
FOURIER ANALYSIS & METHODS 2020.03.03

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. Solving PDEs with the help of SLPs

We have seen how the process of solving PDEs like the heat and wave equation
often leads to a set of functions which comprise an orthogonal basis for L2 or
a weighted L2 space. These basis functions generally come from separation of
variables. When we solve the “space” part of the PDE, we very often end up
solving a type of SLP. The easiest examples are:

f ′′ = λf, f(a) = 0 = f(b), for f defined on the interval, [a, b]

f ′′ = λf, f ′(a) = 0 = f ′(b), for f defined on the interval, [a, b]

f ′′ = λf, f(a) = 0 = f ′(b), for f defined on the interval, [a, b]

f ′′ = λf, f ′(a) = 0 = f(b), for f defined on the interval, [a, b].

A more challenging example comes from solving the heat and wave equations on a
circular sector. There, when we did separation of variables, we got the nice type
of SLP above for the angular variable (θ), and we got a more complicated SLP for
the radial variable. This turned into a Bessel equation. We used the initial data to
determine the coefficients in our series expansion, by writing the initial data as a
Fourier-Bessel type series.

2. The French polynomials

In other geometric settings, this same process will lead to other special functions.
In the last part of this course, based on chapter 6 in Folland, we will look at the
French polynomials,

(1) Legendre polynomials
(2) Hermite polynomials
(3) Laguerre polynomials

We can imagine that now we may be solving PDEs in more exotic geometric settings,
like French Polynesia. Hence, more exotic functions will play the role of the SLP
part of the problem. Three such types of functions are the aforementioned French
polynomials.

2.1. Legendre polynomials. These French polynomials arise from using spherical
coordinates to solve the wave and heat equations on a three-dimensional sphere.
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2.2. Hermite polynomials. These French polynomials arise from using parabolic
coordinates to solve the wave and heat equations in a parabolic shaped region.

2.3. Laguerre polynomials. These French polynomials arise from the quantum
mechanics of the hydrogem atom.

2.4. Orthogonal polynomials general theory. For the purpose of this course,
it is most important that you learn how to use the French polynomials. Depending
on how much time we have, we may go into the details of the origins of the French
polynomials, but these details are rather complicated and will not be examined. So,
we prioritize that which shall be examined. The following proposition is therefore
useful.

Proposition 1. Assume that {pn}n∈N is a sequence of polynomials such that pn is
of degree n for each n. Assume that p0 6= 0. Then for each k ∈ N, any polynomial
of degree k is a linear combination of {pj}kj=0.

Proof: The proof is by induction. If q0 is a polynomial of degree 0, then we
may simply write

q0 =
q0
p0
p0.

This is okay because p0 is degree zero, so it is a constant, and p0 6= 0, so the
coefficient q0/p0 is also a constant. Assume that we have verified the proposition
for all 0, 1, . . . k. We wish to show that it holds for k+ 1. So, let q be a polynomial
of degree k + 1. This means that

q(x) = axk+1 + l.o.t. l.o.t. means lower order terms

has

a 6= 0.

Moreover, since pk+1 is of degree k + 1 (not of a lower degree), it is of the form

pk+1 = bxk+1 + l.o.t., b 6= 0.

So, let us consider

q(x)− a

b
pk+1(x) = p(x) which is degree k.

By induction, p is a linear combination of p0, . . . , pk. Therefore

q(x) =
a

b
pk+1 +

k∑
j=0

cjpj ,

for some constants {cj}kj=0.

Proposition 2. Let {pk}∞k=0 be a set of polynomials such that each pk is of degree
k, and p0 6= 0. Moreover, assume that they are L2 orthogonal on a finite bounded
interval [a, b]. Then these polynomials comprise an orthogonal basis of L2 on the
interval [a, b].
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Proof: Assume that some f ∈ L2 on the interval is orthogonal to all of these
polynomials. Therefore by the preceding proposition, f is orthogonal to all poly-
nomials. To see this, note that if p is a polynomial of degree n, then there exist
numbers c0, . . . , cn such that

p =

n∑
j=0

cjpj =⇒ 〈f, p〉 =

n∑
j=0

cj〈f, pj〉 = 0.

We shall use the fact that continuous functions are dense in L2. Therefore given
ε > 0, there exists a continuous function, g, such that

||f − g|| < ε

2(||f ||+ 1)
.

Next, we use the Stone-Weierstrass Theorem which says that all continuous func-
tions on bounded intervals can be approximated by polynomials. Therefore, there
exists a polynomial p such that

||g − p|| < ε

2(||f ||+ 1)
.

Finally, we compute

||f ||2 = 〈f, f〉 = 〈f − g + g − p+ p, f〉 = 〈f − g, f〉+ 〈g − p, f〉+ 〈p, f〉

= 〈f − g, f〉+ 〈g − p, f〉.
By the Cauchy-Schwarz inequality,

||f ||2 ≤ ||f − g||||f ||+ ||g − p||||f || < ||f ||ε
2(||f ||+ 1)

+
||f ||ε

2(||f ||+ 1)
< ε.

Since ε > 0 is arbitrary, this shows that ||f || = 0. Hence by the three equiva-
lent conditions to be an orthogonal basis, we have that the polynomials are an
orthogonal basis of L2 on the interval.

2.5. Best approximations. We recall a slight variation of the best approximation
theorem:

Theorem 3. Let {φn}n∈N be an orthonormal set set in a Hilbert space, H. If
f ∈ H,

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

and = holds ⇐⇒ cn = 〈f, φn〉 holds ∀n ∈ N. More generally, let {φn}Nn=0 be an
orthogonal, non-zero set in a Hilbert space H. Then,

||f −
N∑
n=0

〈f, φn〉
||φn||2

φn|| ≤ ||f −
N∑
n=0

cnφn||, ∀{cn}Nn=0 ∈ CN+1.

Equality holds if and only if

cn =
〈f, φn〉
||φn||2

, n = 0, . . . , N.



4 JULIE ROWLETT

How to prove it? The only difference is the last part, but we can use the proof
of the first part. Define ψn = 0 for n > N . Next define

ψn =
φn
||φn||

, n = 0, . . . , N.

Repeat the argument in the proof of the best approximation theorem using {ψn}n∈N
instead of φn.

||f −
∑
n∈N

cnψn||2 = ||f −
∑
n∈N

f̂nψn +
∑
n∈N

f̂nψn −
∑
n∈N

cnψn||2

= ||f−
∑
n∈N

f̂nψn||2+||
∑
n∈N

f̂nψn−
∑
n∈N

cnψn||2+2<〈f−
∑
n∈N

f̂nψn,
∑
n∈N

f̂nψn−
∑
n∈N

cnψn〉.

The scalar product

〈f−
∑
n∈N

f̂nψn,
∑
n∈N

f̂nψn−
∑
n∈N

cnψn〉 = 〈f,
∑
n∈N

(f̂n−cn)Ψn〉−
∑
n∈N

f̂n〈ψn,
∑
m∈N

(f̂m−cm)Ψn〉.

By the orthogonality and definition of Ψn, and the definition of f̂n,

=
∑
n∈N

f̂n(f̂n − cn)−
∑
n∈N

f̂n
∑
m∈N

(f̂m − cm)〈ψn, ψm〉

=
∑
n∈N

f̂n(f̂n − cn)−
∑
n∈N

f̂n(f̂n − cn) = 0.

Therefore

||f −
∑
n∈N

cnψn||2 = ||f −
∑
n∈N

f̂nψn||2 + ||
∑
n∈N

f̂nψn −
∑
n∈N

cnψn||2

= ||f −
N∑
n=0

f̂nψn||2 +

N∑
n=0

|f̂n − cn|2 ≤ ||f −
N∑
n=0

f̂nψn||2,

with equality if and only if cn = f̂n for all n. Since

N∑
n=0

f̂nψn =

N∑
n=0

〈f, φn〉
||φn||2

φn,

this completes the proof.

2.5.1. Applications: best approximation problems. This shows us that if we have a
finite orthogonal set of non-zero vectors in a Hilbert space, then for any element of
that Hilbert space, the best approximation of f in terms of those vectors is given
by

N∑
n=0

〈f, φn〉
||φn||2

φn.

Here is the setup of questions which can be solved using this theory. Either:
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(1) You are given functions defined on an interval which are L2 orthogonal
on that interval (possibly with respect to a weight function which is also
specified). Either you recognize that they orthogonal because you’ve seen
them before (like sines, cosines, from problems you have solved previously)
or you compute that they are L2 orthogonal on the interval. Then, you
are asked to find the numbers c0, c1, . . . cN so that the L2 norm, or the

weighted L2 norm of f −
∑N
k=0 ckφk is minimized, where the function f is

also specified.
(2) You are asked to find the polyonomial of at most degree N such that the L2

norm (or weighted L2 norm) of f −p where p is a polynomial is minimized.

In the first case, you compute

ck =
〈f, φk〉
||φk||2

.

In the second case you need to build up a set of orthogonal or orthonormal polyno-
mials. Then, you let φk be defined to be the polynomial of degree k you have built.
Proceed the same as in the first case, and your answer shall be

N∑
k=0

ckφk.

If you don’t like the thought of building up a set of orthogonal polynomials, if
you are lucky, then it may be possible to suitably modify some of the French
polynomials to be orthogonal on the interval under investigation, with respect to the
(possibly weighted) L2 norm. So, we shall proceed to study the French polynomials.
Depending on how much time we have, we may also be able to get into their “origin
stories.”

2.6. The Legendre polynomials. The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
.

OMG like why on earth are they defined in such a bizarre way, right? What
did you expect, they are French polynomials! Of course they are not defined in
some simple way, mais non, they must be all fancy and shrouded in mystery and
intrigue. Actually though, the reason comes from the PDE in which they arise as
solving one part of the separation of variables for the heat and wave equations in
three dimensions using spherical coordinates. First, let us do a small calculation
involving these polynomials:

(x2 − 1)n =

n∑
k=0

(
n

k

)
(−1)n−k(x2)k =

n∑
k=0

(
n

k

)
(−1)n−kx2k.

Therefore, if we differentiate n times, only the terms with k ≥ n/2 survive. Differ-
entiating a term x2k once we get 2kx2k−1. Differentiating n times gives

dn

dxn
(x2k) = x2k−n

n−1∏
j=0

(2k − j).

If we want to be really persnickety, we prove this by induction. For n = 1, we get
that

(x2k)′ = 2kx2k−1.
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Which is correct. If we assume the formula is true for n, then differentiating n+ 1
times using the formula for n we get

(2k − n)x2k−(n+1)
n−1∏
j=0

(2k − j) = x2k−(n+1)
n∏
j=0

(2k − j).

See, it is correct. As a result,

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

So, we see that this is indeed a polynomial of degree n.
Next time we will prove the following theorem about the Legendre polynomials.

Theorem 4. The Legendre polynomials are orthogonal in L2(−1, 1) and

||Pn||2 =
2

2n+ 1
.

Here, we shall simply use this theorem to do an example.

Exercise 1. Find the polynomial p(x) of at most degree four which minimizes the
following integral ∫ 1

−1
|p(x)− ex|2dx.

Based on our theoretical knowledge, the ‘best approximation’ can be created
using the Legendre polynomials. Let

f(x) := ex.

Then, the ‘best approximation’ in terms of the Legendre polynomials is

p(x) =

4∑
n=0

cnPn(x),

where Pn(x) is the Legendre polynomial of degree n, and

cn :=
〈f, Pn〉
||Pn||2

=

∫ 1

−1 e
xPn(x)dx

2
2n+1

.

The beautiful fact is that we do not need to compute these integrals.

2.7. Hints for the exercises to be done oneself.

(1) (5.5.1) A cylinder of radius b is initially at the constant temperature A.
Find the temperatures in it at subsequent times if its ends are insulated
and its circular surface obeys Newton’s law of cooling, ur + cu = 0, (c >
0). Hint: Since the ends are insulated the problem is reduced to a disk.
Moreover, since the initial condition is radially symmetric, the solution
will also continue to be radially symmetric for all later times. Thus, you
just need u(r, t) a function depending on the radius and the time. Write
u(r, t) = R(r)T (t) and put into the heat equation remembering to use polar
coordinates for the PDE. Solve for R first. Use the boundary condition.
There will be J0s and the λks will come from an equation that you need
J0(λkr) to satisfy (BC!). Then solve for the time part, and finally get the
coefficients using the initial condition.
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(2) (5.5.5) Solve the problem

urr + r−1ur + r−2uθθ + uzz = 0 in D = {(r, θ, z) : 0 ≤ r ≤ b, 0 ≤ z ≤ l}

u(r, θ, 0) = 0, u(r, θ, l) = g(r, θ), u(b, θ, z) = 0.

Hint: There is only one inhomogeneous part of the equation, and that is the
boundary condition when z = l. Otherwise, observe that since we are in a
cylinder, the function must be 2π periodic in the theta variable. So, let us
separate variables writing u = R(r)Θ(θ)Z(z). Put this into the PDE. First
solve for the theta dependent function. I am guessing you will get either
einθ for n ∈ Z or sin(nθ) and cos(nθ), and these are equivalent to each
other... Next, I would solve for the R function. This has the zero boundary
condition: R(b) = 0. So, I am guessing you will get Jn(zn,kr/b) where zn,k
is the kth positive zero of the Bessel function Jn for n ∈ N. Last but not
least, use these to solve for your Z function. Since the PDE is homogeneous,
smash them all together into a super-solution using superposition. Use the
condition u(r, θ, l) = g(r, θ) to specify what the constants in your solution
need to be.

(3) (5.2.4) Demonstrate the identity:∫ x

0

sJ0(s)ds = xJ1(x),

∫ x

0

J1(s)ds = 1− J0(x).

Hint: Use the recurrence formulas. Integrating by parts is a reasonable
idea as well.

(4) (5.5.6) Find the steady-state temperature in the cylinder 0 ≤ r ≤ 1, 0 ≤ z ≤
1 when the circular surface is insulated, the bottom is kept at temperature 0,
and the top is kept at temperature f(r). Hint: This is a radially symmetric
problem, so you’ll have the variables r, z. No thetas. No t because you’re
asked to find the ‘steady-state temperature’ so, this is the temperature
that is independent of time. Use separation of variables, writing u(r, z) =
R(r)Z(z). The boundary condition for R will be that R′(1) = 0, because
no heat is lost outside the circular surface. The boundary condition for
Z is weird. So, solve for R first. The operator ∂xx + ∂yy + ∂zz in these
coordinates is

∆ = ∂rr + r−1∂r + r−2∂θθ + ∂zz.

Since it is steady state, you’re solving ∆RZ = 0. Solve for R first. Then
use it to solve for Z. This will involve expanding f(r) in a series...

(5) Eö 29 Hint: Oh geez. Look at that boundary condition. It depends on time.
Well, let’s not panic. This is a new trick. Look at the function (t+ 1). You
want that sitting at x = 0, but you want to kill it at x = 1. How to achieve
this using t and x?

(t+ 1)(1− x).

This takes care of the boundary condition at x = 0, the boundary condition
at x = 1, and the initial condition at t = 0. Does it screw up the PDE?
Well,

(∂t − 2∂xx)(t+ 1)(1− x) = 1− x.
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So now you’ve got an inhomogeneous PDE. Use the series technique. First,
find the basis

Xn with Xn(0) = Xn(1) = 0, X ′′n = λnXn.

Find the lambdas. Next write

v(x, t) =
∑
n≥1

Tn(t)Xn(x).

Expand −(1− x) in an Xn Fourier series, like

−(1− x) =
∑
n≥1

bnXn(x).

Stick v into the PDE. Set it equal to the series for −(1 − x). Use the
differential equation satisfied by Xn. Equate the coefficients of Xn on the
left and right. This will give an ODE for Tn. Use as initial condition
Tn(0) = 0. Your full solution will be

(t+ 1)(1− x) + v(x, t).

Check that it satisfies everything required. If you’re stuck, go back to the
first exercise demonstrated on Monday’s big group session for inspiration!
Also, it might make you feel better to know that I first tried doing some
Laplace transform business with this, and it became horrible. Realized that
it was so complicated, there must be a better way. Indeed there is.

(6) Eö 35 (sorry forgot this one before) Hint: Since you’re in a cylinder, use
polar coordinates for x and y, but keep z just as it is. The PDE is therefore

(∂rr + r−1∂r + r−2∂θθ + ∂zz)u = 0.

The function should vanish at z = 0 and z = L. It’s got a strange boundary
condition at r = R. It might be good to change this R into a ρ in case
you’d like to use separation of variables. Try to solve the problem using
separation of variables. Solve for Z first. Since the boundary data doesn’t
depend on θ but only depends on z, the solution is independent of θ. So
you’re just going to have Z and R. You’ll get the coefficients from the
boundary data, which might look weird, but should read

u = sin
(πz
L

)
− sin

(πz
L

)
cos
(πz
L

)
.
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