
Fourieranalys MVE030 och Fourier Metoder MVE290 20.mars.2020
Betygsgränser: 3: 40 poäng, 4: 53 poäng, 5: 67 poäng.
Maximalt antal poäng: 80.
Examinator: Julie Rowlett.
Telefonvakt: Julie 0317723419. OBS! Om ni är osäker p̊a n̊agot fr̊aga! (If you are unsure about
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The exam is a blended format and is presented here in both Swedish and English. You may
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OBS! For some problems, you may need to select more than one choice to receive the points for
the problem. (i.e. to receive the points one may need to select both a and b or both a, b, and c,
etc).

1. English version

(1) (10 p total) We are faced with the following problem.
ut(x, t)− uxx(x, t) = sin(t) cos(x) 0 < t, −π < x < π

u(x, 0) = |x| − π x ∈ [−π, π]

u(−π, t) = u(π, t) t ≥ 0

(a) (2p) What should we do first?
(i) Apply the Fourier transform.
(ii) Apply the Laplace transform.

(iii) Solve the homogeneous PDE.
(iv) Find a steady state solution.
(v) None of these.

(b) (2p) Are the boundary conditions self adjoint?
(i) Yes.
(ii) No.

(c) (2p) Which technique can NOT be used to correctly solve this problem?
(i) Separation of variables.
(ii) Fourier series.

(iii) A regular Sturm-Liouville problem.
(iv) Fourier transform.

(d) (2p) How do we deal with the inhomogeneity in the PDE?
(i) Express it as a Fourier series in t.
(ii) Express it as a Fourier series in x.

(iii) Apply the Laplace transform in t.
(iv) Apply the Fourier transform in x.
(v) None of these

(e) (2p) What form will the solution take?
(i) A Fourier series.
(ii) A Fourier transform.

(iii) A convolution.
(iv) A Laplace transform.
(v) A distribution.

(vi) None of these.



(2) (10 p total)
(a) (2p) What is the difference between a partial differential equation and an ordinary

differential equation?

(b) (2p) Consider the following problem:
uxx(x, y) + uyy(x, y) = 0 x > 0, y > 0

u(0, y) = f(y) ∈ L2(0,∞)

u(x, 0) = g(x) ∈ L2(0,∞)

Which technique or techniques could be used to solve this problem?
(i) The Fourier transform.
(ii) The Fourier sine trasform.

(iii) The Fourier cosine transform.
(iv) The Laplace transform.
(v) A Fourier series.

(vi) A regular Sturm-Liouville problem.
(vii) None of these.

(c) (2p) Consider the following problem:
u(0, t) = et t > 0

ut(x, t)− uxx(x, t) = 0 t, x > 0

u(x, 0) = 0 x > 0

Which technique or techniques could be used to solve this problem?
(i) A steady state solution.
(ii) The Fourier transform.

(iii) The Fourier sine trasform.
(iv) The Fourier cosine transform.
(v) The Laplace transform.

(vi) A Fourier series.
(vii) A regular Sturm-Liouville problem.
(viii) Separation of variables.
(ix) None of these.

(d) (2p) Consider the following problem:
√

1 + tuxx = ut 0 < x < 1, t > 0

u(0, t) = 1, u(1, t) = 0

u(x, 0) = 1− x.
Which technique or techniques could be used to solve this problem?

(i) A steady state solution.
(ii) Separation of variables.

(iii) The Fourier transform.
(iv) The Fourier sine trasform.
(v) The Fourier cosine transform.

(vi) The Laplace transform.
(vii) A Fourier series.
(viii) A regular Sturm-Liouville problem.
(ix) None of these.

(e) (2p) For the problem in the preceding question, are the boundary conditions self-
adjoint?

(i) Yes.
(ii) No.



(3) (10 p total)
(a) (2p) What is the Fourier series of the function φ(x) = 1∀x ∈ R?

(b) (4p) The Fourier series of the function f(x) = x for x ∈ (−π, π) is

2
∑
n≥1

(−1)n+1 sin(nx)

n
.

Differentiating the Fourier series we obtain

2
∑
n≥1

(−1)n+1 cos(nx).

Is this the same as the Fourier series for the function which is equal to f ′(x) for x ∈
(−π, π)?
If yes, explain why it is.
If no, explain why it is not.

(c) (4p) Let

cn :=
1

2π

∫ π

−π
ex−inxdx.

Compute ∑
n∈Z

cne
inπ.



(4) (10 p total)
(a) (5p) We wish to compute ∑

n≥1

1

n4
.

Find a function whose Fourier series you could use to compute this series, and explain
how to use it to compute the series.

(b) (5p) Find a function ϕ(x) whose Fourier coefficients satisfy

cn :=
1

2π

∫ π

−π
ϕ(x)e−inxdx 6= 0 ∀n ∈ Z,

and
lim
|n|→∞

nkcn = 0, ∀k ∈ N.



(5) (10p total)
(a) (5p) What is the polynomial p(x) of at most degree 17 that minimizes the following

integral ∫ 4

−4
|ecos(x) − p(x)|2dx?

(b) (5p) In what types of geometric settings do Bessel functions arise in solving PDEs like
the heat equation and the wave equation?



(6) (10 p total)
(a) (2p) Can you solve a regular Sturm-Liouville problem correctly and obtain

√
−1 as an

eigenvalue?
(i) Yes.
(ii) No.

(b) (2p) You have found all the eigenfunctions fn and corresponding eigenvalues λn to the
regular Sturm-Liouville problem

L(f) + λf = 0, on the interval (a, b),

subject to the boundary conditions

Bi(f) = 0, i = 1, 2.

What happens to λn when n→∞?

(c) (2p) Assume that u and v are solutions to the aforementioned regular SLP and have
eigenvalues 2 and 4, respectively. Compute∫ b

a
u(x)v(x)dx.

(d) (4p) Use {fn}n≥1 and {λn}n≥1 to obtain the solution u(x, t) to the following problem

∂tu− L(u) = 0, t > 0, x ∈ (a, b),

Bi(u) = 0, i = 1, 2,

u(x, 0) = ϕ(x) is a bounded, continuous function on [a, b].



1.1. Theory.

(1) (15p) I’ve attempted to prove the BBC, but I keep getting stuck. Can you help me finish
the proof?

Theorem 1.1. Let g ∈ L1(R). Define

α =

∫ 0

−∞
g(x)dx, β =

∫ ∞
0

g(x)dx.

Assume that f is piecewise continuous on R and its left and right sided limits exist for all
points of R. Assume that either f is bounded on R or that g vanishes outside of a bounded
interval. Let, for ε > 0,

gε(x) :=
g(x/ε)

ε
.

Then
lim
ε→0+

f ∗ gε(x) = αf(x+) + βf(x−) ∀x ∈ R.

Proof: First, since this should hold for all x ∈ R, let us fix the point x.
(a) What is the meaning of f(x+) and f(x−)? Explain what are these things?

(1p)

(b) Why is the statement in the theorem equivalent to proving the following
statement (1p)?

lim
ε→0

∫
R
f(x− y)gε(y)dy − αf(x+)− βf(x−) = 0.

So, now that you’ve explained why the statement in the theorem is equivalent to proving
the statement above, this can be achieved by proving that

lim
ε→0

∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy = 0

and also

lim
ε→0

∫ ∞
0

f(x− y)gε(y)dy −
∫ ∞
0

f(x−)g(y)dy = 0.

(c) Why is it sufficient to prove that only one of the above limits is zero? (1p)

(d) Having chosen the first of these two limits, why will it complete the proof
to prove that for a given δ > 0, choosing ε > 0 sufficiently small, we can
guarantee that the following equation is true? (2p)∣∣∣∣∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy

∣∣∣∣ < a constant multiple of δ.

We would therefore like to show that by choosing ε sufficiently small, we can make∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy

as small as we like. In particular, let δ > 0 be arbitrarily small. We wish to show that
by choosing ε sufficiently small, we can make∣∣∣∣∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy

∣∣∣∣ < a constant multiple of δ.

(e) Why will it complete the proof to show that the inequality above is true?
How does that prove the limit below? (2p)

lim
ε→0

∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy = 0?



(f) How do we obtain the equation below? It looks like magic to me, please
explain?!? (1p)∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy =

∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy.

(g) Why can we find y0 < 0 to make the inequality below true? (1p)

|f(x− y)− f(x+)| < δ∀y ∈ [y0, 0).

(h) How do we use that above to obtain the inequality below? (1p)∣∣∣∣∫ 0

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ δ||g||L1(R).

(i) What is ||g||L1(R)? (1p)

Next, there are two cases. In the first case, f is bounded, which means that there exists
M > 0 such that |f(x)| ≤M holds for all x ∈ R.

(j) How do we use this to obtain the inequality below? (1p)∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ 2M

∫ y0/ε

−∞
|g(y)|dy.

(k) How can we use ε to obtain the inequality below? (1p)

2M

∫ y0/ε

−∞
|g(y)|dy < δ?

In this case, we therefore have the estimate∣∣∣∣∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy

∣∣∣∣
≤
∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣+

∣∣∣∣∫ 0

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ δ + δ||g||L1(R).

(l) Why is the proof complete in this case now? (1p)

(m) In the second case in the theorem, when g vanishes outside a bounded
interval, how can we use ε to obtain the equation below ‘for ε small enough?’
(2p) ∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy = 0.



(2) (5p) Explain your favorite proof from all of the theory-item-proofs in this course. Why is
that proof your favorite? What do you like about it?
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