FOURIER ANALYSIS \& METHODS 2020.03.11

JULIE ROWLETT

1. Pointwise convergence of Fourier series

Theorem 1.1. Let f be a 2π periodic function. Assume that f is piecewise continuous on \mathbb{R}, and that for every $x \in \mathbb{R}$, the left and right limits of both f and f^{\prime} exist at x, and these are finite. Let

$$
S_{N}(x)=\sum_{-N}^{N} c_{n} e^{i n x}
$$

where

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

Then

$$
\lim _{N \rightarrow \infty} S_{N}(x)=\frac{1}{2}\left(f\left(x_{-}\right)+f\left(x_{+}\right)\right), \quad \forall x \in \mathbb{R}
$$

1.1. Key steps in the proof.

(1) Fix the point $x \in \mathbb{R}$.
(2) Write down the definition of

$$
S_{N}(x)=\sum_{-N}^{N} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{-i n y} d y e^{i n x}
$$

(3) Make a substitution in the integral defining the Fourier coefficients: let $t=y-x$. Then $y=t+x$. We have

$$
S_{N}(x)=\sum_{-N}^{N} \frac{1}{2 \pi} \int_{-\pi-x}^{\pi-x} f(t+x) e^{-i n t} d t
$$

(4) Use the periodicity to move the integral:

$$
\int_{-\pi-x}^{\pi-x} f(t+x) e^{-i n t} d t=\int_{-\pi}^{\pi} f(t+x) e^{-i n t} d t
$$

Thus

$$
S_{N}(x)=\sum_{-N}^{N} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t+x) e^{-i n t} d t
$$

(5) Define the $N^{t h}$ Dirichlet kernel:

$$
D_{N}(t)=\frac{1}{2 \pi} e^{-i N t} \sum_{n=0}^{2 N} e^{i n t}
$$

(6) Remember (or if you forgot, show) two things about the Dirichlet kernel:

$$
\int_{-\pi}^{0} D_{N}(t) d t=\frac{1}{2}=\int_{0}^{\pi} D_{N}(t) d t
$$

and

$$
D_{N}(t)=\frac{1}{2 \pi} e^{-i N t} \frac{1-e^{i(2 N+1) t}}{1-e^{i t}}=\frac{e^{-i N t}-e^{i(N+1) t}}{2 \pi\left(1-e^{i t}\right)}
$$

(7) Write

$$
S_{N}(x)=\int_{-\pi}^{\pi} f(t+x) D_{N}(t) d t
$$

so the goal is to prove:

$$
\lim _{N \rightarrow \infty}\left|S_{N}(x)-\frac{1}{2}\left(f\left(x_{-}\right)+f\left(x_{+}\right)\right)\right|=0
$$

(8) Use the integration fact about the Dirichlet kernel to re-write:

$$
\frac{1}{2} f\left(x_{-}\right)=\int_{-\pi}^{0} D_{N}(t) d t f\left(x_{-}\right), \quad \frac{1}{2} f\left(x_{+}\right)=\frac{1}{2}=\int_{0}^{\pi} D_{N}(t) d t f\left(x_{+}\right) .
$$

(9) Show that it now suffices to estimate:

$$
\left|\int_{-\pi}^{0} D_{N}(t)\left(f(t+x)-f\left(x_{-}\right)\right) d t+\int_{0}^{\pi} D_{N}(t)\left(f(t+x)-f\left(x_{+}\right)\right) d t\right| \rightarrow 0
$$

as $N \rightarrow \infty$.
(10) Use the second expression for the $N^{t h}$ Dirichlet kernel. Based on this, define a new function

$$
\begin{array}{ll}
g(t)=\frac{f(t+x)-f\left(x_{-}\right)}{1-e^{i t}}, & \text { for } t<0, \\
g(t)=\frac{f(t+x)-f\left(x_{+}\right)}{1-e^{i t}}, & \text { for } t>0 .
\end{array}
$$

(11) Show that g is piecewise continuous and piecewise differentiable. Show that g is bounded.
(12) Show that one is in fact estimating $c_{N}(g)$, the $N^{t h}$ Fourier coefficient of g minus $c_{-N-1}(g)$, the $-N-1$ Fourier coefficient of g.
(13) Use Bessel's inequality to prove that these coefficients both tend to zero as $N \rightarrow \infty$.

2. Fourier coefficients of a function and its derivative

Theorem 2.1. This time in Swedish for fun! Lait f vara en 2π-periodisk funktion med $f \in C^{1}(\mathbb{R})$. Sedan Fourierkoefficienterna c_{n} av f och Fourierkoefficienterna c_{n}^{\prime} av f^{\prime} uppfyller

$$
c_{n}^{\prime}=i n c_{n}
$$

2.1. Key steps.

(1) Use the definition of the Fourier coefficient of $f^{\prime}, c_{n}^{\prime}$. Write it down.
(2) Integrate by parts: move the derivative from f^{\prime} to the $e^{-i n x}$.
(3) Use the fact that f, f^{\prime}, and $e^{i n x}$ are 2π periodic to kill off the boundary terms. The result should be $c_{n}^{\prime}=i n c_{n}$.
3. The 3 equivalent conditions to be an ONB in a Hilbert space

Theorem 3.1. Låt $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$ vara ortonormala i ett Hilbert-rum, H. Följande tre är ekvivalenta:
(1) $f \in H$ och $\left\langle f, \phi_{n}\right\rangle=0 \forall n \in \mathbb{N} \Longrightarrow f=0$.
(2) $f \in H \Longrightarrow f=\sum_{n \in \mathbb{N}}\left\langle f, \phi_{n}\right\rangle \phi_{n}$.
(3) $\|f\|^{2}=\sum_{n \in \mathbb{N}}\left|\left\langle f, \phi_{n}\right\rangle\right|^{2}$.

3.1. Key steps.

(1) Assume that (1) is true and use it to prove (2). To do this, use Bessel's Inequality Theorem to say that

$$
g:=\sum_{n \geq 1}\left\langle f, \phi_{n}\right\rangle \phi_{n} \in H
$$

(2) Next, compute

$$
\left\langle g-f, \phi_{n}\right\rangle, \quad \text { and show it is zero for all } n .
$$

(3) Assume now that (2) is true and use it to prove (3). To do this, use the infinite dimensional Pythagorean theorem and the fact that $\left\{\phi_{n}\right\}$ are orthonormal.
(4) Assume now that (3) is true and use it to prove (1).

4. The Best Approximation Theorem

Theorem 4.1. Låt $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$ vara en ortonormal mängd i ett Hilbert-rum, H. Om $f \in H$,

$$
\left\|f-\sum_{n \in \mathbb{N}}\left\langle f, \phi_{n}\right\rangle \phi_{n}\right\| \leq\left\|f-\sum_{n \in \mathbb{N}} c_{n} \phi_{n}\right\|, \quad \forall\left\{c_{n}\right\}_{n \in \mathbb{N}} \in \ell^{2}
$$

och $=$ gäller $\Longleftrightarrow c_{n}=\left\langle f, \phi_{n}\right\rangle$ gäller $\forall n \in \mathbb{N}$.

4.1. Key steps.

(1) Define

$$
g:=\sum \widehat{f_{n}} \phi_{n}, \quad \widehat{f_{n}}=\left\langle f, \phi_{n}\right\rangle
$$

and

$$
\varphi:=\sum c_{n} \phi_{n}
$$

(2) A clever trick:

$$
\|f-\varphi\|^{2}=\|f-g+g-\varphi\|^{2}=\|f-g\|^{2}+\|g-\varphi\|^{2}+2 \Re\langle f-g, g-\varphi\rangle .
$$

(3) Prove that

$$
\langle f-g, g-\varphi\rangle=0
$$

To do this, just pop in the definitions of g and φ and use the properties about scalar products (which you MUST MEMORIZE!!).
(4) After this calculation we get

$$
\|f-\varphi\|^{2}=\|f-g+g-\varphi\|^{2}=\|f-g\|^{2}+\|g-\varphi\|^{2} \geq\|f-g\|^{2}
$$

with equality if and only if

$$
\|g-\varphi\|^{2}=0
$$

(5) Use the Pythagorean Theorem to conclude that

$$
\|g-\varphi\|^{2}=0 \Longleftrightarrow \widehat{f_{n}}=c_{n} \quad \forall n \in \mathbb{N}
$$

5. Cute properties of SLPs

Theorem 5.1 (Cute facts about SLPs). Let f and g be eigenfunctions for a regular $S L P$ in an interval $[a, b]$ with weight function $w(x)>0$. Let λ be the eigenvalue for f and μ the eigenvalue for g. Then:
(1) $\lambda \in \mathbb{R}$ and $\mu \in \mathbb{R}$;
(2) If $\lambda \neq \mu$, then:

$$
\int_{a}^{b} f(x) \overline{g(x)} w(x) d x=0
$$

(1) L is self-adjoint means that

$$
\langle L f, f\rangle=\langle f, L f\rangle
$$

(2) Use the fact that $L f=-\lambda w f$ and the properties of scalar products (which you have memorized!!!) in the above equality to show that $\lambda \in \mathbb{R}$.
(3) For the second part use the self adjoint-ness and the eigenvalue equation to investigate

$$
\langle L f, g\rangle .
$$

6. THE BIG BAD CONVOLUTION APPROXIMATION THEOREM

Theorem 6.1. Let $g \in L^{1}(\mathbb{R})$ such that

$$
\int_{\mathbb{R}}|g(x)| d x=1
$$

Define

$$
\alpha=\int_{-\infty}^{0} g(x) d x, \quad \beta=\int_{0}^{\infty} g(x) d x
$$

Assume that f is piecewise continuous on \mathbb{R} and its left and right sided limits exist for all points of \mathbb{R}. Assume that either f is bounded on \mathbb{R} or that g vanishes outside of a bounded interval. Let, for $\epsilon>0$,

$$
g_{\epsilon}(x)=\frac{g(x / \epsilon)}{\epsilon} .
$$

Then

$$
\lim _{\epsilon \rightarrow 0} f * g_{\epsilon}(x)=\alpha f(x+)+\beta f(x-) \quad \forall x \in \mathbb{R}
$$

6.1. Key steps.

(1) Fix the point x.
(2) Show that it is enough to prove that

$$
\lim _{\epsilon \rightarrow 0} \int_{-\infty}^{0} f(x-y) g_{\epsilon}(y) d y-\int_{-\infty}^{0} f(x+) g(y) d y=0
$$

and also

$$
\lim _{\epsilon \rightarrow 0} \int_{0}^{\infty} f(x-y) g_{\epsilon}(y) d y-\int_{0}^{\infty} f(x-) g(y) d y=0
$$

The argument is same for both, so choose one. I choose the first one.
(3) Do a substitution in the second integral, setting $z=\epsilon y$, so $y=z / \epsilon$, and $d z / \epsilon=d y$. This shows that:

$$
\int_{-\infty}^{0}\left(f(x-y) g_{\epsilon}(y)-f(x+) g(y)\right) d y=\int_{-\infty}^{0} g_{\epsilon}(y)(f(x-y)-f(x+)) d y
$$

(4) Now, to estimate

$$
\int_{-\infty}^{0} g_{\epsilon}(y)(f(x-y)-f(x+)) d y
$$

split the integral into $\int_{-\infty}^{-\delta}+\int_{-\delta}^{0}$.
(5) First estimate

$$
\int_{-\delta}^{0} g_{\epsilon}(y)(f(x-y)-f(x+)) d y
$$

using the definition of $f(x+)$ as the right hand limit. This fixes the value of δ.
(6) Next estimate

$$
\int_{-\infty}^{-\delta} g_{\epsilon}(y)(f(x-y)-f(x+)) d y
$$

Do this for each of the two cases separately.

7. The Fourier inversion formula

This theory item is really a julklapp. All one must know is the Fourier inversion formula.
Theorem 7.1 (FIT). Assume that $f \in L^{2}(\mathbb{R})$. Define the Fourier transform to be:

$$
\hat{f}(\xi)=\int_{\mathbb{R}} f(y) e^{-i y \xi} d y
$$

Then as an equality in $L^{2}(\mathbb{R})$ we have

$$
f(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{f}(y) e^{i x y} d y
$$

8. Plancharel's Theorem

This one is also on the light side.
Theorem 8.1. Assume $f \in L^{2}(\mathbb{R})$ and $g \in L^{2}(\mathbb{R})$. With the Fourier transform defined by

$$
\hat{f}(\xi)=\int_{\mathbb{R}} e^{-i x \xi} f(x) d x
$$

then we have

$$
\langle\hat{f}, \hat{g}\rangle=\int_{\mathbb{R}} \hat{f}(\xi) \overline{\hat{g}(\xi)} d \xi=2 \pi\langle f, g\rangle=2 \pi \int_{\mathbb{R}} f(x) \overline{g(x)} d x
$$

and

$$
\int_{\mathbb{R}}|\hat{f}(x)|^{2} d x=\|\hat{f}\|^{2}=2 \pi\|f\|^{2}=2 \pi \int_{\mathbb{R}}|f(x)|^{2} d x .
$$

8.1. Key steps.

(1) Start on the right side.
(2) Use the FIT to write f in terms of its Fourier transform.
(3) Use the magic of complex conjugation to obtain the Fourier transform of g.

9. The Sampling Theorem

Theorem 9.1. Let $f \in L^{2}(\mathbb{R})$. Assume that there is $L>0$ so that $\hat{f}(\xi)=0 \forall \xi \in \mathbb{R}$ with $|\xi|>L$, then:

$$
f(t)=\sum_{n \in \mathbb{Z}} f\left(\frac{n \pi}{L}\right) \frac{\sin (n \pi-t L)}{n \pi-t L} .
$$

9.1. Key steps.

(1) Expand $\hat{f}(x)$ in a Fourier series on the interval $[-L, L]$

$$
\hat{f}(x)=\sum_{-\infty}^{\infty} c_{n} e^{i n \pi x / L}, \quad c_{n}=\frac{1}{2 L} \int_{-L}^{L} e^{-i n \pi x / L} \hat{f}(x) d x .
$$

(2) Use the FIT to write

$$
f(t)=\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i x t} \hat{f}(x) d x=\frac{1}{2 \pi} \int_{-L}^{L} e^{i x t} \hat{f}(x) d x .
$$

(3) Substitute the Fourier expansion of \hat{f} into this integral,

$$
f(t)=\frac{1}{2 \pi} \int_{-L}^{L} e^{i x t} \sum_{-\infty}^{\infty} c_{n} e^{i n \pi x / L} d x .
$$

(4) Compute the Fourier coefficients

$$
c_{n}=\frac{1}{2 L} \int_{-L}^{L} e^{-i n \pi x / L} \hat{f}(x) d x=\frac{1}{2 L} \int_{\mathbb{R}} e^{i x(-n \pi / L)} \hat{f}(x) d x=\frac{2 \pi}{2 L} f\left(\frac{-n \pi}{L}\right) .
$$

(5) Substitute back into $f(t)$,

$$
f(t)=\frac{1}{2 \pi} \int_{-L}^{L} e^{i x t} \sum_{-\infty}^{\infty} \frac{\pi}{L} f\left(\frac{-n \pi}{L}\right) e^{i n \pi x / L} d x
$$

(6) Swap the sum and the integral

$$
f(t)=\frac{1}{2 L} \sum_{-\infty}^{\infty} f\left(\frac{n \pi}{L}\right) \int_{-L}^{L} e^{x(i t-i n \pi / L)} d x
$$

(7) Compute:

$$
\int_{-L}^{L} e^{x(i t-i n \pi / L)} d x=\frac{e^{L(i t-i n \pi / L)}}{i(t-n \pi / L)}-\frac{e^{-L(i t-i n \pi / L)}}{i(t-n \pi / L)}=\frac{2 i}{i(t-n \pi / L)} \sin (L t-n \pi) .
$$

(8) Substitute back inside.

10. The generating function for the Bessel functions

Theorem 10.1. For all x and for all $z \neq 0$, the Bessel functions, J_{n} satisfy

$$
\sum_{n=-\infty}^{\infty} J_{n}(x) z^{n}=e^{\frac{x}{2}\left(z-\frac{1}{z}\right)}
$$

10.1. Key steps.

(1) Write out the Taylor series expansion for the exponential functions:

$$
e^{x z / 2}=\sum_{j \geq 0} \frac{\left(\frac{x z}{2}\right)^{j}}{j!}
$$

and

$$
e^{-x /(2 z)}=\sum_{k \geq 0} \frac{\left(\frac{-x}{2 z}\right)^{k}}{k!}
$$

(2) Multiply these together:

$$
e^{x z / 2} e^{-x /(2 z)}=\sum_{j \geq 0} \frac{\left(\frac{x z}{2}\right)^{j}}{j!} \sum_{k \geq 0} \frac{\left(\frac{-x}{2 z}\right)^{k}}{k!}=\sum_{j, k \geq 0}(-1)^{k}\left(\frac{x}{2}\right)^{j+k} \frac{z^{j-k}}{j!k!}
$$

(3) We need a sum over \mathbb{Z} but we just have two sums over $j, k \geq 0$. To get this, define the variable

$$
n=j-k
$$

Write everything in terms of n and k, which gives

$$
e^{x z / 2} e^{-x /(2 z)}=\sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{x}{2}\right)^{n+2 k} \frac{z^{n}}{\Gamma(n+k+1) k!}
$$

(4) Recognize that the sum over k is the definition of $J_{n}(x)$.

11. Orthogonality of the Hermite polynomials

Theorem 11.1. The Hermite polynomials $\left\{H_{n}\right\}_{n=0}^{\infty}$ are orthogonal on \mathbb{R} with respect to the weight function $w(x)=e^{-x^{2}}$. Recall here that

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

and so the statement is that

$$
\int_{\mathbb{R}} H_{n}(x) H_{m}(x) e^{-x^{2}} d x=0, \quad n \neq m
$$

11.1. Key steps.

(1) Assume WLOG that

$$
n>m \geq 0
$$

(2) Do integration by parts on $\left\langle H_{n}, H_{m}\right\rangle$:

$$
\begin{gathered}
(-1)^{n} \int_{\mathbb{R}}\left(\frac{d^{n}}{d x^{n}} e^{-x^{2}}\right) H_{m}(x) d x=\left.(-1)^{n}\left(\frac{d^{n-1}}{d x^{n-1}} e^{-x^{2}}\right) H_{m}(x)\right|_{x=-\infty} ^{\infty} \\
+(-1)^{n+1} \int_{\mathbb{R}}\left(\frac{d^{n-1}}{d x^{n-1}} e^{-x^{2}}\right) H_{m}^{\prime}(x) d x
\end{gathered}
$$

(3) Use the fact that

$$
\frac{d^{n-1}}{d x^{n-1}} e^{-x^{2}}=\text { polynomial times } e^{-x^{2}}
$$

and the fact that $e^{-x^{2}}$ goes to zero faster as $|x| \rightarrow \infty$ than any polynomial (Godzilla!) to conclude that

$$
\left.(-1)^{n}\left(\frac{d^{n-1}}{d x^{n-1}} e^{-x^{2}}\right) H_{m}(x)\right|_{x=-\infty} ^{\infty}=0
$$

(4) Show inductively that you can do this n times to get

$$
(-1)^{n} \int_{\mathbb{R}}\left(\frac{d^{n}}{d x^{n}} e^{-x^{2}}\right) H_{m}(x) d x=(-1)^{n+n} \int_{\mathbb{R}} e^{-x^{2}}\left(\frac{d^{n}}{d x^{n}} H_{m}(x)\right) d x .
$$

(5) If one differentiates H_{m}, a polynomial of degree $m<n, n$ times, the result is zero. So the integral on the right is just zero.
12. The generating function for the Hermite polynomials

Theorem 12.1. For any $x \in \mathbb{R}$ and $z \in \mathbb{C}$, the Hermite polynomials,

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}},
$$

satisfy

$$
\sum_{n=0}^{\infty} H_{n}(x) \frac{z^{n}}{n!}=e^{2 x z-z^{2}}
$$

12.1. Key steps.

(1) Start with

$$
e^{-(x-z)^{2}}=e^{-x^{2}+2 x z-z^{2}} .
$$

(2) Compute the power series expansion with respect to z around $z=0$,

$$
e^{-(x-z)^{2}}=\sum_{n \geq 0} a_{n} z^{n},
$$

where

$$
a_{n}=\frac{1}{n!} \frac{d^{n}}{d z^{n}} e^{-(x-z)^{2}}, \quad \text { evaluated at } z=0 .
$$

(3) Compute the coefficients using the chain rule with the variable $u=x-z$, thus

$$
\begin{gathered}
a_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d u^{n}} e^{-u^{2}}\left(\frac{d u}{d z}\right)^{n}\right|_{z=0} \Longrightarrow u=x \\
=\frac{1}{n!} \frac{d^{n}}{d x^{n}} e^{-x^{2}}(-1)^{n} .
\end{gathered}
$$

(4) Pop it back into the Taylor series expansion:

$$
e^{-(x-z)^{2}}=e^{-x^{2}+2 x z-z^{2}}=\sum_{n \geq 0} \frac{z^{n}}{n!}(-1)^{n} \frac{d^{n}}{d x^{n}} e^{-x^{2}} .
$$

(5) Multiply both sides by $e^{x^{2}}$.

