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1. Solve: 
utt − uxx = f(t)g(x) 0 < t,−1 < x < 1

u(x, 0) = ϕ(x) = ut(x, 0)

u(−1, t) = 0, ux(1, t) = 5

So, apparently the exam is going to be a little unusual, but you can
continue studying exactly as you’re all doing, and this should prepare
you well!

This problem, yikes, where to begin. Well, we must deal with that
inhomogeneous boundary condition first. We do this by finding a steady
state solution to solve the homogeneous PDE, this pesky 5 condition,
and keep the other nice homogeneous boundary condition. Thus we
seek F to satisfy

−F ′′(x) = 0, F (−1) = 0, F ′(1) = 5.

The solution is
F (x) = 5x+ 5.

Next we solve a new problem which we like better:

♥♥ :


wtt − wxx = 0

w(x, 0) = ϕ(x)− F (x)

wt(x, 0) = ϕ(x)

w(−1, t) = 0 = wx(1, t).

To do this we separate variables. Write w = TX. Put into the PDE.
This gives

T ′′X −X ′′T = 0 ⇐⇒ T ′′

T
=
X ′′

X
=⇒ both sides are constant.



We consider all the cases for this constant, which we name λ. In do-
ing this, we solve for X first because it has homogeneous boundary
conditions:

X(−1) = 0, X ′(1) = 0.

So, the equation for X is
X ′′ = λX.

If λ = 0 then X is a linear function. The condition X ′(1) = 0 shows
that X is constant. The condition X(−1) = 0 shows that X ≡ 0. This
is not interesting. If λ > 0 then our function is a linear combination

Ae
√
λx +Be−

√
λx.

The boundary conditions require

Ae−
√
λ +Be

√
λ = 0,

√
λ
(
Ae
√
λ −Be−

√
λ
)

= 0.

Since λ > 0, we can divide by it in the second equation, obtaining the
equation

Ae
√
λ −Be−

√
λ = 0.

Let us multiply our two equations by e
√
λ obtaining the two equations

A+Be2
√
λ = 0 =⇒ A = −Be2

√
λ,

and
Ae2

√
λ −B = 0 =⇒ A = Be−2

√
λ.

If A > 0, then A = −Be2
√
λ implies B < 0, but A = Be−2

√
λ implies

B > 0. Contradictions abound! If A < 0, then A = −Be2
√
λ implies

B > 0, but A = Be−2
√
λ implies B < 0. Contradictions abound! Thus

the only solution we find in this case is (just like I told y’all in class) is
the zero solution.

So, we look for solutions with λ < 0. These can be expressed with sine
and cosine and will be a linear combination as such. Write

A cos(
√
|λ|x) +B sin(

√
|λ|x).

We investigate the boundary conditions, for this the evenness and odd-
ness of cosine and sine, respectively are useful properties. The first
boundary condition (at x = −1) requires

A cos
√
|λ| −B sin

√
|λ| = 0,



whereas the second boundary condition (at x = 1) requires

−
√
|λ|A sin

√
|λ|+

√
|λ|B cos

√
|λ| = 0.

Since
√
|λ| 6= 0 we may divide by it in this equation obtaining

−A sin
√
|λ|+B cos

√
|λ| = 0.

So, now we obtain by first adding the two equations

(A+B) cos
√
|λ| − (A+B) sin

√
|λ| = 0.

Subtracting the equations we obtain:

(A−B) cos
√
|λ|+ (A−B) sin

√
|λ| = 0.

These two equations are satisfied in two different cases. First case
A+B = 0 so that B = −A, in which case the first equation is satisfied
and the second equation requires

cos
√
|λ|+sin

√
|λ| = 0 =⇒

√
|λ| =

√
|λ|n = νn =

4n+ 3

4
π, n ∈ N0.

Second case we have A − B = 0 so that B = A, in which case the
second equation is satisfied and the first equation requires

cos
√
|λ|−sin

√
|λ| = 0 =⇒

√
|λ| =

√
|λ|n = νn =

4n+ 1

4
π, n ∈ N0.

Without loss of generality we may take the constants to be ±1, since
the constants shall come from the initial conditions, thus

Xn(x) =

{
cos(νnx)− sin(νnx) νn = 4n+3

4
π, λn = − (4n+3)2π2

42

cos(νnx) + sin(νnx) νn = 4n+1
4
π λn = − (4n+1)2π2

42
.

Now that we have these values, we have the equation for

T ′′n = λnTn =⇒ Tn(t) = an cos(νnt) + bn sin(νnt).

We smash the solutions together into a supersolution (by the superpo-
sition principle) to obtain

w(x, t) =
∑
n≥0

Xn(x)Tn(t).



To determine the an and bn, we use the initial conditions. Setting t = 0
we have

w(x, 0) =
∑
n≥0

anXn(x) =⇒ an =

∫ 1

−1(ϕ(x)− F (x))Xn(x)dx∫ 1

−1 |Xn(x)|2dx
.

This is because we want w(x, 0) = ϕ(x)− F (x). Next we compute the
derivative at t = 0,

wt(x, 0) =
∑
n≥0

bnνnXn(x) =⇒ bn =

∫ 1

−1 ϕ(x)Xn(x)dx

νn
∫ 1

−1 |Xn(x)|2dx
.

This is because we want wt(x, 0) = ϕ(x). So now we have solved for w.

The last piece of the puzzle is to solve:
vtt − vxx = f(t)g(x)

v(x, 0) = 0 = vt(x, 0)

v(−1, t) = 0 = v(1, t)

To do this we make the ansatz that we can find a solution of the form

v(x, t) =
∑
n≥0

cn(t)Xn(x),

for some functions cn(t). Using Xn in this way we guarantee that the
beautiful (self-adjoint, homogeneous, oh yay) boundary conditions are
satisfied. We put this into the PDE:∑

n≥0

c′′n(t)Xn(x)− cn(t)X ′′n(x) =
∑
n≥0

Xn(x) (c′′n(t)− λncn(t)) .

Above, we used the fact that Xn satisfies the (regular!) SLP:

X ′′n(x) = λnXn(x).

On the other side of the PDE we Fourier expand in the x variable,

f(t)g(x) =
∑
n≥0

f(t)ĝnXn(x), ĝn =

∫ 1

−1 g(x)Xn(x)dx∫ 1

−1 |Xn(x)|2dx
.



So, we equate these two series:∑
n≥0

Xn(x) (c′′n(t)− λncn(t)) =
∑
n≥0

f(t)ĝnXn(x).

Then we equation the coefficients of Xn(x), requiring therefore that

c′′n(t)− λncn(t) = f(t)ĝn, cn(0) = 0 = c′n(0).

The last two conditions are because we want v(x, 0) = 0 = vt(x, 0).
Now, since we have no explicit expressions for f(t) or g(x), we cannot
explicitly solve this ODE. However, general ODE theory says that a
solution exists (as long as f(t) is some decent function), and that it
is unique. Thus cn(t) should be this solution to this ODE, for each n.
Having specified F , w, and v at this point, our solution to the original
problem is

u(x, t) = F (x) + w(x, t) + v(x, t).

2. Use the Fourier series expansion of cos(αt) on (−π, π) to compute for
|α| < 1 ∏

n≥1

n2 − α2

n2
.

Hint: The Fourier series is

sin(απ)

π

(
1

α
+ 2α

∑
n≥1

(−1)n+1 cos(nt)

n2 − α2

)
.

So, let’s start by making the oscillation go away, which can be achieved
by choosing t = π. It is clear we will have to set t equal to something
because the statement about the product has no tea1 So, if we set t = π
then the Fourier series converges to the average of the left and right
limits of cos(αt), giving

cos(−πα) + cos(πα)

2
=

sin(απ)

π

(
1

α
+ 2α

∑
n≥1

(−1)n+1 cos(nπ)

n2 − α2

)
.

1It also has no shade. RuPaul reference.



We use the fact that cos is even and cos(nπ) = (−1)n to simplify this
to:

cos(πα) =
sin(απ)

π

(
1

α
− 2α

∑
n≥1

1

n2 − α2

)
.

Let us tidy this up,

π cos(πα)

sin(απ)
− 1

α
=
∑
n≥1

−2α

n2 − α2
.

Now, if we just look at this, we see functions which are derivatives of
logs (with respect to α). See:

d

dα
(log(sin(απ))) =

π cos(πα)

sin(απ)
,

d

dα
(log(1/α)) = − 1

α
.

Similarly
d

dα
log(n2 − α2) =

−2α

n2 − α2
.

So, we have basically the equation:

d

dα
(log(sin(απ)) + log(1/α)) =

∑
n≥1

d

dα
log(n2 − α2).

The fact that we now have logs is good because logs can turn sums
into products, since log a + log b = log(ab). So we have a chance of
getting an infinite product if we can say that the two sides are equal
once we remove the derivatives. There are two problems. First, what
is the constant of integration? If we remove the derivatives, we know
that the two sides are equal up to a constant factor. What should that
be? Second, uh, if we remove the derivatives under the sum, we get
something that does not converge. This is not good. So, let’s think
about, since |α| < 1, what happens if α→ 0,

lim
α→0

log(sin(απ)) + log(1/α) = lim
α→0

log

(
sin(απ)

α

)
= log(π).

On the other side,

lim
α→0

∑
n≥1

log(n2 − α2) =
∑
n≥1

log(n2)→∞.



So, we would like to make the right side finite, but we can do this
because we can add anything that doesn’t depend on α to log(n2 +α2)
and the derivative remains the same. So, let’s be smart about this and
add − log(n2). Then the right becomes

lim
α→0

∑
n≥1

log(n2 − α2)− log(n2) = 0.

Moreover, our sum converges for |α| < 1∑
n≥1

log(n2 − α2)− log(n2) =
∑
n≥1

log

(
n2 − α2

n2

)
.

So, letting α→ 0 on the right we now get zero, but on the left we are
getting log π, so this indicates that the constant of integration on the
left should be − log π. Thus, we have the nice and rigorous equality

log(sin(απ)) + log(1/α)− log π =
∑
n≥1

log

(
n2 − α2

n2

)
.

On the left we can put everything together:

log

(
sin(απ)

απ

)
=
∑
n≥1

log

(
n2 − α2

n2

)
.

Now we can exponentiate both sides, obtaining

sin(απ)

απ
=
∏
n≥1

n2 − α2

n2
.

Nifty!

3. Compute ∫ ∞
0

sin(
√
t)

e2t
dt.

The very first thing I would like to do with this is make that
√
t go

away! Square roots are intrinsically complicated things. So, let’s do a
variable substitution letting

u =
√
t =⇒ du =

1

2
√
t
dt =

1

2u
dt.



The limits of integration don’t change, so we are computing∫ ∞
0

sin(u)(2u)e−2u
2

du.

I would like to use some Fourier methods, for this I’d like the integral to
be over R. This can be achieved since the integrand is an even function
so

♥ :=

∫ ∞
0

sin(u)(2u)e−2u
2

du =

∫ ∞
0

u sin(u)e−2u
2

du.

Now, we can simplify this because

d

du
− 1

4
e−2u

2

= ue−2u
2

.

So, integrating by parts we have

♥ = −1

4
e−2u

2

sin(u)

∣∣∣∣∞
−∞

+

∫
R

1

4
e−2u

2

cos(u)du.

The first term vanishes due to the presence of a GODZILLA term,
e−2u

2
. As for the second term, we remember that

cos(u) =
1

2

(
eiu + e−iu

)
,

so

♥ =
1

8

∫
R
e−2u

2

eiudu+
1

8

∫
R
e−2u

2

e−iudu.

The first integral is the Fourier transform of e−2u
2

at −1, and the second
term is the Fourier transform at 1. The Fourier transform is provided
to us in a table. The Fourier transform of e−ax

2/2 is
√

2π/ae−ξ
2/2a. For

our case, a = 4. Thus

♥ =
1

8

√
2π/4e−1/8 +

1

8

√
2π/4e−1/8.

We could simplify this if we wanted to do it.

Alternative solution: you are cleverer than I am and you swiftly observe
that

♥ = L(sin(
√
t))(−2).

That is the Laplace transform of sin(
√
t) evaluated at z = −2. Perhaps

you have this sitting in the Beta book and can read it off a table there.
Hopefully the formula in the table is right in that case!



4. Solve: 
u(0, t) = f(t) t > 0

ut(x, t)− uxx(x, t) = 0 t, x > 0

u(x, 0) = 0 x > 0

This problem just begs us to use the Laplace transform. It’s a homoge-
neous heat equation with a fire at x = 0. So, let’s not disappoint and
apply the Laplace transform in the t variable:

zũ(x, z)− ũxx(x, z) = 0 =⇒ ũ(x, z) = a(z)ex
√
z + b(z)e−x

√
z.

Here we have used the fact that

ũt(x, z) = zũ(x, z)− u(x, 0) = zũ(x, z).

Now, to figure out the a(z) and b(z) we use the boundary condition.
Laplace transforming the boundary condition we get

ũ(0, z) = f̃(z) =⇒ a(z) + b(z) = f̃(z).

Super. We would like to go backwards to find the solution before it
got Laplace transformed. Well, if I look in my tables I can certainly
find a function whose Laplace transform is e−x

√
z. Is there a function

whose Laplace transform is ex
√
z? No, there is not. Furthermore, for

any function that is Laplace transformable, we have that its Laplace
transform tends to ZERO as <(z)→∞. Since x > 0 in this problem,
what happens to ex

√
z if <(z) → ∞? It tends to infinity. With nearly

Godzilla like speed. It certainly does NOT tend to zero. So there
is no Laplace-transformable function whose Laplace transform is ex

√
z.

Hence, we would like to find a solution that does not require this part.
Can we do it? Well, yes we can. By our tables and properties of Laplace
transform, the convolution of

f(t)Θ(t) with
Θ(t)t−3/2x

2
√
π

e−x
2/(4t) in the t variable

has Laplace transform equal to

f̃(z)e−x
√
z.



So, we have found that

u(x, t) =

∫
R
f(t− s)Θ(t− s)Θ(s)s−3/2x

2
√
π

e−x
2/(4s)ds.

In case we have forgotten, Θ is the heavyside function, which vanishes
whenever its argument is negative, and which is 1 whenever its argu-
ment is positive. Thus

u(x, t) =

∫ t

0

f(t− s)s−3/2 x

2
√
π
e−x

2/(4s)ds.

5. This could be a PDE in a half space with a nice boundary condition
(extend evenly or oddly!). Another reasonable candidate is computing
an integral with help of Fourier transform (like those EÖ number 7-
12). Or an integral equation where you use convolution and Fourier
transform (like EÖ 13, 14). Or an SLP (EÖ 23, 24). Or a PDE in a
box (EÖ 25), or in a disk, or a wedge. Or a best approximation.

6. This could be a best approximation, or an SLP, or maybe something
involving Bessel functions. Or possibly something to test conceptual
understanding without actually needing to do much calculating.

7. Prove a theory item!

8. Prove a theory item!



Fourier transformer (Fourier transforms) där a > 0 och c ∈ R.

f(x) f̂(ξ)

f(x− c) e−icξf̂(ξ)

eixcf(x) f̂(ξ − c)
f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)

e−ax
2/2

√
2π/ae−ξ

2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a



Laplace transformer (Laplace transforms) där a > 0, c ∈ C, och

H(t) :=

{
0 t < 0

1 t > 0

H(t)f(t) f̃(z)

H(t− a)f(t− a) e−azf̃(z)

H(t)ectf(t) f̃(z − c)
H(t)f(at) a−1f̃(a−1z)

H(t)f ′(t) zf̃(z)− f(0)

H(t)
∫ t
0
f(s)ds z−1f̃(z)

H(t)(f ∗ g)(t) f̃(z)g̃(z)

H(t)t−1/2e−a
2/(4t)

√
π/ze−a

√
z

H(t)t−3/2e−a
2/(4t) 2a−1

√
πe−a

√
z

H(t)J0(
√
t) z−1e−1/(4z)

H(t) sin(ct) c/(z2 + c2)
H(t) cos(ct) z/(z2 + c2)

H(t)e−a
2t2 (

√
π/(2a))ez

2/(4a2) erfc(z/(2a))

H(t) sin(
√
at)

√
πa/(4z3)e−a/(4z)

Lycka till! May the force be with you! ♥ Julie Rowlett, Carl-Joar Karls-
son, Joao Pedro Paulos, Erik Jansson, Kolya Pochekai


