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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. The Legendre polynomials and applications

Theorem 1. The Legendre polynomials are orthogonal in L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

Proof: We first prove the orthogonality. Assume that n > m. Then, since they
have this constant stuff out front, we compute

2nn!2mm!〈Pn, Pm〉 =

∫ 1

−1

dn

dxn
(x2 − 1)n

dm

dxm
(x2 − 1)mdx.

Let us integrate by parts once:

=
dn−1

dxn−1
(x2 − 1)n

dm

dxm
(x2 − 1)m

∣∣∣∣1
−1
−
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1
(x2 − 1)m.

Consider the boundary term:

dn−1

dxn−1
(x2 − 1)n =

dn−1

dxn−1
(x− 1)n(x+ 1)n.

This vanishes at x = ±1, because the polynomial vanishes to order n whereas we
only differentiate n− 1 times. So, we have shown that

2nn!2mm!〈Pn, Pm〉 = −
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1
(x2 − 1)m.

We repeat this n− 1 more times. We note that for all j < n,

dj

dxj
(x2 − 1)n vanishes at x = ±1.

For this reason, all of the boundary terms from integrating by parts vanish. So, we
just get

(−1)n
∫ 1

−1
(x2 − 1)n

dm+n

dxm+n
(x2 − 1)mdx = (−1)n

∫ 1

−1
(x2 − 1)n

dn

dxn
dm

dxm
(x2 − 1)mdx

Remember that n > m. We computed that dm

dxm (x2−1)m is a polynomial of degree
m. So, if we differentiate it more than m times we get zero. So, we’re integrating
zero! Hence it is zero.
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For the second part, we need to compute:

(x2 − 1)n =

n∑
k=0

(
n

k

)
(−1)n−k(x2)k =

n∑
k=0

(
n

k

)
(−1)n−kx2k.

Therefore, if we differentiate n times, only the terms with k ≥ n/2 survive. Differ-
entiating a term x2k once we get 2kx2k−1. Differentiating n times gives

dn

dxn
(x2k) = x2k−n

n−1∏
j=0

(2k − j).

If we want to be really persnickety, we prove this by induction. For n = 1, we get
that

(x2k)′ = 2kx2k−1.

Which is correct. If we assume the formula is true for n, then differentiating n+ 1
times using the formula for n we get

(2k − n)x2k−(n+1)
n−1∏
j=0

(2k − j) = x2k−(n+1)
n∏
j=0

(2k − j).

See, it is correct. As a result,

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

So, we see that this is indeed a polynomial of degree n. With this formula, we can
write

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

Differentiating n times gives us just the term with the highest power of x, so we
have

dn

dxn
Pn(x) =

1

2nn!
n!

n−1∏
j=0

(2n− j) =
(2n)!

2nn!
.

Consequently,

〈Pn, Pn〉 = (−1)n
1

2nn!

(2n)!

2nn!

∫ 1

−1
(x2 − 1)ndx = (−1)n

2(2n)!

22n(n!)2

∫ 1

0

(x2 − 1)ndx

= (−1)n
2(2n)!

22n(n!)2

∫ 1

0

n∑
k=0

(−1)n−k
(
n

k

)
x2kdx

= (−1)n
2(2n)!

22n(n!)2

n∑
k=0

(−1)n−k
x2k+1

2k + 1

(
n

k

)∣∣∣∣∣
1

0

= (−1)n
2(2n)!

22n(n!)2

n∑
k=0

(−1)n−k
(
n

k

)
1

2k + 1

=
2(2n)!

22n(n!)2

n∑
k=0

(−1)k
(
n

k

)
1

2k + 1
.
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This looks super complicated. Apparently by some miracle of life∫ 1

0

(1− x2)ndx =
Γ(n+ 1)Γ(1/2)

Γ(n+ 3/2)
.

Since

〈Pn, Pn〉 = (−1)n
2(2n)!

22n(n!)2

∫ 1

0

(x2 − 1)ndx =
2(2n)!

22n(n!)2

∫ 1

0

(1− x2)ndx,

we get
Γ(n+ 1)Γ(1/2)2(2n)!

22n(n!)2Γ(n+ 3/2)
.

We use the properties of the Γ function together with the fact that Γ(1/2) =
√
π

to obtain √
π2(2n)!

22nn!(n+ 1/2)Γ(n+ 1/2)
.

Let us consider

2(n+ 1/2)Γ(n+ 1/2) = (2n+ 1)Γ(n+ 1/2).

Next consider
2(n− 1/2)Γ(n− 1/2) = (2n− 1)Γ(n− 1/2).

Proceeding this way, the denominator becomes

2nn!(2n+ 1)(2n− 1) . . . 1
√
π.

However, now looking at the first part

2nn! = 2n(2n− 2)(2n− 4) . . . 2.

So together we get
(2n+ 1)!

√
π.

Hence putting this in the denominator of the expression we had above, we have
√
π2(2n)!

(2n+ 1)!
√
π

=
2

2n+ 1
.

Corollary 2. The Legendre polynomials are an orthogonal basis for L2 on the
interval [−1, 1].

Theorem 3. The even degree Legendre polynomials {P2n}n∈N are an orthogonal
basis for L2(0, 1). The odd degree Legendre polynomials {P2n+1}n∈N are an orthog-
onal basis for L2(0, 1).

Proof: Let f be defined on [0, 1]. We can extend f to [−1, 1] either evenly or
oddly. First, assume we have extended f evenly. Then, since f ∈ L2 on [0, 1],∫ 1

−1
|fe(x)|2dx = 2

∫ 1

0

|f(x)|2dx <∞.

Therefore fe is in L2 on the interval [−1, 1]. We have proven that the Legendre
polynomials are an orthogonal basis. So, we can expand fe in a Legendre polynomial
series, as ∑

n≥0

f̂e(n)Pn,
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where

f̂e(n) =
〈fe, Pn〉
||Pn||2.

By definition,

〈fe, Pn〉 =

∫ 1

−1
fe(x)Pn(x)dx.

Since fe is even, the product fe(x)Pn(x) is an odd function whenever n is odd.
Hence all of the odd coefficients vanish. Moreover,

〈fe, P2n〉 = 2

∫ 1

0

f(x)P2n(x))dx.

We also have

||P2n||2 = 2

∫ 1

0

|P2n(x)|2dx.

Consequently

f =
∑
n∈N

(∫ 1

0
f(x)P2n(x)dx∫ 1

0
|P2n(x)|2dx

)
P2n.

We can also extend f oddly. This odd extension satisfies∫ 1

−1
|fo(x)|2dx =

∫ 0

−1
|fo(x)|2dx+

∫ 1

0

|fo(x)|2dx = 2

∫ 1

0

|fo(x)|2dx <∞.

So, the odd extension is also in L2 on the interval [−1, 1]. We can expand fo in a
Legendre polynomial series, as ∑

n≥0

f̂o(n)Pn,

where

f̂o(n) =
〈fo, Pn〉
||Pn||2.

By definition,

〈fo, Pn〉 =

∫ 1

−1
fo(x)Pn(x)dx.

Since fo is odd, the product fo(x)Pn(x) is an odd function whenever n is even.
Hence all of the even coefficients vanish. Moreover,

〈fo, P2n+1〉 = 2

∫ 1

0

f(x)P2n+1(x))dx,

because the product of two odd functions is an even function. We also have

||P2n+1||2 =

∫ 0

−1
|P2n+1(x)|2dx+

∫ 1

0

|P2n+1(x)|2dx = 2

∫ 1

0

|P2n+1(x)|2dx.

Consequently

f =
∑
n∈N

(∫ 1

0
f(x)P2n+1(x)dx∫ 1

0
|P2n+1(x)|2dx

)
P2n+1.
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1.1. Applications of Legendre polynomials to best approximations on
bounded integrals.

Exercise 1. Find the polynomial q(x) of at most degree 10 which minimizes the
following integral ∫ π

−π
|q(x)− sin(x)|2dx.

To do this exercise, we need different polynomials... If Legendre polynomials are
orthogonal on (−1, 1), can we somehow use them to create orthogonal polynomials
on (−π, π)? Let’s think about changing variables. How about setting

t =
x

π
.

Then, ∫ π

−π
Pn(x/π)Pm(x/π)dx =

∫ 1

−1
Pn(t)Pm(t)πdt =

{
0 n 6= m
2π

2n+1 n = m
.

Therefore the polynomials

Pn(x/π)

are orthogonal on x ∈ (−π, π), and their norms squared on that interval are

2π

2n+ 1
.

The best approximation is therefore the polynomial

q(x) =

10∑
n=0

anPn(x/π), an :=

∫ π
−π sin(x)Pn(x/π)dx

2π
2n+1

.

Exercise 2. Find the polynomial p(x) of degree at most 100 which minimizes the
following integral ∫ 10

0

|ex
2

− p(x)|2dx.

Yikes! Well, let’s not panic just yet. The number 100 is even. Hence, we know
that the even degree Legendre polynomials are an orthogonal basis for L2(0, 1).
So, we can use the even degree Legendre polynomials if we can just deal with this
interval not being (0, 1) but being (0, 10). To figure this out, let’s think about
changing variables... As before, think about changing variables,

t = x/10,

so that∫ 10

0

P2n(x/10)P2m(x/10)dx =

∫ 1

0

P2n(t)P2m(t)10dt =

{
0 n 6= m
10

4n+1 n = m

The last calculation we obtained by recalling our calculation∫ 1

−1
|Pn(x)|2dx = (−1)n

(2n)!

(2nn!)2

∫ 1

−1
(x2−1)ndx =

2

2n+ 1
=⇒

∫ 1

0

|P2n(x)|2dx =
1

4n+ 1
.
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So, the functions P2n(x/10) are an orthogonal basis for L2(0, 10). Consequently
the Best Approximation Theorem says that the best approximation is given by the
polynomial

p(x) =

50∑
n=0

cnP2n(x/10), cn =

∫ 10

0
ex

2

P2n(x/10)dx
10

4n+1

.

Exercise 3. Find the polynomial p(x) of degree at most 99 which minimizes the
following integral ∫ 10

0

|ex
2

− p(x)|2dx.

Here, we can recycle our previous solution since 99 is odd, so we can use the odd
degree Legendre polynomials in this case to form an orthogonal basis for L2(0, 10).
Our polynomial shall be

p(x) =

49∑
n=0

cnP2n+1(x/10), cn =

∫ 10

0
ex

2

P2n+1(x/10)dx
10

2(2n+1)+1

.

1.2. Legendre polynomials for best approximations on arbitrary inter-
vals. Let’s consider a best approximation problem on an interval (a, b). First, we
find its midpoint,

m =
a+ b

2
.

Next, we find its length

` =
b− a

2
.

Then the interval
(a, b) = (m− `,m+ `).

Since we know about the Legendre polynomials, Pn, on (−1, 1) since x 7→ x−m
` = t

sends (a, b) to (−1, 1),

Pn

(
x−m
`

)
are orthogonal on (a, b).

In case this is not super obvious, let us compute using the substitution t = x−m
` ,∫ b

a

Pn

(
x−m
`

)
Pk

(
x−m
`

)
dx =

∫ 1

−1
`Pn(t)Pk(t)dt = 0 if n 6= k.

We have simply used substitution in the integral with t = x−m
` . So, these modified

Legendre polynomials are orthogonal on (a, b). Moreover∫ b

a

P 2
n

(
x−m
`

)
dx =

∫ 1

−1
`P 2

n(t)dt = `||Pn||2 =
2`

2n+ 1
.

So, we simply expand the function f using this version of the Legendre polynomials.
Let

cn =

∫ b
a
f(x)Pn

(
x−m
`

)
dx∫ b

a
[Pn((x−m)/`)]2dx

.

The best approximation amongst all polynomials of degree at most N is therefore

P (x) =

N∑
n=0

cnPn

(
x−m
`

)
.
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2. Les polynomes d’hermite

These polynomials shall be a basis for L2(R) with respect to the weight function

e−x
2

.

Definition 4. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

Proposition 5. The Hermite polynomials are polynomials with the degree of Hn

equal to n.

Proof: The proof is by induction. For n = 0, this is certainly true, as H0 = 1.
Next, let us assume that

dn

dxn
e−x

2

= pn(x)e−x
2

,

is true for a polynomial, pn which is of degree n. Then,

dn+1

dxn+1
e−x

2

=
d

dx

(
pn(x)e−x

2
)

= p′n(x)e−x
2

−2xpn(x)e−x
2

= (p′n(x)− 2xpn(x)) e−x
2

.

Let
pn+1 = p′n(x)− 2xpn(x).

Then we see that since pn is of degree n, pn+1 is of degree n+ 1. Moreover

dn+1

dxn+1
e−x

2

= pn+1(x)e−x
2

.

So, in fact, the Hermite polynomials satisfy:

H0 = 1, Hn+1 = − (H ′n(x)− 2xHn(x)) .

Proposition 6. The Hermite polynomials are orthogonal on R with respect to the

weight function e−x
2

. Moreover, with respect to this weight function ||Hn||2 =
2nn!
√
π.

Proof: Assume n > m ≥ 0. We compute∫
R
Hn(x)Hm(x)e−x

2

dx =

∫
R

(−1)n
dn

dxn
e−x

2

Hm(x)dx.

We use integration by parts n times, noting that the rapid decay of e−x
2

kills all
boundary terms. We therefore get∫

R
e−x

2 dn

dxn
Hm(x)dx = 0.

This is because the polyhomial, Hm, is of degree m < n. Therefore differentiating
it n times results in zero. Finally, for n = m, we have by the same integration by
parts, ∫

R
H2
n(x)e−x

2

dx =

∫
R
e−x

2 dn

dxn
Hn(x)dx.

The nth derivative of Hn is just the nth derivative of the highest order term. By
our preceding calculation, the highest order term in Hn is

(2x)n.
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Differentiating n times gives

2nn!.

Thus ∫
R
H2
n(x)e−x

2

dx = 2nn!

∫
R
e−x

2

dx = 2nn!
√
π.

We may wish to use the following lovely fact, but we shall not prove it.

Theorem 7. The Hermite polynomials are an orthogonal basis for L2 on R with

respect to the weight function e−x
2

.

2.1. Answers to the exercises to be done oneself.

(1) (5.2.4) Demonstrate the identity:∫ x

0

sJ0(s)ds = xJ1(x),

∫ x

0

J1(s)ds = 1− J0(x).

Well, one of the recurrence formulas says

d

dx
(xJ1(x)) = xJ0(x).

Thus a function whose derivative is equal to sJ0(s) is the function xJ1(x).
Hence we can evaluate∫ x

0

sJ0(s)ds = sJ1(s)|s=xs=0 = xJ1(x).

Another of the recurrence formulas says

d

dx
J0(x) = −J1(x).

So, ∫ x

0

J1(s)ds = − J0(s)|s=xs=0 = J0(0)− J0(x) = 1− J0(x).

(2) (5.5.1) A cylinder of radius b is initially at the constant temperature A.
Find the temperatures in it at subsequent times if its ends are insulated
and its circular surface obeys Newton’s law of cooling, ur + cu = 0, (c > 0).
Answer:

u(r, t) = 2A
∑
k≥1

λkJ1(λk)

(λ2k + b2c2)J0(λk)2
J0

(
λkr

b

)
e−λ

2
kt/b

2

,

where λk is the kth positive solution to

λkJ
′
0(λk) + bcJ0(λk) = 0.

(3) (5.5.5) Solve the problem

urr + r−1ur + r−2uθθ + uzz = 0 in D = {(r, θ, z) : 0 ≤ r ≤ b, 0 ≤ z ≤ l}

u(r, θ, 0) = 0, u(r, θ, l) = g(r, θ), u(b, θ, z) = 0.

Answer:

u(r, θ, z) =
∑
n≥0

∑
k≥1

(akn cosnθ + bkn sinnθ)Jn

(
λk,nr

b

)
sinh

(
λk,nz

b

)
,
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where

bk,n =
2

b2π sinhλk,n

∫ π

−π

∫ b

0

g(rθ)
Jn(λk,nr)

Jn+1(λk,n)2
sinnθrdrdθ,

and similarly for ak,n where λk,n is the kth positive zero of Jn.
(4) (5.5.6) Find the steady-state temperature in the cylinder 0 ≤ r ≤ 1, 0 ≤ z ≤

1 when the circular surface is insulated, the bottom is kept at temperature
0, and the top is kept at temperature f(r). Answer:

u(r, z) = a0z +
∑
k≥1

akJ0(λkr) sinh(λkz),

where λk is the kth positive zero of J0,

a0 = 2

∫ 1

0

rf(r)dr,

and

ak =
2

J0(λk)2 sinhλk

∫ 1

0

rf(r)J0(λkr)dr, k > 0.

(5) Eö 29 (answer is in there!)
(6) Eö 35 (answer is in there!)
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