FOURIER ANALYSIS \& METHODS 2020.03.06

JULIE ROWLETT

Abstract

Caveat Emptor! These are just informal lecture notes. Errors are inevitable! Read at your own risk! Also, this is by no means a substitute for the textbook, which is warmly recommended: Fourier Analysis and Its Applications, by Gerald B. Folland. He was the first math teacher I had at university, and he is awesome. A brilliant writer. So, why am I even doing this? Good question...

1. The Legendre polynomials and applications

Theorem 1. The Legendre polynomials are orthogonal in $\mathcal{L}^{2}(-1,1)$, and

$$
\left\|P_{n}\right\|^{2}=\frac{2}{2 n+1} .
$$

Proof: We first prove the orthogonality. Assume that $n>m$. Then, since they have this constant stuff out front, we compute

$$
2^{n} n!2^{m} m!\left\langle P_{n}, P_{m}\right\rangle=\int_{-1}^{1} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \frac{d^{m}}{d x^{m}}\left(x^{2}-1\right)^{m} d x .
$$

Let us integrate by parts once:

$$
=\left.\frac{d^{n-1}}{d x^{n-1}}\left(x^{2}-1\right)^{n} \frac{d^{m}}{d x^{m}}\left(x^{2}-1\right)^{m}\right|_{-1} ^{1}-\int_{-1}^{1} \frac{d^{n-1}}{d x^{n-1}}\left(x^{2}-1\right)^{n} \frac{d^{m+1}}{d x^{m+1}}\left(x^{2}-1\right)^{m} .
$$

Consider the boundary term:

$$
\frac{d^{n-1}}{d x^{n-1}}\left(x^{2}-1\right)^{n}=\frac{d^{n-1}}{d x^{n-1}}(x-1)^{n}(x+1)^{n}
$$

This vanishes at $x= \pm 1$, because the polynomial vanishes to order n whereas we only differentiate $n-1$ times. So, we have shown that

$$
2^{n} n!2^{m} m!\left\langle P_{n}, P_{m}\right\rangle=-\int_{-1}^{1} \frac{d^{n-1}}{d x^{n-1}}\left(x^{2}-1\right)^{n} \frac{d^{m+1}}{d x^{m+1}}\left(x^{2}-1\right)^{m}
$$

We repeat this $n-1$ more times. We note that for all $j<n$,

$$
\frac{d^{j}}{d x^{j}}\left(x^{2}-1\right)^{n} \text { vanishes at } x= \pm 1 .
$$

For this reason, all of the boundary terms from integrating by parts vanish. So, we just get
$(-1)^{n} \int_{-1}^{1}\left(x^{2}-1\right)^{n} \frac{d^{m+n}}{d x^{m+n}}\left(x^{2}-1\right)^{m} d x=(-1)^{n} \int_{-1}^{1}\left(x^{2}-1\right)^{n} \frac{d^{n}}{d x^{n}} \frac{d^{m}}{d x^{m}}\left(x^{2}-1\right)^{m} d x$
Remember that $n>m$. We computed that $\frac{d^{m}}{d x^{m}}\left(x^{2}-1\right)^{m}$ is a polynomial of degree m. So, if we differentiate it more than m times we get zero. So, we're integrating zero! Hence it is zero.

For the second part, we need to compute:

$$
\left(x^{2}-1\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}\left(x^{2}\right)^{k}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} x^{2 k}
$$

Therefore, if we differentiate n times, only the terms with $k \geq n / 2$ survive. Differentiating a term $x^{2 k}$ once we get $2 k x^{2 k-1}$. Differentiating n times gives

$$
\frac{d^{n}}{d x^{n}}\left(x^{2 k}\right)=x^{2 k-n} \prod_{j=0}^{n-1}(2 k-j)
$$

If we want to be really persnickety, we prove this by induction. For $n=1$, we get that

$$
\left(x^{2 k}\right)^{\prime}=2 k x^{2 k-1}
$$

Which is correct. If we assume the formula is true for n, then differentiating $n+1$ times using the formula for n we get

$$
(2 k-n) x^{2 k-(n+1)} \prod_{j=0}^{n-1}(2 k-j)=x^{2 k-(n+1)} \prod_{j=0}^{n}(2 k-j)
$$

See, it is correct. As a result,

$$
P_{n}(x)=\frac{1}{2^{n} n!} \sum_{k \geq n / 2}^{n}(-1)^{n-k}\binom{n}{k} x^{2 k-n} \prod_{j=0}^{n-1}(2 k-j)
$$

So, we see that this is indeed a polynomial of degree n. With this formula, we can write

$$
P_{n}(x)=\frac{1}{2^{n} n!} \sum_{k \geq n / 2}^{n}(-1)^{n-k}\binom{n}{k} x^{2 k-n} \prod_{j=0}^{n-1}(2 k-j) .
$$

Differentiating n times gives us just the term with the highest power of x, so we have

$$
\frac{d^{n}}{d x^{n}} P_{n}(x)=\frac{1}{2^{n} n!} n!\prod_{j=0}^{n-1}(2 n-j)=\frac{(2 n)!}{2^{n} n!}
$$

Consequently,

$$
\begin{gathered}
\left\langle P_{n}, P_{n}\right\rangle=(-1)^{n} \frac{1}{2^{n} n!} \frac{(2 n)!}{2^{n} n!} \int_{-1}^{1}\left(x^{2}-1\right)^{n} d x=(-1)^{n} \frac{2(2 n)!}{2^{2 n}(n!)^{2}} \int_{0}^{1}\left(x^{2}-1\right)^{n} d x \\
=(-1)^{n} \frac{2(2 n)!}{2^{2 n}(n!)^{2}} \int_{0}^{1} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} x^{2 k} d x \\
=\left.(-1)^{n} \frac{2(2 n)!}{2^{2 n}(n!)^{2}} \sum_{k=0}^{n}(-1)^{n-k} \frac{x^{2 k+1}}{2 k+1}\binom{n}{k}\right|_{0} ^{1} \\
=(-1)^{n} \frac{2(2 n)!}{2^{2 n}(n!)^{2}} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} \frac{1}{2 k+1} \\
=\frac{2(2 n)!}{2^{2 n}(n!)^{2}} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{1}{2 k+1} .
\end{gathered}
$$

This looks super complicated. Apparently by some miracle of life

$$
\int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\frac{\Gamma(n+1) \Gamma(1 / 2)}{\Gamma(n+3 / 2)}
$$

Since

$$
\left\langle P_{n}, P_{n}\right\rangle=(-1)^{n} \frac{2(2 n)!}{2^{2 n}(n!)^{2}} \int_{0}^{1}\left(x^{2}-1\right)^{n} d x=\frac{2(2 n)!}{2^{2 n}(n!)^{2}} \int_{0}^{1}\left(1-x^{2}\right)^{n} d x
$$

we get

$$
\frac{\Gamma(n+1) \Gamma(1 / 2) 2(2 n)!}{2^{2 n}(n!)^{2} \Gamma(n+3 / 2)}
$$

We use the properties of the Γ function together with the fact that $\Gamma(1 / 2)=\sqrt{\pi}$ to obtain

$$
\frac{\sqrt{\pi} 2(2 n)!}{2^{2 n} n!(n+1 / 2) \Gamma(n+1 / 2)}
$$

Let us consider

$$
2(n+1 / 2) \Gamma(n+1 / 2)=(2 n+1) \Gamma(n+1 / 2)
$$

Next consider

$$
2(n-1 / 2) \Gamma(n-1 / 2)=(2 n-1) \Gamma(n-1 / 2)
$$

Proceeding this way, the denominator becomes

$$
2^{n} n!(2 n+1)(2 n-1) \ldots 1 \sqrt{\pi}
$$

However, now looking at the first part

$$
2^{n} n!=2 n(2 n-2)(2 n-4) \ldots 2
$$

So together we get

$$
(2 n+1)!\sqrt{\pi}
$$

Hence putting this in the denominator of the expression we had above, we have

$$
\frac{\sqrt{\pi} 2(2 n)!}{(2 n+1)!\sqrt{\pi}}=\frac{2}{2 n+1}
$$

Corollary 2. The Legendre polynomials are an orthogonal basis for \mathcal{L}^{2} on the interval $[-1,1]$.

Theorem 3. The even degree Legendre polynomials $\left\{P_{2 n}\right\}_{n \in \mathbb{N}}$ are an orthogonal basis for $\mathcal{L}^{2}(0,1)$. The odd degree Legendre polynomials $\left\{P_{2 n+1}\right\}_{n \in \mathbb{N}}$ are an orthogonal basis for $\mathcal{L}^{2}(0,1)$.

Proof: Let f be defined on $[0,1]$. We can extend f to $[-1,1]$ either evenly or oddly. First, assume we have extended f evenly. Then, since $f \in \mathcal{L}^{2}$ on $[0,1]$,

$$
\int_{-1}^{1}\left|f_{e}(x)\right|^{2} d x=2 \int_{0}^{1}|f(x)|^{2} d x<\infty
$$

Therefore f_{e} is in \mathcal{L}^{2} on the interval $[-1,1]$. We have proven that the Legendre polynomials are an orthogonal basis. So, we can expand f_{e} in a Legendre polynomial series, as

$$
\sum_{n \geq 0} \hat{f}_{e}(n) P_{n}
$$

where

$$
\hat{f}_{e}(n)=\frac{\left\langle f_{e}, P_{n}\right\rangle}{\left\|P_{n}\right\|^{2}}
$$

By definition,

$$
\left\langle f_{e}, P_{n}\right\rangle=\int_{-1}^{1} f_{e}(x) P_{n}(x) d x
$$

Since f_{e} is even, the product $f_{e}(x) P_{n}(x)$ is an odd function whenever n is odd. Hence all of the odd coefficients vanish. Moreover,

$$
\left.\left\langle f_{e}, P_{2 n}\right\rangle=2 \int_{0}^{1} f(x) P_{2 n}(x)\right) d x
$$

We also have

$$
\left\|P_{2 n}\right\|^{2}=2 \int_{0}^{1}\left|P_{2 n}(x)\right|^{2} d x
$$

Consequently

$$
f=\sum_{n \in \mathbb{N}}\left(\frac{\int_{0}^{1} f(x) P_{2 n}(x) d x}{\int_{0}^{1}\left|P_{2 n}(x)\right|^{2} d x}\right) P_{2 n} .
$$

We can also extend f oddly. This odd extension satisfies

$$
\int_{-1}^{1}\left|f_{o}(x)\right|^{2} d x=\int_{-1}^{0}\left|f_{o}(x)\right|^{2} d x+\int_{0}^{1}\left|f_{o}(x)\right|^{2} d x=2 \int_{0}^{1}\left|f_{o}(x)\right|^{2} d x<\infty
$$

So, the odd extension is also in \mathcal{L}^{2} on the interval $[-1,1]$. We can expand f_{o} in a Legendre polynomial series, as

$$
\sum_{n \geq 0} \hat{f}_{o}(n) P_{n}
$$

where

$$
\hat{f}_{o}(n)=\frac{\left\langle f_{o}, P_{n}\right\rangle}{\left\|P_{n}\right\|^{2}}
$$

By definition,

$$
\left\langle f_{o}, P_{n}\right\rangle=\int_{-1}^{1} f_{o}(x) P_{n}(x) d x
$$

Since f_{o} is odd, the product $f_{o}(x) P_{n}(x)$ is an odd function whenever n is even. Hence all of the even coefficients vanish. Moreover,

$$
\left.\left\langle f_{o}, P_{2 n+1}\right\rangle=2 \int_{0}^{1} f(x) P_{2 n+1}(x)\right) d x
$$

because the product of two odd functions is an even function. We also have

$$
\left\|P_{2 n+1}\right\|^{2}=\int_{-1}^{0}\left|P_{2 n+1}(x)\right|^{2} d x+\int_{0}^{1}\left|P_{2 n+1}(x)\right|^{2} d x=2 \int_{0}^{1}\left|P_{2 n+1}(x)\right|^{2} d x
$$

Consequently

$$
f=\sum_{n \in \mathbb{N}}\left(\frac{\int_{0}^{1} f(x) P_{2 n+1}(x) d x}{\int_{0}^{1}\left|P_{2 n+1}(x)\right|^{2} d x}\right) P_{2 n+1}
$$

1.1. Applications of Legendre polynomials to best approximations on bounded integrals.

Exercise 1. Find the polynomial $q(x)$ of at most degree 10 which minimizes the following integral

$$
\int_{-\pi}^{\pi}|q(x)-\sin (x)|^{2} d x .
$$

To do this exercise, we need different polynomials... If Legendre polynomials are orthogonal on $(-1,1)$, can we somehow use them to create orthogonal polynomials on $(-\pi, \pi)$? Let's think about changing variables. How about setting

$$
t=\frac{x}{\pi} .
$$

Then,

$$
\int_{-\pi}^{\pi} P_{n}(x / \pi) \overline{P_{m}(x / \pi)} d x=\int_{-1}^{1} P_{n}(t) \overline{P_{m}(t)} \pi d t= \begin{cases}0 & n \neq m \\ \frac{2 \pi}{2 n+1} & n=m\end{cases}
$$

Therefore the polynomials

$$
P_{n}(x / \pi)
$$

are orthogonal on $x \in(-\pi, \pi)$, and their norms squared on that interval are

$$
\frac{2 \pi}{2 n+1} .
$$

The best approximation is therefore the polynomial

$$
q(x)=\sum_{n=0}^{10} a_{n} P_{n}(x / \pi), \quad a_{n}:=\frac{\int_{-\pi}^{\pi} \sin (x) \overline{P_{n}(x / \pi)} d x}{\frac{2 \pi}{2 n+1}} .
$$

Exercise 2. Find the polynomial $p(x)$ of degree at most 100 which minimizes the following integral

$$
\int_{0}^{10}\left|e^{x^{2}}-p(x)\right|^{2} d x
$$

Yikes! Well, let's not panic just yet. The number 100 is even. Hence, we know that the even degree Legendre polynomials are an orthogonal basis for $\mathcal{L}^{2}(0,1)$. So, we can use the even degree Legendre polynomials if we can just deal with this interval not being $(0,1)$ but being $(0,10)$. To figure this out, let's think about changing variables... As before, think about changing variables,

$$
t=x / 10
$$

so that

$$
\int_{0}^{10} P_{2 n}(x / 10) P_{2 m}(x / 10) d x=\int_{0}^{1} P_{2 n}(t) P_{2 m}(t) 10 d t= \begin{cases}0 & n \neq m \\ \frac{10}{4 n+1} & n=m\end{cases}
$$

The last calculation we obtained by recalling our calculation

$$
\int_{-1}^{1}\left|P_{n}(x)\right|^{2} d x=(-1)^{n} \frac{(2 n)!}{\left(2^{n} n!\right)^{2}} \int_{-1}^{1}\left(x^{2}-1\right)^{n} d x=\frac{2}{2 n+1} \Longrightarrow \int_{0}^{1}\left|P_{2 n}(x)\right|^{2} d x=\frac{1}{4 n+1} .
$$

So, the functions $P_{2 n}(x / 10)$ are an orthogonal basis for $\mathcal{L}^{2}(0,10)$. Consequently the Best Approximation Theorem says that the best approximation is given by the polynomial

$$
p(x)=\sum_{n=0}^{50} c_{n} P_{2 n}(x / 10), \quad c_{n}=\frac{\int_{0}^{10} e^{x^{2}} \overline{P_{2 n}(x / 10)} d x}{\frac{10}{4 n+1}}
$$

Exercise 3. Find the polynomial $p(x)$ of degree at most 99 which minimizes the following integral

$$
\int_{0}^{10}\left|e^{x^{2}}-p(x)\right|^{2} d x
$$

Here, we can recycle our previous solution since 99 is odd, so we can use the odd degree Legendre polynomials in this case to form an orthogonal basis for $\mathcal{L}^{2}(0,10)$. Our polynomial shall be

$$
p(x)=\sum_{n=0}^{49} c_{n} P_{2 n+1}(x / 10), \quad c_{n}=\frac{\int_{0}^{10} e^{x^{2}} \overline{P_{2 n+1}(x / 10)} d x}{\frac{10}{2(2 n+1)+1}} .
$$

1.2. Legendre polynomials for best approximations on arbitrary intervals. Let's consider a best approximation problem on an interval (a, b). First, we find its midpoint,

$$
m=\frac{a+b}{2}
$$

Next, we find its length

$$
\ell=\frac{b-a}{2} .
$$

Then the interval

$$
(a, b)=(m-\ell, m+\ell) .
$$

Since we know about the Legendre polynomials, P_{n}, on $(-1,1)$ since $x \mapsto \frac{x-m}{\ell}=t$ sends (a, b) to $(-1,1)$,

$$
P_{n}\left(\frac{x-m}{\ell}\right) \quad \text { are orthogonal on }(a, b) .
$$

In case this is not super obvious, let us compute using the substitution $t=\frac{x-m}{\ell}$,

$$
\int_{a}^{b} P_{n}\left(\frac{x-m}{\ell}\right) P_{k}\left(\frac{x-m}{\ell}\right) d x=\int_{-1}^{1} \ell P_{n}(t) P_{k}(t) d t=0 \text { if } n \neq k
$$

We have simply used substitution in the integral with $t=\frac{x-m}{\ell}$. So, these modified Legendre polynomials are orthogonal on (a, b). Moreover

$$
\int_{a}^{b} P_{n}^{2}\left(\frac{x-m}{\ell}\right) d x=\int_{-1}^{1} \ell P_{n}^{2}(t) d t=\ell\left\|P_{n}\right\|^{2}=\frac{2 \ell}{2 n+1}
$$

So, we simply expand the function f using this version of the Legendre polynomials. Let

$$
c_{n}=\frac{\int_{a}^{b} f(x) P_{n}\left(\frac{x-m}{\ell}\right) d x}{\int_{a}^{b}\left[P_{n}((x-m) / \ell)\right]^{2} d x} .
$$

The best approximation amongst all polynomials of degree at most N is therefore

$$
P(x)=\sum_{n=0}^{N} c_{n} P_{n}\left(\frac{x-m}{\ell}\right) .
$$

2. Les polynomes D'hermite

These polynomials shall be a basis for $\mathcal{L}^{2}(\mathbb{R})$ with respect to the weight function $e^{-x^{2}}$.

Definition 4. The Hermite polynomials are defined to be

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}} .
$$

Proposition 5. The Hermite polynomials are polynomials with the degree of H_{n} equal to n.

Proof: The proof is by induction. For $n=0$, this is certainly true, as $H_{0}=1$. Next, let us assume that

$$
\frac{d^{n}}{d x^{n}} e^{-x^{2}}=p_{n}(x) e^{-x^{2}},
$$

is true for a polynomial, p_{n} which is of degree n. Then,
$\frac{d^{n+1}}{d x^{n+1}} e^{-x^{2}}=\frac{d}{d x}\left(p_{n}(x) e^{-x^{2}}\right)=p_{n}^{\prime}(x) e^{-x^{2}}-2 x p_{n}(x) e^{-x^{2}}=\left(p_{n}^{\prime}(x)-2 x p_{n}(x)\right) e^{-x^{2}}$.
Let

$$
p_{n+1}=p_{n}^{\prime}(x)-2 x p_{n}(x) .
$$

Then we see that since p_{n} is of degree n, p_{n+1} is of degree $n+1$. Moreover

$$
\frac{d^{n+1}}{d x^{n+1}} e^{-x^{2}}=p_{n+1}(x) e^{-x^{2}} .
$$

So, in fact, the Hermite polynomials satisfy:

$$
H_{0}=1, \quad H_{n+1}=-\left(H_{n}^{\prime}(x)-2 x H_{n}(x)\right) .
$$

Proposition 6. The Hermite polynomials are orthogonal on \mathbb{R} with respect to the weight function $e^{-x^{2}}$. Moreover, with respect to this weight function $\left\|H_{n}\right\|^{2}=$ $2^{n} n!\sqrt{\pi}$.

Proof: Assume $n>m \geq 0$. We compute

$$
\int_{\mathbb{R}} H_{n}(x) H_{m}(x) e^{-x^{2}} d x=\int_{\mathbb{R}}(-1)^{n} \frac{d^{n}}{d x^{n}} e^{-x^{2}} H_{m}(x) d x .
$$

We use integration by parts n times, noting that the rapid decay of $e^{-x^{2}}$ kills all boundary terms. We therefore get

$$
\int_{\mathbb{R}} e^{-x^{2}} \frac{d^{n}}{d x^{n}} H_{m}(x) d x=0 .
$$

This is because the polyhomial, H_{m}, is of degree $m<n$. Therefore differentiating it n times results in zero. Finally, for $n=m$, we have by the same integration by parts,

$$
\int_{\mathbb{R}} H_{n}^{2}(x) e^{-x^{2}} d x=\int_{\mathbb{R}} e^{-x^{2}} \frac{d^{n}}{d x^{n}} H_{n}(x) d x .
$$

The $n^{\text {th }}$ derivative of H_{n} is just the $n^{\text {th }}$ derivative of the highest order term. By our preceding calculation, the highest order term in H_{n} is

$$
(2 x)^{n} .
$$

Differentiating n times gives

$$
2^{n} n!
$$

Thus

$$
\int_{\mathbb{R}} H_{n}^{2}(x) e^{-x^{2}} d x=2^{n} n!\int_{\mathbb{R}} e^{-x^{2}} d x=2^{n} n!\sqrt{\pi}
$$

We may wish to use the following lovely fact, but we shall not prove it.
Theorem 7. The Hermite polynomials are an orthogonal basis for \mathcal{L}^{2} on \mathbb{R} with respect to the weight function $e^{-x^{2}}$.

2.1. Answers to the exercises to be done oneself.

(1) (5.2.4) Demonstrate the identity:

$$
\int_{0}^{x} s J_{0}(s) d s=x J_{1}(x), \quad \int_{0}^{x} J_{1}(s) d s=1-J_{0}(x)
$$

Well, one of the recurrence formulas says

$$
\frac{d}{d x}\left(x J_{1}(x)\right)=x J_{0}(x)
$$

Thus a function whose derivative is equal to $s J_{0}(s)$ is the function $x J_{1}(x)$. Hence we can evaluate

$$
\int_{0}^{x} s J_{0}(s) d s=\left.s J_{1}(s)\right|_{s=0} ^{s=x}=x J_{1}(x)
$$

Another of the recurrence formulas says

$$
\frac{d}{d x} J_{0}(x)=-J_{1}(x)
$$

So,

$$
\int_{0}^{x} J_{1}(s) d s=-\left.J_{0}(s)\right|_{s=0} ^{s=x}=J_{0}(0)-J_{0}(x)=1-J_{0}(x)
$$

(2) (5.5.1) A cylinder of radius b is initially at the constant temperature A. Find the temperatures in it at subsequent times if its ends are insulated and its circular surface obeys Newton's law of cooling, $u_{r}+c u=0,(c>0)$. Answer:

$$
u(r, t)=2 A \sum_{k \geq 1} \frac{\lambda_{k} J_{1}\left(\lambda_{k}\right)}{\left(\lambda_{k}^{2}+b^{2} c^{2}\right) J_{0}\left(\lambda_{k}\right)^{2}} J_{0}\left(\frac{\lambda_{k} r}{b}\right) e^{-\lambda_{k}^{2} t / b^{2}}
$$

where λ_{k} is the $k^{t} h$ positive solution to

$$
\lambda_{k} J_{0}^{\prime}\left(\lambda_{k}\right)+b c J_{0}\left(\lambda_{k}\right)=0
$$

(3) (5.5.5) Solve the problem

$$
\begin{gathered}
u_{r r}+r^{-1} u_{r}+r^{-2} u_{\theta \theta}+u_{z z}=0 \text { in } D=\{(r, \theta, z): 0 \leq r \leq b, 0 \leq z \leq l\} \\
u(r, \theta, 0)=0, \quad u(r, \theta, l)=g(r, \theta), \quad u(b, \theta, z)=0 .
\end{gathered}
$$

Answer:
$u(r, \theta, z)=\sum_{n \geq 0} \sum_{k \geq 1}\left(a_{k n} \cos n \theta+b_{k n} \sin n \theta\right) J_{n}\left(\frac{\lambda_{k, n} r}{b}\right) \sinh \left(\frac{\lambda_{k, n} z}{b}\right)$,
where

$$
b_{k, n}=\frac{2}{b^{2} \pi \sinh \lambda_{k, n}} \int_{-\pi}^{\pi} \int_{0}^{b} g(r \theta) \frac{J_{n}\left(\lambda_{k, n} r\right)}{J_{n+1}\left(\lambda_{k, n}\right)^{2}} \sin n \theta r d r d \theta
$$

and similarly for $a_{k, n}$ where $\lambda_{k, n}$ is the $k^{t h}$ positive zero of J_{n}.
(4) (5.5.6) Find the steady-state temperature in the cylinder $0 \leq r \leq 1,0 \leq z \leq$ 1 when the circular surface is insulated, the bottom is kept at temperature 0 , and the top is kept at temperature $f(r)$. Answer:

$$
u(r, z)=a_{0} z+\sum_{k \geq 1} a_{k} J_{0}\left(\lambda_{k} r\right) \sinh \left(\lambda_{k} z\right)
$$

where λ_{k} is the $k^{t h}$ positive zero of J_{0},

$$
a_{0}=2 \int_{0}^{1} r f(r) d r
$$

and

$$
a_{k}=\frac{2}{J_{0}\left(\lambda_{k}\right)^{2} \sinh \lambda_{k}} \int_{0}^{1} r f(r) J_{0}\left(\lambda_{k} r\right) d r, \quad k>0
$$

(5) Eö 29 (answer is in there!)
(6) Еö 35 (answer is in there!)

