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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. The generating function for the Hermite polynomials

This theory item is similar to the analogous result for the Bessel functions, but
with a bit of a twist.

Theorem 1. For any x ∈ R and z ∈ C, the Hermite polynomials,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

,

satisfy
∞∑
n=0

Hn(x)
zn

n!
= e2xz−z

2

.

Proof: The key idea with which to begin is to consider instead

e−(x−z)
2

= e−x
2+2xz−z2 .

We consider the Taylor series expansion of this guy, with respect to z, viewing x
as a parameter. By definition, the Taylor series expansion for

e−(x−z)
2

=
∑
n≥0

anz
n,

where

an =
1

n!

dn

dzn
e−(x−z)

2

, evaluated at z = 0.

To compute these coefficients, we use the chain rule, introducing a new variable
u = x− z. Then,

d

dz
e−(x−z)

2

= − d

du
e−u

2

,

and more generally, each time we differentiate, we get a −1 popping out, so

dn

dzn
e−(x−z)

2

= (−1)n
dn

dun
e−u

2

,

Hence, evaluating with z = 0, we have

an =
1

n!
(−1)n

dn

dun
e−u

2

, evaluated at u = x.

1
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The reason it’s evaluated at u = x is because in our original expression we’re
expanding in a Taylor series around z = 0 and z = 0 ⇐⇒ u = x since u = x− z.
Now, of course, we have

dn

dun
e−u

2

, evaluated at u = x =
dn

dxn
e−x

2

.

Hence, we have the Taylor series expansion

e−(x−z)
2

= e−x
2+2xz−z2 =

∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2

.

Now, we multiply both sides by ex
2

to obtain

e2xz−z
2

= ex
2 ∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2

.

We can bring ex
2

inside because everything converges beautifully. Then, we have

e2xz−z
2

=
∑
n≥0

zn

n!
ex

2

(−1)n
dn

dxn
e−x

2

.

Voilà! The definition of the Hermite polynomials is staring us straight in the face!
Hence, we have computed

e2xz−z
2

=
∑
n≥0

zn

n!
Hn(x).

1.1. Applications to best approximations.

Exercise 1. Find the polynomial of at most degree 40 which minimizes∫
R
|f(x)− P (x)|2e−x

2

dx,

where f is some function in the weighted L2 space on R with weight e−x
2

.

We know that the Hermite polynomials are an orthogonal basis for L2 on R
with the weight function e−x

2

. We see that same weight function in the integral.
Therefore, we can rely on the theory of the Hermite polynomials! Consequently,
we define

cn =

∫
R f(x)Hn(x)e−x

2

dx

||Hn||2
,

where

||Hn||2 =

∫
R
H2
n(x)e−x

2

dx = 2nn!
√
π.

The polynomial we seek is:

P (x) =

40∑
n=0

cnHn(x).

Some variations on this theme are created by changing the weight function.
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Exercise 2. Find the polynomial of at most degree 60 which minimizes∫
R
|f(x)− P (x)|2e−2x

2

dx.

This is not the correct weight function for Hn. However, we can make it so. The

correct weight function for Hn(x) is e−x
2

. So, if the exponential has 2x2 = (
√

2x)2,
then we should change the variable in Hn as well. We will then have, via the
substitution t =

√
2x,∫

R
Hn(
√

2x)Hm(
√

2x)e−2x
2

dx =

∫
R
Hn(t)Hm(t)e−t

2 dt√
2

= 0, n 6= m.

Moreover, the norm squared is now∫
R
H2
n(t)e−t

2 dt√
2

=
||Hn||2√

2
=

2nn!
√
π√

2
.

Consequently, the functions Hn(
√

2x) are an orthogonal basis for L2 on R with

respect to the weight function e−2x
2

. We have computed the norms squared above.
The coefficients are therefore

cn =

∫
R f(x)Hn(

√
2x)e−2x

2

dx

2nn!
√
π/
√

2
.

The polynomial is

P (x) =

60∑
n=0

cnHn(
√

2x).

2. The Laguerre polynomials

The Laguerre polynomials come from understanding the quantum mechanics of
the hydrogen atom. We shall not get into this1

Definition 2. The Laguerre polynomials,

Lαn(x) =
x−αex

n!

dn

dxn
(xα+ne−x).

We summarize their properties in the following

Theorem 3 (Properties of Laguerre polynomials). The Laguerre polynomials are
an orthogonal basis for L2 on (0,∞) with the weight function xαe−x. Their norms
squared,

||Lαn||2 =
Γ(n+ α+ 1)

n!
.

They satisfy the Laguerre equation

[xα+1e−x(Lαn)′]′ + nxαe−xLαn = 0.

For x > 0 and |z| < 1,
∞∑
n=0

Lαn(x)zn =
e−xz/(1−z)

(1− z)α+1
.

1Alex Jones does get into it: https://www.youtube.com/watch?v=i91XV07Vsc0. Check out the

Alex Jones Prison Planet https://www.youtube.com/watch?v=kn_dHspHd8M. Turns out that Alex
Jones’s crazy ranting makes for decent death metal vocals. The gay frogs and America first remix

are pretty decent too.

https://www.youtube.com/watch?v=i91XV07Vsc0
https://www.youtube.com/watch?v=kn_dHspHd8M
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Exercise 3. Find the polynomial of at most degree 7 which minimizes∫ ∞
0

|f(x)− P (x)|2xαe−xdx.

Since the Laguerre polynomials are an orthogonal basis for L2(0,∞) with weight
function xαe−x, we define

cn =

∫∞
0
f(x)Lαn(x)xαe−xdx

||Lαn||2
.

The polynomial we seek is:

P (x) =

7∑
n=0

cnL
α
n(x).

3. Best approximation summary

Assume that based on theoretical considerations we know that a certain collec-
tion of functions

einx, cos, sin, orthogonal polynomials, Bessel functions, weird SLP functions,

are an orthogonal basis on a bounded interval. In the case of SLP functions, do
not forget the weight function in case the weight function is not simply 1. Let us
call such function φn. Then the best approximation to any f in L2 of the bounded
interval under consideration is its Fourier-φn expansion, which is∑ 〈f, φn〉

||φn||2
φn(x).

Recall

〈f, φn〉 =

∫
f(y)φn(y)w(y)dy, if the weight function is w(y),

and
||φn||2 = 〈φn, φn〉.

One can also do best approximations using Hermite and Laguerre polynomials on

R and (0,∞), respectively, with the weight functions e−x
2

and xαe−x, respectively.
It works in very much the same way in all these cases.

4. Distributions done the right way

The mathematical concept of a distribution, or, as they are sometimes called,
generalized function, has been badly abused not only by physicists but also by
mathematicians. You may have already heard about the so-called “delta function.”
It’s not really a function. It’s not a ‘generalized function.’ It has its very own
terminology, and that is that it is a distribution. Now, distributions are not as
mysterious and weird as the mystique in which they are often shrouded.

Distributions are functions which themselves take as input a function. A partic-
ularly nice class of distributions are the tempered distributions. These distributions
take in a Schwarz class function and spit out a number.

Definition 4. Assume that f is a smooth function on R. Then, we say that f ∈ S
if for all k and for all n,

lim
|x|→∞

xnf (k)(x) = 0.
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In other words, f and all its derivatives decay rapidly at ±∞. There are quite a
few functions which satisfy this. For example, all smooth functions which live on a
bounded interval (compactly supported) satisfy this property.

Exercise 4. Show that if f ∈ S then all of the derivatives of f are in S. Show
that if f ∈ S then its Fourier transform is also in S.

Definition 5. A tempered distribution is a function which maps S to C, which
satisfies the following conditions:

• It is linear, so for a distribution denoted by L, we have

L(αf + βg) = αL(f) + βL(g),

for all f and g in C∞c (R) and for all complex numbers α and β.
• There is a non-negative integer N and a constant C ≥ 0 such that for all
f ∈ S

|L(f)| ≤ C
∑

j+k≤N

sup
x∈R
|xjf (k)(x)|.

Let’s do an example. We define a distribution in the following way. For f ∈
C∞c (R),

L(f) := f(0).

That is, the distribution takes in the function, f , and spits out the value of f at
the point 0 ∈ R. This distribution satisfies for any f and g in C∞c (R) and for any
α and β ∈ C,

L(αf + βg) = αL(f) + βL(g).

Moreover, we have the estimate that

|L(f)| ≤ |f(0)| ≤ sup
x∈R
|f(x)|.

So the estimate required is satisfied with N = 0 and C = 1. This distribution has
a name. It is called the delta distribution. It is usually written with the letter δ. It
is nothing other than a function which takes a function as its input and spits out a
number as its output.

Exercise 5. Assume that f ∈ C∞c (R). Show that by defining

Lf (g) =

∫
R
f(x)g(x)dx, g ∈ C∞c (R),

Lf is a tempered distribution.

In fact, the assumption that f ∈ C∞c (R) wasn’t even necessary. You can show
that for f ∈ L2(R) or f ∈ L1(R), the distribution, Lf defined above (it takes in a
function g ∈ C∞c (R) and integrates the product with f over R), is a distribution.
So, here’s something which is rather cool. The elements in L2(R) and L1(R) are
in general not differentiable at all. However, the distributions we can make out of
them are differentiable. Here’s how we do that.

Definition 6. The derivative of a tempered distribution, L is another tempered
distribution, denoted by L′ ∈ D(R), which is defined by

L′(g) = −L(g′), g ∈ S.
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To see that this definition makes sense, we think about the special case where
L = Lf , and f ∈ S. Then, we can take the derivative of f , and it is also an element
of S. So, we can define Lf ′ in the analogous way. Let’s write it down when it takes
in g ∈ S,

Lf ′(g) =

∫
R
f ′(x)g(x)dx.

We can do integration by parts. The boundary terms vanish, so we get

Lf ′(g) =

∫
R
f ′(x)g(x)dx = −

∫
R
f(x)g′(x)dx.

So,

Lf ′(g) = −Lf (g′) = (Lf )′(g).

This is why it makes a lot of sense to define the derivative of a distribution in this
way. For the heavyside function, we define

LH , LH(g) =

∫ ∞
0

g(x)dx.

Then, we compute that

L′H(g) = −LH(g′) = −
∫ ∞
0

g′(x)dx.

Due to the fact that g ∈ S,

lim
x→∞

g(x) = 0.

Hence, we have

−
∫ ∞
0

g′(x)dx = −(0− g(0)) = g(0) = δ(g).

So, we see that the derivative of LH is the δ distribution! Pretty neat!
In this way, distributions can solve differential equations! For example, we’d say

that a distribution L satisfies the equation

L′′ + λL = 0

if, for every g ∈ S we have

L′′(g) + λL(g) = 0.

This turns out to be incredibly useful and important in the theory of partial dif-
ferential equations. However, the way it usually works is that instead of actually
finding a distribution which solves the PDE, one shows by abstract mathematics
that there exists a distribution which solves the PDE. Then, one can use clever
methods to show that the mere existence of a distribution solving the PDE, which
is called a weak solution, actually implies that there exists a genuinely differentiable
solution to the PDE. We don’t want to get ahead of ourselves here, so conclude
with one last exercise, which proves that you can differentiate distributions as many
times as you like!

Exercise 6. Use induction to show that you can differentiate a distribution as
many times as you like, by defining

L(k)(g) := (−1)kL(g(k)).

In a similar way, we can define the Fourier transform of a distribution.
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Definition 7. Assume that L is a tempered distribution. The Fourier transform
of L is the distribution, L̂ which for f ∈ S acts as follows

L̂(f) := L(f̂).

In this way, we can compute the Fourier transform of our favorite distribution,
δ.

δ̂(f) := δ(f̂) = f̂(0) =

∫
R
f(x)dx.

So, we could think of the Fourier transform of δ as the distribution which acts by

δ̂ : f ∈ S 7→
∫
R
f(x)dx.

On the other hand, by the FIT,

δ(f) = f(0) =
1

2π

∫
R
f̂(ξ)dξ =

1

2π
δ̂(f̂) =

1

2π
ˆ̂δ(f).

So that’s kind of cute. It says that

δ =
1

2π
ˆ̂δ.
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