around

= −
∑
m≥0

(−1)m x2m+1

22m+1+ν

m!Γ(m+ 2 + ν)
= −x−ν

∑
m≥0

(−1)mx2m+1+ν

22m+1+ν

m!Γ(m+ 2 + ν)
= −x−νJν+1(x).

Next we compute similarly the derivative of xνJν is∑
n≥0

(−1)n(2n+ 2ν)x
2n+2ν−1

22n+ν

n!Γ(n+ ν + 1)
.

1
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We factor out a 2 to get ∑
n≥0

(−1)n(n+ ν)x
2n+2ν−1

22n+ν−1

n!Γ(n+ ν + 1)
.

Note that

Γ(n+ ν + 1) = (n+ ν)Γ(n+ ν) =⇒ (n+ ν)

Γ(n+ ν + 1)
=

1

Γ(n+ ν)
.

So, above we have ∑
n≥0

(−1)n x
2n+2ν−1

22n+ν−1

n!Γ(n+ ν)
= xνJν−1(x).

To do the third one it is basically expanding out the first one:

(x−νJν(x))′ = −νx−ν−1Jν + x−νJ ′ν = −x−νJν+1.

Multiply through by xν+1 to get

−νJν + xJ ′ν = −xJν+1.

We do similarly in the second formula:

νxν−1Jν + xνJ ′ν = xνJν−1.

Multiply by x−ν+1 to get

νJν + xJ ′ν = xJν−1.

Next, to get the fifth formula, subtract the third formula from the fourth. Finally,
to get the sixth formula, add the third formula to the fourth.

We shall prove two lovely facts about the Bessel functions. The following fact is
a theory item!

1.2. The generating function for the Bessel functions. This is a lovely, follow
your nose and use the definitions type of proof.

Theorem 2. For all x and for all z 6= 0, the Bessel functions, Jn satisfy

∞∑
n=−∞

Jn(x)zn = e
x
2 (z− 1

z ).

Proof. We begin by writing out the familiar Taylor series expansion for the expo-
nential functions

exz/2 =
∑
j≥0

(
xz
2

)j
j!

,

and

e−x/(2z) =
∑
k≥0

(−x
2z

)k
k!

.
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These converge beautifully, absolutely and uniformly for z in compact subsets of
C \ {0}. So, since we presume that z 6= 0, we can multiply these series and fool
around with them to try to make the Bessel functions pop out... Thus, we write

bessel1bessel1 (1.1) exz/2e−x/(2z) =
∑
j≥0

(
xz
2

)j
j!

∑
k≥0

(−x
2z

)k
k!

=
∑
j,k≥0

(−1)k
(x

2

)j+k zj−k
j!k!

.

Here is where the one and only clever idea enters into this proof, but it’s rather
straightforward to come up with it. We would like a sum with n = −∞ to ∞.
So we look around into the above expression on the right, hunting for something
which ranges from −∞ to ∞. The only part which does this is j − k, because each
of j and k range over 0 to ∞. Thus, we keep k as it is, and we let n = j − k.
Then j + k = n + 2k, and j = n + k. However, now, we have j! = (n + k)!, but
this is problematic if n + k < 0. There were no negative factorials in our original
expression! So, to remedy this, we use the equivalent definition via the Gamma
function,

j! = Γ(j + 1), k! = Γ(k + 1).

Moreover, we observe that in (
bessel1bessel1
1.1), j! and k! are for j and k non-negative. We also

observe that
1

Γ(m)
= 0, m ∈ Z, m ≤ 0.

Hence, we can write

exz/2e−x/(2z) =

∞∑
n=−∞

∞∑
k=0

(−1)k
(x

2

)n+2k zn

Γ(n+ k + 1)k!
.

This is because for all the terms with n + k + 1 ≤ 0, which would correspond to
(n+k)! with n+k < 0, those terms ought not to be there, but indeed, the 1

Γ(n+k+1)

causes those terms to vanish!
Now, by definition,

Jn(x) =

∞∑
k=0

(−1)k
(
x
2

)n+2k

k!Γ(k + n+ 1)
.

Hence, we have indeed see that

exz/2e−x/(2z) =

∞∑
n=−∞

Jn(x)zn.

�

1.3. Integral representation of the Bessel functions. Let z = eiθ for θ ∈ R.
Then the theorem on the generating function for the Bessel functions says∑

n∈Z
Jn(x)zn = e

xz
2 −

x
2z .

So, we use the fact that
1

eiθ
= e−iθ,

together with this formula to see that∑
n∈Z

Jn(x)einθ = e
x
2 (eiθ−e−iθ).
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By Euler’s formula,∑
n∈Z

Jn(x)einθ = eix sin θ = cos(x sin θ) + i sin(x sin θ).

Therefore, the left side is the Fourier expansion of the function on the right. OMG!!!
Hence, the Bessel functions are actually Fourier coefficients of this function! So,

Jn(x) =
1

2π

∫ π

−π
eix sin θe−inθdθ =

1

2π

∫ π

−π
cos(x sin θ − nθ) + i sin(x sin θ − nθ)dθ.

Note that

sin(x sin(−θ)− n(−θ)) = sin(−x sin θ − n(−θ)) = − sin(x sin θ − nθ).
So the sine part is odd and integrates to zero. We therefore have

Jn(x) =
1

2π

∫ π

−π
cos(x sin θ − nθ)dθ.

This formula can be super useful. For example, we see that the Bessel functions
have yet another property similar to their straight-laced Swedish ancestors, the sine
and cosine. They satisfy |Jn(θ)| ≤ 1∀x.

1.4. Applications to solving PDEs in circular type regions. We shall now
see how to generalize our Bessel function techniques to solve problems on pieces of
circular sectors. Consider a circular sector of radius ρ and opening angle α. In the
eyes of polar coordinates, this is a rectangle, [0, ρ] × [0, α]. That is, this set in R2

is in polar coordinates

{(r, θ) ∈ R2 : 0 ≤ r ≤ ρ, and 0 ≤ θ ≤ α}.
This is much the same as how we describe a rectangle using rectangular coordinates,
(x, y).

To solve both the heat equation and the wave equation in a circular sector, we
can use the same SLP and Fourier series style techniques we used on rectangles.
The homogeneous heat equation is:

∂tu+ ∆u = 0, ∆ = −∂xx − ∂yy.
The homogeneous wave equation is:

utt + ∆u = 0.

If we have neat and tidy (self-adjoint) boundary conditions, we can use separation
of variables. Writing our function as T (t)S(x, y), we obtain the equations:

heat T ′S + T∆S = 0 which, dividing by the product TS becomes

∆S

S
= −T

′

T
= constant.

wave T ′′S + T∆S = 0 which, dividing by the product TS becomes

∆S

S
= −T

′′

T
= constant.

So we see that in both cases we need to solve an equation of the form

∆S = λS, λ is a constant.

After we solve this, we can then continue with solving both the heat equation and
the wave equation.



FOURIER ANALYSIS & METHODS 2020.03.02 5

ρ

α

Figure 1. A circular sector of opening angle α and radius ρ.

1.5. Dirichlet boundary condition on a circular sector. Let’s assume that
we have the Dirichlet boundary condition on the boundary of the circular sector.
So, we are looking for a function S which is zero on the boundary.

The boundary condition in polar coordinates is:

r = ρ, θ = 0, θ = α.

So, it makes a lot more sense to use these coordinates. To proceed, we need to
write the operator using polar coordinates also! We have previously computed in
an exercise that in polar coordinates, the operator is:

∆ = −∂rr − r−1∂r − r−2∂θθ.

Let us try to solve ∆S = λS in the circular sector using separation of variables.
So, we have

R(r) and Θ(θ).

The first one only depends on the r coordinate, whereas the second one only depends
on the θ coordinate. Now, our PDE is:

−R′′(r)Θ(θ)− r−1R′(r)Θ(θ)− r−2Θ′′(θ)R(r) = λR(r)Θ(θ).

First, we multiply everything by r2, then we divide it all by ΘR to get

−r2R′′ − rR′

R
− Θ′′

Θ
= λ =⇒ −r2R′′ − rR′

R
− λr2 =

Θ′′

Θ
.

Since the two sides depend on different variables, they are both constant. It turns
out that the Θ side is much easier to deal with, so we look at solving it:

Θ′′

Θ
= µ, Θ(0) = Θ(α) = 0.

We have solved such an equation a few times before. There are no non-zero solutions
for µ > 0. For µ < 0 solutions are, up to constant factors,

Θm(θ) = sin

(
mπθ

α

)
, µm = −m

2π2

α2
.

As a consequence, we get the equation for R,

−r2R′′ − rR′

R
− λr2 = µm.

We multiply this equation by R, obtaining

−r2R′′ − rR′ − λr2R = µmR.

This is equivalent to

r2R′′ + rR′ + (λr2 + µm)R = 0.
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We make a small clever change of variables. Let

x =
√
λr, f(x) := R(r), r =

x√
λ
.

Then by the chain rule

R′(r) =
√
λf ′(x), R′′(r) = λf ′′(x).

So, the equation becomes(
x2

λ

)
λf ′′(x) +

x√
λ

√
λf ′(x) + (x2 + µm)f(x) = 0.

This simplifies, recalling that µm = −m2π2/α2,

besseleqbesseleq (1.2) x2f ′′(x) + xf ′(x) + (x2 −m2π2/α2)f(x) = 0.

This is the definition of Bessel’s equation of order mπ
α . Consequently, a solution to

this equation is

Jmπ/α(x) = Jmπ/α(
√
λr).

To satisfy the boundary condition, we would like

Jmπ/α(
√
λρ) = 0.

So,
√
λρ should be a point at which this Bessel function vanishes. We have a useful

fact about these zeros.

Theorem 3. The Bessel function Jmπ/α has infinitely many positive zeros which
can be indexed as

{zm,k}k≥1,

where zm,k is the kth positive zero.

Consequently, we shall have

Jmπ/α(zm,kr/ρ), λm,k =
z2
m,k

ρ2
.

We therefore have the collection of functions

Sm,k(θ, r) = sin(mπθ/α)Jmπ/α

(
zm,kr

ρ

)
.

Now we may obtain the time part of the solution.

heat Let us look for a solution to the homogeneous heat equation which satisfies

u(r, θ, 0) = f(r, θ).

Then, the partner functions T shall be given by:

∆S

S
= −T

′

T
= λm,k =⇒ Tm,k(t) = Am,ke

−λm,kt.

By superposition our full solution is therefore

u(r, θ, t) =
∑
m,k

Am,ke
−λm,ktSm,k(r, θ).



FOURIER ANALYSIS & METHODS 2020.03.02 7

wave Let us look for a solution to the homogeneous wave equation which satisfies

w(r, θ, 0) = g(r, θ), wt(r, θ, 0) = 0.

∆S

S
= −T

′′

T
= λm,k =⇒ Tm,k(t) = am,k cos(zm,kt/ρ) + bm,k sin(zm,kt/ρ).

By superposition our full solution is therefore

w(r, θ, t) =
∑
m,k

(am,k cos(zm,kt/ρ) + bm,k sin(zm,kt/ρ))Sm,k(r, θ).

To determine the coefficients, we shall use the following theorem.

Theorem 4. The set of functions

sin(mπθ/α)Jmπ/α

(
zm,kr

ρ

)
, k ≥ 0, m ≥ 1

are an orthogonal basis for L2 on the sector of radius ρ and opening angle α. Above,
zm,k is the kth positive zero of Jmπ/α.

Consequently, for the heat equation we demand

u(r, θ, 0) =
∑
m,k

Am,kSm,k(r, θ) = f(r, θ),

which shows us that the coefficients should be

Am,k =
〈f, Sm,k〉
||Sm,k||2

,

where

〈f, Sm,k〉 =

∫ α

0

∫ ρ

0

f(r, θ)Sm,k(r, θ)rdrdθ,

and

||Sm,k||2 =

∫ α

0

∫ ρ

0

|Sm,k(r, θ)|2rdrdθ.

For the wave equation we demand

w(r, θ, 0) =
∑
m,k

am,kSm,k(r, θ) = g(r, θ) =⇒ am,k =
〈g, Sm,k〉
||Sm,k||2

.

The second condition tells us what the other coefficients should be:

wt(r, θ, 0) =
∑
m,k

zm,k/ρbm,kSm,k(r, θ) = 0 =⇒ bm,k = 0∀m, k.

1.6. Bessel functions for Neumann boundary condition. This theorem is
another type of “adult spectral theorem.”

Theorem 5. Assume that ν ≥ 0 and ρ > 0. Assume that c ≥ −ν. Let

{zk}k≥1

be the positive zeros of cJν(x) + xJ ′ν(x), and let

ψk(x) = Jν(zkx/ρ).

If c > −ν then {ψk}k≥1 is an orthogonal basis for L2
w on the interval (0, b) for the

weight function w(x) = x. If c > −ν, then {ψk}k≥0 is an orthogonal basis for L2
w

on the interval (0, b) for the weight function w(x) = x, with ψ0(x) = xν .
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Let us see how to apply this theorem when we are solving the heat (and wave)
equations with the Neumann boundary condition. We follow the same procedure
as for the heat equation. Let us name the sector

Σ.

ut + ∆u = 0, inside Σ,

u(r, θ, 0) = v(r, θ) inside Σ

the outward pointing normal derivative of u = 0 on the boundary of Σ.

We do the same procedure as before. We arrive at the equation for the Θ part:

Θ′′ = µΘ, Θ′(0) = Θ′(α) = 0.

You can do the exercise to show that the only solutions are for µ < 0, and to satisfy
the boundary conditions, up to constant multiples

Θm(θ) = cos(mπ/α), µm = −m
2π2

α2
, m ≥ 0.

Then, we again arrive at the Bessel equation of order mπ/α for the function R. So,
we get that

Rm(r) = Jνm(
√
λr), νm = mπ/α.

The boundary condition for Rm is that

R′m(ρ) = 0.

So, this means we need √
λJ ′νm(

√
λρ) = 0.

In other words,
√
λ needs to be a solution of the equation

xJ ′νm(ρx) = 0.

If zk is a solution to
xJ ′νm(x) = 0,

then
zkJ

′
νm(zk) = 0 =⇒ zk

ρ
J ′νm(zkρ/ρ) = 0.

So, to satisfy the boundary condition, we need
√
λ =

zk
ρ

=⇒
√
λJ ′νm(

√
λρ) = 0.

Really, zk also depends on m, so that is why we write zm,k to mean the kth positive
solution of the equation

xJ ′νm(x) = 0.

Our function
Rm,k(r) = Jνm(zm,kr/ρ).

This also shows that

λm,k =
z2
m,k

ρ2
.

Now, we recall the equation for the partner function, T ,

T ′m,k(t) = −λm,kTm,k(t).

So, up to constant factors,
Tm,k(t) = e−λm,kt.
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To apply the theorem, we note that

νm = mπ/α > 0∀m ∈ N.

Therefore taking c = 0 in the theorem, c ≥ −νm for all m. The theorem then tells
us that the set

{Rm,k(r)}k≥1 = {Jνm(zm,kr/ρ)}k≥1

is an orthogonal basis for L2(0, ρ) with respect to integrating against rdr. We also
know that the Θm(θ) functions are an orthogonal basis for L2(0, α) with respect to
integrating against dθ. Consequently, the entire collection

Sm,k(r, θ) = Θm(θ)Rm,k(r)

is an orthogonal basis for L2(Σ). This is because integrating on L2(Σ) in polar
coordinates is integrating∫

Σ

v(r, θ)rdrdθ =

∫ ρ

0

∫ α

0

v(r, θ)rdrdθ.

So, the theorem says that we can expand the initial data in a Fourier series with
respect to the orthogonal basis functions Sm,k. We therefore write the solution

u(r, θ, t) =
∑
m,k

v̂m,kTm,k(t)Sm,k(r, θ),

where

v̂m,k =

∫
Σ
v(r, θ)Sm,k(r)rdrdθ

||Sm,k||2

=

∫ r
0

∫ θ
0

sin(mπθ/α)Jmπ/α(zm,kr/ρ)v(r, θ)rdrdθ∫ r
0

∫ θ
0

sin(mπθ/α)2Jmπ/α(zm,kr/ρ)2rdrdθ
.

1.7. Exercises to be demonstrated.

(1) Eö 28
(2) (5.5.2) A circular cylinder of radius ρ is at the constant temperature A.

At time t = 0 it is tightly wrapped in a sheath of the same material of
thickness δ, thus forming a cylinder of radius ρ+ δ. The sheath is initially
at temperature B, and its outside surface is maintained at temperature B.
If the ends of the new, enlarged cylinder are insulated, find the temperature
inside at subsequent times.

(3) Eö 30
(4) Eö 52
(5) Eö 53
(6) (5.5.4) A cylindrical uranium rod of radius 1 generates heat within itself at

a constant rate a (think radioactive material). Its ends are insulated and
its circular surface is immersed in a cooling bath at temperature zero. Thus

ut = urr + r−1ur + r−2uθθ + a, u(1, t) = 0.

First find the steady state temperature v(r) in the rod. Then find the
temperature in the rod if its initial temperature is zero.
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1.8. Exercises to be done oneself.

(1) (5.2.4) Demonstrate the identity:∫ x

0

sJ0(s)ds = xJ1(x),

∫ x

0

J1(s)ds = 1− J0(x).

(2) (5.5.1) A cylinder of radius b is initially at the constant temperature A.
Find the temperatures in it at subsequent times if its ends are insulated
and its circular surface obeys Newton’s law of cooling, ur + cu = 0, (c > 0).

(3) (5.5.5) Solve the problem

urr + r−1ur + r−2uθθ + uzz = 0 in D = {(r, θ, z) : 0 ≤ r ≤ b, 0 ≤ z ≤ l}
u(r, θ, 0) = 0, u(r, θ, l) = g(r, θ), u(b, θ, z) = 0.

(4) (5.5.6) Find the steady-state temperature in the cylinder 0 ≤ r ≤ 1, 0 ≤ z ≤
1 when the circular surface is insulated, the bottom is kept at temperature
0, and the top is kept at temperature f(r).

(5) Eö 29
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