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1. Pointwise convergence of Fourier series

Theorem 1.1. Let f be a 2π periodic function. Assume that f is piecewise continuous on R, and
that for every x ∈ R, the left and right limits of both f and f ′ exist at x, and these are finite. Let

SN (x) =
N∑
−N

cne
inx,

where

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

Then

lim
N→∞

SN (x) =
1

2
(f(x−) + f(x+)) , ∀x ∈ R.

1.1. Key steps in the proof.

(1) Fix the point x ∈ R.
(2) Write down the definition of

SN (x) =

N∑
−N

1

2π

∫ π

−π
f(y)e−inydyeinx.

(3) Make a substitution in the integral defining the Fourier coefficients: let t = y − x. Then
y = t+ x. We have

SN (x) =

N∑
−N

1

2π

∫ π−x

−π−x
f(t+ x)e−intdt.

(4) Use the periodicity to move the integral:∫ π−x

−π−x
f(t+ x)e−intdt =

∫ π

−π
f(t+ x)e−intdt.

Thus

SN (x) =
N∑
−N

1

2π

∫ π

−π
f(t+ x)e−intdt.

(5) Define the N th Dirichlet kernel:

DN (t) =
1

2π
e−iNt

2N∑
n=0

eint.

(6) Remember (or if you forgot, show) two things about the Dirichlet kernel:∫ 0

−π
DN (t)dt =

1

2
=

∫ π

0
DN (t)dt

and

DN (t) =
1

2π
e−iNt

1− ei(2N+1)t

1− eit
=
e−iNt − ei(N+1)t

2π(1− eit)
.
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(7) Write

SN (x) =

∫ π

−π
f(t+ x)DN (t)dt,

so the goal is to prove:

lim
N→∞

∣∣∣∣SN (x)− 1

2
(f(x−) + f(x+))

∣∣∣∣ = 0.

(8) Use the integration fact about the Dirichlet kernel to re-write:

1

2
f(x−) =

∫ 0

−π
DN (t)dtf(x−),

1

2
f(x+) =

1

2
=

∫ π

0
DN (t)dtf(x+).

(9) Show that it now suffices to estimate:∣∣∣∣∫ 0

−π
DN (t)(f(t+ x)− f(x−))dt+

∫ π

0
DN (t)(f(t+ x)− f(x+))dt

∣∣∣∣→ 0

as N →∞.
(10) Use the second expression for the N th Dirichlet kernel. Based on this, define a new function

g(t) =
f(t+ x)− f(x−)

1− eit
, for t < 0,

g(t) =
f(t+ x)− f(x+)

1− eit
, for t > 0.

(11) Show that g is piecewise continuous and piecewise differentiable. Show that g is bounded.
(12) Show that one is in fact estimating cN (g), the N th Fourier coefficient of g minus c−N−1(g),

the −N − 1 Fourier coefficient of g.
(13) Use Bessel’s inequality to prove that these coefficients both tend to zero as N →∞.

2. Fourier coefficients of a function and its derivative

Theorem 2.1. This time in Swedish for fun! L̊at f vara en 2π-periodisk funktion med f ∈ C1(R).
Sedan Fourierkoefficienterna cn av f och Fourierkoefficienterna c′n av f ′ uppfyller

c′n = incn.

2.1. Key steps.

(1) Use the definition of the Fourier coefficient of f ′, c′n. Write it down.
(2) Integrate by parts: move the derivative from f ′ to the e−inx.
(3) Use the fact that f , f ′, and einx are 2π periodic to kill off the boundary terms. The result

should be c′n = incn.

3. The 3 equivalent conditions to be an ONB in a Hilbert space

Theorem 3.1. L̊at {φn}n∈N vara ortonormala i ett Hilbert-rum, H. Följande tre är ekvivalenta:

(1) f ∈ H och 〈f, φn〉 = 0∀n ∈ N =⇒ f = 0.

(2) f ∈ H =⇒ f =
∑
n∈N
〈f, φn〉φn.

(3) ||f ||2 =
∑
n∈N
|〈f, φn〉|2 .
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3.1. Key steps.

(1) Assume that (1) is true and use it to prove (2). To do this, use Bessel’s Inequality Theorem
to say that

g :=
∑
n≥1
〈f, φn〉φn ∈ H.

(2) Next, compute
〈g − f, φn〉, and show it is zero for all n.

(3) Assume now that (2) is true and use it to prove (3). To do this, use the infinite dimensional
Pythagorean theorem and the fact that {φn} are orthonormal.

(4) Assume now that (3) is true and use it to prove (1).

4. The Best Approximation Theorem

Theorem 4.1. L̊at {φn}n∈N vara en ortonormal mängd i ett Hilbert-rum, H. Om f ∈ H,

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

och = gäller ⇐⇒ cn = 〈f, φn〉 gäller ∀n ∈ N.

4.1. Key steps.

(1) Define

g :=
∑

f̂nφn, f̂n = 〈f, φn〉,
and

ϕ :=
∑

cnφn.

(2) A clever trick:

||f − ϕ||2 = ||f − g + g − ϕ||2 = ||f − g||2 + ||g − ϕ||2 + 2<〈f − g, g − ϕ〉.
(3) Prove that

〈f − g, g − ϕ〉 = 0.

To do this, just pop in the definitions of g and ϕ and use the properties about scalar products
(which you MUST MEMORIZE!!).

(4) After this calculation we get

||f − ϕ||2 = ||f − g + g − ϕ||2 = ||f − g||2 + ||g − ϕ||2 ≥ ||f − g||2,
with equality if and only if

||g − ϕ||2 = 0.

(5) Use the Pythagorean Theorem to conclude that

||g − ϕ||2 = 0 ⇐⇒ f̂n = cn ∀n ∈ N.

5. Cute properties of SLPs

Theorem 5.1 (Cute facts about SLPs). Let f and g be eigenfunctions for a regular SLP in an
interval [a, b] with weight function w(x) > 0. Let λ be the eigenvalue for f and µ the eigenvalue for
g. Then:

(1) λ ∈ R and µ ∈ R;
(2) If λ 6= µ, then: ∫ b

a
f(x)g(x)w(x)dx = 0.

(1) L is self-adjoint means that
〈Lf, f〉 = 〈f, Lf〉.

(2) Use the fact that Lf = −λwf and the properties of scalar products (which you have mem-
orized!!!) in the above equality to show that λ ∈ R.

(3) For the second part use the self adjoint-ness and the eigenvalue equation to investigate

〈Lf, g〉.
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6. The big bad convolution approximation theorem

Theorem 6.1. Let g ∈ L1(R) such that ∫
R
|g(x)|dx = 1.

Define

α =

∫ 0

−∞
g(x)dx, β =

∫ ∞
0

g(x)dx.

Assume that f is piecewise continuous on R and its left and right sided limits exist for all points of
R. Assume that either f is bounded on R or that g vanishes outside of a bounded interval. Let, for
ε > 0,

gε(x) =
g(x/ε)

ε
.

Then
lim
ε→0

f ∗ gε(x) = αf(x+) + βf(x−) ∀x ∈ R.

6.1. Key steps.

(1) Fix the point x.
(2) Show that it is enough to prove that

lim
ε→0

∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy = 0

and also

lim
ε→0

∫ ∞
0

f(x− y)gε(y)dy −
∫ ∞
0

f(x−)g(y)dy = 0.

The argument is same for both, so choose one. I choose the first one.
(3) Do a substitution in the second integral, setting z = εy, so y = z/ε, and dz/ε = dy. This

shows that:∫ 0

−∞
(f(x− y)gε(y)− f(x+)g(y)) dy =

∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy.

(4) Now, to estimate ∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy,

split the integral into
∫ −δ
−∞+

∫ 0
−δ.

(5) First estimate ∫ 0

−δ
gε(y) (f(x− y)− f(x+)) dy,

using the definition of f(x+) as the right hand limit. This fixes the value of δ.
(6) Next estimate ∫ −δ

−∞
gε(y) (f(x− y)− f(x+)) dy.

Do this for each of the two cases separately.

7. The Fourier inversion formula

This theory item is really a julklapp. All one must know is the Fourier inversion formula.

Theorem 7.1 (FIT). Assume that f ∈ L2(R). Define the Fourier transform to be:

f̂(ξ) =

∫
R
f(y)e−iyξdy.

Then as an equality in L2(R) we have

f(x) =
1

2π

∫
R
f̂(y)eixydy.

♥
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8. Plancharel’s Theorem

This one is also on the light side.

Theorem 8.1. Assume f ∈ L2(R) and g ∈ L2(R). With the Fourier transform defined by

f̂(ξ) =

∫
R
e−ixξf(x)dx,

then we have

〈f̂ , ĝ〉 =

∫
R
f̂(ξ)ĝ(ξ)dξ = 2π〈f, g〉 = 2π

∫
R
f(x)g(x)dx,

and ∫
R
|f̂(x)|2dx = ||f̂ ||2 = 2π||f ||2 = 2π

∫
R
|f(x)|2dx.

8.1. Key steps.

(1) Start on the right side.
(2) Use the FIT to write f in terms of its Fourier transform.
(3) Use the magic of complex conjugation to obtain the Fourier transform of g.

9. The Sampling Theorem

Theorem 9.1. Let f ∈ L2(R). Assume that there is L > 0 so that f̂(ξ) = 0 ∀ξ ∈ R with |ξ| > L,
then:

f(t) =
∑
n∈Z

f
(nπ
L

) sin(nπ − tL)

nπ − tL
.

9.1. Key steps.

(1) Expand f̂(x) in a Fourier series on the interval [−L,L]

f̂(x) =
∞∑
−∞

cne
inπx/L, cn =

1

2L

∫ L

−L
e−inπx/Lf̂(x)dx.

(2) Use the FIT to write

f(t) =
1

2π

∫
R
eixtf̂(x)dx =

1

2π

∫ L

−L
eixtf̂(x)dx.

(3) Substitute the Fourier expansion of f̂ into this integral,

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

cne
inπx/Ldx.

(4) Compute the Fourier coefficients

cn =
1

2L

∫ L

−L
e−inπx/Lf̂(x)dx =

1

2L

∫
R
eix(−nπ/L)f̂(x)dx =

2π

2L
f

(
−nπ
L

)
.

(5) Substitute back into f(t),

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

π

L
f

(
−nπ
L

)
einπx/Ldx.

(6) Swap the sum and the integral

f(t) =
1

2L

∞∑
−∞

f
(nπ
L

)∫ L

−L
ex(it−inπ/L)dx.

(7) Compute:∫ L

−L
ex(it−inπ/L)dx =

eL(it−inπ/L)

i(t− nπ/L)
− e−L(it−inπ/L)

i(t− nπ/L)
=

2i

i(t− nπ/L)
sin(Lt− nπ).

(8) Substitute back inside.
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10. The generating function for the Bessel functions

Theorem 10.1. For all x and for all z 6= 0, the Bessel functions, Jn satisfy
∞∑

n=−∞
Jn(x)zn = e

x
2
(z− 1

z
).

10.1. Key steps.

(1) Write out the Taylor series expansion for the exponential functions:

exz/2 =
∑
j≥0

(
xz
2

)j
j!

,

and

e−x/(2z) =
∑
k≥0

(−x
2z

)k
k!

.

(2) Multiply these together:

exz/2e−x/(2z) =
∑
j≥0

(
xz
2

)j
j!

∑
k≥0

(−x
2z

)k
k!

=
∑
j,k≥0

(−1)k
(x

2

)j+k zj−k
j!k!

.

(3) We need a sum over Z but we just have two sums over j, k ≥ 0. To get this, define the
variable

n = j − k.
Write everything in terms of n and k, which gives

exz/2e−x/(2z) =
∞∑

n=−∞

∞∑
k=0

(−1)k
(x

2

)n+2k zn

Γ(n+ k + 1)k!
.

(4) Recognize that the sum over k is the definition of Jn(x).

11. Orthogonality of the Hermite polynomials

Theorem 11.1. The Hermite polynomials {Hn}∞n=0 are orthogonal on R with respect to the weight

function w(x) = e−x
2
. Recall here that

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
,

and so the statement is that ∫
R
Hn(x)Hm(x)e−x

2
dx = 0, n 6= m.

11.1. Key steps.

(1) Assume WLOG that
n > m ≥ 0.

(2) Do integration by parts on 〈Hn, Hm〉:

(−1)n
∫
R

(
dn

dxn
e−x

2

)
Hm(x)dx = (−1)n

(
dn−1

dxn−1
e−x

2

)
Hm(x)

∣∣∣∣∞
x=−∞

+(−1)n+1

∫
R

(
dn−1

dxn−1
e−x

2

)
H ′m(x)dx.

(3) Use the fact that
dn−1

dxn−1
e−x

2
= polynomial times e−x

2

and the fact that e−x
2

goes to zero faster as |x| → ∞ than any polynomial (Godzilla!) to
conclude that

(−1)n
(
dn−1

dxn−1
e−x

2

)
Hm(x)

∣∣∣∣∞
x=−∞

= 0.
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(4) Show inductively that you can do this n times to get

(−1)n
∫
R

(
dn

dxn
e−x

2

)
Hm(x)dx = (−1)n+n

∫
R
e−x

2

(
dn

dxn
Hm(x)

)
dx.

(5) If one differentiates Hm, a polynomial of degree m < n, n times, the result is zero. So the
integral on the right is just zero.

12. The generating function for the Hermite polynomials

Theorem 12.1. For any x ∈ R and z ∈ C, the Hermite polynomials,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
,

satisfy
∞∑
n=0

Hn(x)
zn

n!
= e2xz−z

2
.

12.1. Key steps.

(1) Start with

e−(x−z)
2

= e−x
2+2xz−z2 .

(2) Compute the power series expansion with respect to z around z = 0,

e−(x−z)
2

=
∑
n≥0

anz
n,

where

an =
1

n!

dn

dzn
e−(x−z)

2
, evaluated at z = 0.

(3) Compute the coefficients using the chain rule with the variable u = x− z, thus

an =
1

n!

dn

dun
e−u

2

(
du

dz

)n∣∣∣∣
z=0 =⇒ u=x

=
1

n!

dn

dxn
e−x

2
(−1)n.

(4) Pop it back into the Taylor series expansion:

e−(x−z)
2

= e−x
2+2xz−z2 =

∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2
.

(5) Multiply both sides by ex
2
.
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