FOURIER ANALYSIS & METHODS 2020.03.11

JULIE ROWLETT

1. Pointwise convergence of Fourier series

Theorem 1.1. Let f be a 2π periodic function. Assume that f is piecewise continuous on \mathbb{R} , and that for every $x \in \mathbb{R}$, the left and right limits of both f and f' exist at x, and these are finite. Let

$$S_N(x) = \sum_{-N}^N c_n e^{inx},$$

where

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx.$$

Then

$$\lim_{N \to \infty} S_N(x) = \frac{1}{2} \left(f(x_-) + f(x_+) \right), \quad \forall x \in \mathbb{R}.$$

1.1. Key steps in the proof.

- (1) Fix the point $x \in \mathbb{R}$.
- (2) Write down the definition of

$$S_N(x) = \sum_{-N}^{N} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{-iny} dy e^{inx}.$$

(3) Make a substitution in the integral defining the Fourier coefficients: let t = y - x. Then y = t + x. We have

$$S_N(x) = \sum_{-N}^N \frac{1}{2\pi} \int_{-\pi-x}^{\pi-x} f(t+x) e^{-int} dt.$$

(4) Use the periodicity to move the integral:

$$\int_{-\pi-x}^{\pi-x} f(t+x)e^{-int}dt = \int_{-\pi}^{\pi} f(t+x)e^{-int}dt.$$

Thus

$$S_N(x) = \sum_{-N}^N \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t+x) e^{-int} dt.$$

(5) Define the N^{th} Dirichlet kernel:

$$D_N(t) = \frac{1}{2\pi} e^{-iNt} \sum_{n=0}^{2N} e^{int}.$$

(6) Remember (or if you forgot, show) two things about the Dirichlet kernel:

$$\int_{-\pi}^{0} D_N(t)dt = \frac{1}{2} = \int_{0}^{\pi} D_N(t)dt$$

and

$$D_N(t) = \frac{1}{2\pi} e^{-iNt} \frac{1 - e^{i(2N+1)t}}{1 - e^{it}} = \frac{e^{-iNt} - e^{i(N+1)t}}{2\pi(1 - e^{it})}.$$

(7) Write

$$S_N(x) = \int_{-\pi}^{\pi} f(t+x)D_N(t)dt,$$

so the goal is to prove:

$$\lim_{N \to \infty} \left| S_N(x) - \frac{1}{2} \left(f(x_-) + f(x_+) \right) \right| = 0.$$

(8) Use the integration fact about the Dirichlet kernel to re-write:

1

$$\frac{1}{2}f(x_{-}) = \int_{-\pi}^{0} D_N(t)dt f(x_{-}), \quad \frac{1}{2}f(x_{+}) = \frac{1}{2} = \int_{0}^{\pi} D_N(t)dt f(x_{+}).$$

(9) Show that it now suffices to estimate:

$$\int_{-\pi}^{0} D_N(t)(f(t+x) - f(x_-))dt + \int_{0}^{\pi} D_N(t)(f(t+x) - f(x_+))dt \bigg| \to 0$$

as $N \to \infty$.

(10) Use the second expression for the N^{th} Dirichlet kernel. Based on this, define a new function

$$g(t) = \frac{f(t+x) - f(x_{-})}{1 - e^{it}}, \quad \text{for } t < 0,$$

$$g(t) = \frac{f(t+x) - f(x_{+})}{1 - e^{it}}, \quad \text{for } t > 0.$$

- (11) Show that g is piecewise continuous and piecewise differentiable. Show that g is bounded.
- (12) Show that one is in fact estimating $c_N(g)$, the N^{th} Fourier coefficient of g minus $c_{-N-1}(g)$, the -N-1 Fourier coefficient of g.
- (13) Use Bessel's inequality to prove that these coefficients both tend to zero as $N \to \infty$.

2. Fourier coefficients of a function and its derivative

Theorem 2.1. This time in Swedish for fun! Låt f vara en 2π -periodisk funktion med $f \in C^1(\mathbb{R})$. Sedan Fourierkoefficienterna c_n av f och Fourierkoefficienterna c'_n av f' uppfyller

 $c'_n = inc_n.$

2.1. Key steps.

- (1) Use the definition of the Fourier coefficient of f', c'_n . Write it down.
- (2) Integrate by parts: move the derivative from f' to the e^{-inx} .
- (3) Use the fact that f, f', and e^{inx} are 2π periodic to kill off the boundary terms. The result should be $c'_n = inc_n$.

3. The 3 equivalent conditions to be an ONB in a Hilbert space

Theorem 3.1. Låt $\{\phi_n\}_{n\in\mathbb{N}}$ vara ortonormala i ett Hilbert-rum, H. Följande tre är ekvivalenta:

(1)
$$f \in H \text{ och } \langle f, \phi_n \rangle = 0 \forall n \in \mathbb{N} \implies f = 0$$

(2)
$$f \in H \implies f = \sum_{n \in \mathbb{N}} \langle f, \phi_n \rangle \phi_n$$

(3) $||f||^2 = \sum_{n \in \mathbb{N}} |\langle f, \phi_n \rangle|^2$.

3.1. Key steps.

(1) Assume that (1) is true and use it to prove (2). To do this, use Bessel's Inequality Theorem to say that

$$g := \sum_{n \ge 1} \langle f, \phi_n \rangle \phi_n \in H.$$

(2) Next, compute

 $\langle g - f, \phi_n \rangle$, and show it is zero for all n.

- (3) Assume now that (2) is true and use it to prove (3). To do this, use the infinite dimensional Pythagorean theorem and the fact that $\{\phi_n\}$ are orthonormal.
- (4) Assume now that (3) is true and use it to prove (1).

4. The Best Approximation Theorem

Theorem 4.1. Låt $\{\phi_n\}_{n\in\mathbb{N}}$ vara en ortonormal mängd i ett Hilbert-rum, H. Om $f \in H$,

$$||f - \sum_{n \in \mathbb{N}} \langle f, \phi_n \rangle \phi_n|| \le ||f - \sum_{n \in \mathbb{N}} c_n \phi_n||, \quad \forall \{c_n\}_{n \in \mathbb{N}} \in \ell^2$$

 $och = g\ddot{a}ller \iff c_n = \langle f, \phi_n \rangle \ g\ddot{a}ller \ \forall n \in \mathbb{N}.$

4.1. Key steps.

(1) Define

$$g := \sum \widehat{f_n} \phi_n, \quad \widehat{f_n} = \langle f, \phi_n \rangle,$$

and

$$\varphi := \sum c_n \phi_n.$$

(2) A clever trick:

$$||f - \varphi||^2 = ||f - g + g - \varphi||^2 = ||f - g||^2 + ||g - \varphi||^2 + 2\Re \langle f - g, g - \varphi \rangle$$

(3) Prove that

$$\langle f - g, g - \varphi \rangle = 0$$

To do this, just pop in the definitions of g and φ and use the properties about scalar products (which you MUST MEMORIZE!!).

(4) After this calculation we get

$$||f - \varphi||^{2} = ||f - g + g - \varphi||^{2} = ||f - g||^{2} + ||g - \varphi||^{2} \ge ||f - g||^{2},$$

with equality if and only if

$$||g - \varphi||^2 = 0.$$

(5) Use the Pythagorean Theorem to conclude that

 $||g - \varphi||^2 = 0 \iff \widehat{f_n} = c_n \quad \forall n \in \mathbb{N}.$

5. Cute properties of SLPs

Theorem 5.1 (Cute facts about SLPs). Let f and g be eigenfunctions for a regular SLP in an interval [a, b] with weight function w(x) > 0. Let λ be the eigenvalue for f and μ the eigenvalue for g. Then:

(1) $\lambda \in \mathbb{R}$ and $\mu \in \mathbb{R}$; (2) If $\lambda \neq \mu$, then:

$$\int_{a}^{b} f(x)\overline{g(x)}w(x)dx = 0.$$

(1) L is self-adjoint means that

$$\langle Lf, f \rangle = \langle f, Lf \rangle.$$

- (2) Use the fact that $Lf = -\lambda wf$ and the properties of scalar products (which you have memorized!!!) in the above equality to show that $\lambda \in \mathbb{R}$.
- (3) For the second part use the self adjoint-ness and the eigenvalue equation to investigate

Theorem 6.1. Let $g \in L^1(\mathbb{R})$ such that

$$\int_{\mathbb{R}} |g(x)| dx = 1$$

Define

$$\alpha = \int_{-\infty}^{0} g(x) dx, \quad \beta = \int_{0}^{\infty} g(x) dx.$$

Assume that f is piecewise continuous on \mathbb{R} and its left and right sided limits exist for all points of \mathbb{R} . Assume that either f is bounded on \mathbb{R} or that g vanishes outside of a bounded interval. Let, for $\epsilon > 0$,

$$g_{\epsilon}(x) = \frac{g(x/\epsilon)}{\epsilon}.$$

Then

$$\lim_{\epsilon \to 0} f * g_{\epsilon}(x) = \alpha f(x+) + \beta f(x-) \quad \forall x \in \mathbb{R}$$

6.1. Key steps.

- (1) Fix the point x.
- (2) Show that it is enough to prove that

$$\lim_{\epsilon \to 0} \int_{-\infty}^0 f(x-y)g_\epsilon(y)dy - \int_{-\infty}^0 f(x+)g(y)dy = 0$$

and also

$$\lim_{\epsilon \to 0} \int_0^\infty f(x-y)g_\epsilon(y)dy - \int_0^\infty f(x-)g(y)dy = 0.$$

The argument is same for both, so choose one. I choose the first one.

(3) Do a substitution in the second integral, setting $z = \epsilon y$, so $y = z/\epsilon$, and $dz/\epsilon = dy$. This shows that:

$$\int_{-\infty}^{0} \left(f(x-y)g_{\epsilon}(y) - f(x+)g(y) \right) dy = \int_{-\infty}^{0} g_{\epsilon}(y) \left(f(x-y) - f(x+) \right) dy.$$

(4) Now, to estimate

$$\int_{-\infty}^{0} g_{\epsilon}(y) \left(f(x-y) - f(x+) \right) dy,$$

split the integral into $\int_{-\infty}^{-\delta} + \int_{-\delta}^{0}$.

(5) First estimate

$$\int_{-\delta}^{0} g_{\epsilon}(y) \left(f(x-y) - f(x+) \right) dy,$$

using the definition of f(x+) as the right hand limit. This fixes the value of δ .

(6) Next estimate

$$\int_{-\infty}^{-\delta} g_{\epsilon}(y) \left(f(x-y) - f(x+) \right) dy.$$

Do this for each of the two cases separately.

7. The Fourier inversion formula

This theory item is really a julklapp. All one must know is the Fourier inversion formula.

Theorem 7.1 (FIT). Assume that $f \in L^2(\mathbb{R})$. Define the Fourier transform to be:

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(y) e^{-iy\xi} dy$$

Then as an equality in $L^2(\mathbb{R})$ we have

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(y) e^{ixy} dy.$$

 \heartsuit

8. Plancharel's Theorem

This one is also on the light side.

Theorem 8.1. Assume $f \in L^2(\mathbb{R})$ and $g \in L^2(\mathbb{R})$. With the Fourier transform defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{-ix\xi} f(x) dx,$$

then we have

$$\langle \hat{f}, \hat{g} \rangle = \int_{\mathbb{R}} \hat{f}(\xi) \overline{\hat{g}(\xi)} d\xi = 2\pi \langle f, g \rangle = 2\pi \int_{\mathbb{R}} f(x) \overline{g(x)} dx$$

and

$$\int_{\mathbb{R}} |\hat{f}(x)|^2 dx = ||\hat{f}||^2 = 2\pi ||f||^2 = 2\pi \int_{\mathbb{R}} |f(x)|^2 dx$$

8.1. Key steps.

- (1) Start on the right side.
- (2) Use the FIT to write f in terms of its Fourier transform.
- (3) Use the magic of complex conjugation to obtain the Fourier transform of g.

9. The Sampling Theorem

Theorem 9.1. Let $f \in L^2(\mathbb{R})$. Assume that there is L > 0 so that $\hat{f}(\xi) = 0 \ \forall \xi \in \mathbb{R}$ with $|\xi| > L$, then:

$$f(t) = \sum_{n \in \mathbb{Z}} f\left(\frac{n\pi}{L}\right) \frac{\sin(n\pi - tL)}{n\pi - tL}.$$

9.1. Key steps.

(1) Expand $\hat{f}(x)$ in a Fourier series on the interval [-L, L]

$$\hat{f}(x) = \sum_{-\infty}^{\infty} c_n e^{in\pi x/L}, \quad c_n = \frac{1}{2L} \int_{-L}^{L} e^{-in\pi x/L} \hat{f}(x) dx.$$

(2) Use the FIT to write

$$f(t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ixt} \hat{f}(x) dx = \frac{1}{2\pi} \int_{-L}^{L} e^{ixt} \hat{f}(x) dx.$$

(3) Substitute the Fourier expansion of \hat{f} into this integral,

$$f(t) = \frac{1}{2\pi} \int_{-L}^{L} e^{ixt} \sum_{-\infty}^{\infty} c_n e^{in\pi x/L} dx.$$

(4) Compute the Fourier coefficients

$$c_n = \frac{1}{2L} \int_{-L}^{L} e^{-in\pi x/L} \hat{f}(x) dx = \frac{1}{2L} \int_{\mathbb{R}} e^{ix(-n\pi/L)} \hat{f}(x) dx = \frac{2\pi}{2L} f\left(\frac{-n\pi}{L}\right).$$

(5) Substitute back into f(t),

$$f(t) = \frac{1}{2\pi} \int_{-L}^{L} e^{ixt} \sum_{-\infty}^{\infty} \frac{\pi}{L} f\left(\frac{-n\pi}{L}\right) e^{in\pi x/L} dx.$$

(6) Swap the sum and the integral

$$f(t) = \frac{1}{2L} \sum_{-\infty}^{\infty} f\left(\frac{n\pi}{L}\right) \int_{-L}^{L} e^{x(it - in\pi/L)} dx.$$

(7) Compute:

$$\int_{-L}^{L} e^{x(it - in\pi/L)} dx = \frac{e^{L(it - in\pi/L)}}{i(t - n\pi/L)} - \frac{e^{-L(it - in\pi/L)}}{i(t - n\pi/L)} = \frac{2i}{i(t - n\pi/L)} \sin(Lt - n\pi).$$

(8) Substitute back inside.

10. The generating function for the Bessel functions

Theorem 10.1. For all x and for all $z \neq 0$, the Bessel functions, J_n satisfy

$$\sum_{n=-\infty}^{\infty} J_n(x) z^n = e^{\frac{x}{2}(z-\frac{1}{z})}.$$

10.1. Key steps.

(1) Write out the Taylor series expansion for the exponential functions:

$$e^{xz/2} = \sum_{j\geq 0} \frac{\left(\frac{xz}{2}\right)^j}{j!},$$

and

$$e^{-x/(2z)} = \sum_{k \ge 0} \frac{\left(\frac{-x}{2z}\right)^k}{k!}.$$

(2) Multiply these together:

$$e^{xz/2}e^{-x/(2z)} = \sum_{j\ge 0} \frac{\left(\frac{xz}{2}\right)^j}{j!} \sum_{k\ge 0} \frac{\left(\frac{-x}{2z}\right)^k}{k!} = \sum_{j,k\ge 0} (-1)^k \left(\frac{x}{2}\right)^{j+k} \frac{z^{j-k}}{j!k!}.$$

(3) We need a sum over \mathbb{Z} but we just have two sums over $j, k \geq 0$. To get this, define the variable

$$n = j - k.$$

Write everything in terms of n and k, which gives

$$e^{xz/2}e^{-x/(2z)} = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty} (-1)^k \left(\frac{x}{2}\right)^{n+2k} \frac{z^n}{\Gamma(n+k+1)k!}.$$

(4) Recognize that the sum over k is the definition of $J_n(x)$.

11. Orthogonality of the Hermite polynomials

Theorem 11.1. The Hermite polynomials $\{H_n\}_{n=0}^{\infty}$ are orthogonal on \mathbb{R} with respect to the weight function $w(x) = e^{-x^2}$. Recall here that

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2},$$

and so the statement is that

$$\int_{\mathbb{R}} H_n(x) H_m(x) e^{-x^2} dx = 0, \quad n \neq m.$$

11.1. Key steps.

(1) Assume WLOG that

$$n > m \ge 0.$$

(2) Do integration by parts on $\langle H_n, H_m \rangle$:

$$(-1)^{n} \int_{\mathbb{R}} \left(\frac{d^{n}}{dx^{n}} e^{-x^{2}} \right) H_{m}(x) dx = (-1)^{n} \left(\frac{d^{n-1}}{dx^{n-1}} e^{-x^{2}} \right) H_{m}(x) \Big|_{x=-\infty}^{\infty} + (-1)^{n+1} \int_{\mathbb{R}} \left(\frac{d^{n-1}}{dx^{n-1}} e^{-x^{2}} \right) H'_{m}(x) dx.$$

(3) Use the fact that

$$\frac{d^{n-1}}{dx^{n-1}}e^{-x^2} = \text{ polynomial times } e^{-x^2}$$

and the fact that e^{-x^2} goes to zero faster as $|x| \to \infty$ than any polynomial (Godzilla!) to conclude that

$$(-1)^n \left(\frac{d^{n-1}}{dx^{n-1}}e^{-x^2}\right) H_m(x)\Big|_{x=-\infty}^{\infty} = 0.$$

(4) Show inductively that you can do this n times to get

$$(-1)^n \int_{\mathbb{R}} \left(\frac{d^n}{dx^n} e^{-x^2} \right) H_m(x) dx = (-1)^{n+n} \int_{\mathbb{R}} e^{-x^2} \left(\frac{d^n}{dx^n} H_m(x) \right) dx.$$

(5) If one differentiates H_m , a polynomial of degree m < n, n times, the result is zero. So the integral on the right is just zero.

12. The generating function for the Hermite polynomials

Theorem 12.1. For any $x \in \mathbb{R}$ and $z \in \mathbb{C}$, the Hermite polynomials,

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2},$$

satisfy

$$\sum_{n=0}^{\infty} H_n(x) \frac{z^n}{n!} = e^{2xz - z^2}$$

12.1. Key steps.

(1) Start with

$$e^{-(x-z)^2} = e^{-x^2 + 2xz - z^2}$$

(2) Compute the power series expansion with respect to z around z = 0,

$$e^{-(x-z)^2} = \sum_{n \ge 0} a_n z^n,$$

where

$$a_n = \frac{1}{n!} \frac{d^n}{dz^n} e^{-(x-z)^2},$$
 evaluated at $z = 0$

(3) Compute the coefficients using the chain rule with the variable u = x - z, thus

$$a_n = \frac{1}{n!} \frac{d^n}{du^n} e^{-u^2} \left(\frac{du}{dz}\right)^n \Big|_{z=0 \implies u=x}$$
$$= \frac{1}{n!} \frac{d^n}{dx^n} e^{-x^2} (-1)^n.$$

(4) Pop it back into the Taylor series expansion:

$$e^{-(x-z)^2} = e^{-x^2+2xz-z^2} = \sum_{n\geq 0} \frac{z^n}{n!} (-1)^n \frac{d^n}{dx^n} e^{-x^2}.$$

(5) Multiply both sides by e^{x^2} .