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1. Lös problemet:
ux(0, t) = 0 t > 0

ut(x, t)− uxx(x, t) = 0 t, x > 0

u(x, 0) = f(x) ∈ L2((0,∞)) ∩ C0((0,∞)) x > 0

(10 p)

Well, this is a PDE in a half space. To figure out what we should do,
let’s investigate the boundary condition. The boundary condition is
that

ux(0, t) = 0.

This is rather nice. To achieve such a condition, as we have seen in
examples and exercises, we should extend the initial data f evenly.
Moreover, we also see that f ∈ L2, which indicates that Fourier trans-
form methods have good odds of working. We know that the Fourier
transform plays nicely with extending evenly and oddly, in the sense
that the Fourier transform preserves these properties: Fourier trans-
form an even function, the result is even; Fourier transform an odd
function, the result is odd. On the other hand, the Fourier transform
does not play nicely by say extending to be identically zero on the nega-
tive real line. If you extend this way, then apply the Fourier transform,
the result will not necessarily be zero on the negative real line.

So, all these considerations tell us to extend f evenly or oddly, and due
to the condition ux(0, t) = 0, we shall extend evenly. (Just think about
sine and cosine, the cosine is the even one, and it is the one whose
derivative vanishes at zero).

Let
fe(x) = f(x), x > 0, fe(x) = f(−x), x < 0.



Then let’s apply the Fourier transform to the PDE in the x variable:

ût(ξ, t)− ûxx(ξ, t) = 0.

The properties of the Fourier transform (so generously given to us at
the end of this exam) say that

ûxx(ξ, t) = (−iξ)2û(ξ, t),

so our equation becomes

ût(ξ, t) + ξ2û(ξ, t) = 0 =⇒ û(ξ, t) = a(ξ)e−ξ
2t.

(Above we have solved the ODE for the Fourier transform where the
ODE variable is the variable t, and the variable ξ is an independent
variable). The initial condition is that

û(ξ, 0) = a(ξ) = f̂e(ξ).

So,
û(ξ, t) = f̂e(ξ)e

−ξ2t.

Well, the Fourier transform sends a convolution to a product. We look
at the table to find a function whose Fourier transform is e−ξ

2t. We
know a function whose Fourier transform is f̂e(ξ), simply fe. So,

u(x, t) =
1√
4πt

∫
R
fe(y)e−(x−y)

2/(4t)dy.

To put this in terms of the original function, and verify the boundary
condition, we recall the definition of fe as being an even extension, so

u(x, t) =
1√
4πt

(∫ 0

−∞
fe(y)e−(x−y)

2/(4tdy +

∫ ∞
0

f(y)e−(x−y)
2/(4t)dy

)
.

We can turn the integral on the negative real axis into an integral on
the positive real axis. To do this, let z = −y, then∫ 0

−∞
fe(y)e−(x−y)

2/(4tdy =

∫ 0

∞
fe(−z)e−(x+z)

2/(4t)(−dz) =

∫ ∞
0

fe(−z)e−(x+z)
2/(4t)dz.

Since
fe(−z) = fe(z) z > 0,



this is ∫ ∞
0

f(z)e−(x+z)
2/(4t)dz.

Now, the name of the variable of integration is irrelevant, so we may
as well re-name it back to y, and then we have

u(x, t) =
1√
4πt

∫ ∞
0

f(y)
(
e−(x−y)

2/(4t) + e−(x+y)
2/(4t)

)
dy.

Since it might be helpful, here is basically how partial credit will be
dished out. In case any of these items is somewhat messed up, but
half-right, you’d get 1p instead of 2p.

(a) (2p) Choosing to use Fourier transform methods.

(b) (2p) Choosing to extend the initial condition evenly

(c) (2p) Correctly Fourier transforming the PDE.

(d) (2p) Solving the ODE for the Fourier transform of the solution
correctly.

(e) (2p) Correctly inverting the Fourier transform to obtain the solu-
tion (going backwards correctly).

2. Lös problemet: 
u(0, t) = cos(t) t > 0

ut(x, t)− uxx(x, t) = 0 t, x > 0

u(x, 0) = 0 x > 0

(10 p)

This problem has different features. Specifically the boundary condi-
tion:

u(0, t) = cos(t).

Moreover, the initial condition is zero. With the Fourier transform
method, we are usually getting some convolution type stuff involving
the initial data. If we were to obtain something like that here, it would
just vanish since the initial data is zero. If we were to try Fourier
transform methods in the t variable, it would fail miserably because
cos(t) is not in L2.



So, this indicates that a different approach is required. In particular,
all of these considerations suggest using the Laplace transform in the t
variable. We Laplace transform the PDE in the t variable:

ũt(x, z)− ũxx(x, z) = 0.

We use the properties of the Laplace transform and the nice homoge-
neous initial condition to obtain:

zũ(x, z)− ũxx(x, z) = 0.

We solve this ODE to obtain:

ũ(x, z) = a(z)e−x
√
z + b(z)ex

√
z.

The properties of the Laplace transform imply (indeed it was a Theo-
rem) that anything which is Laplace-transformable will→ 0 as the real
part of z tends to infinity. For x > 0 (which it is since we work in the
positive real line on this problem) the second term will not satisfy that
unless b has some really great decay properties. However b doesn’t de-
pend on x so if x→∞ also, then b cannot save this term from growing
exponentially. Thus, we try to solve the problem using only the other
term. The boundary condition says:

ũ(0, z) = c̃os(t)(z) = a(z) =⇒ ũ(x, z) = c̃os(t)(z)e−x
√
z.

Now, we could compute the Laplace transform of cos(t). The easiest
way (for me at least) to do this is to write

cos(t) =
eit + e−it

2
.

Then we compute (by definition of the Laplace transform)∫ ∞
0

cos(t)e−tzdt =
eit−tz

2(i− z)
+

e−it−tz

2(−i− z)

∣∣∣∣∞
t=0

= − 1

2(i− z)
+

1

2(i+ z)

=
−i− z + i− z
2(i− z)(i+ z)

=
−z

−1− z2
=

z

1 + z2
.

So, this is just fine and dandy.



We know that the Laplace transform takes a convolution to a product.
We know where the first term came from, so we look for a function
whose Laplace transform is e−x

√
z. We look at the lovely table. We

see that to get 2a−1
√
πe−a

√
z as the Laplace transform we should start

with H(t)t−3/2e−a
2/(4t). So with our problem, we would want a = x,

and to obtain e−x
√
z as the Laplace transform we should start with

x

2
√
πt3/2

H(t)e−x
2/(4t).

Hence

u(x, t) =

∫
R
H(s) cos(s)H(t− s) x

2
√
π(t− s)3/2

e−x
2/(4(t−s))ds.

This is because the Laplace transform is in the t variable, so that’s the
variable for the convolution, and also because the Laplace transform
needs the functions inside to be zero for negative values (hence the
Heavyside factors). With these Heavyside factors in mind, we obtain

u(x, t) =

∫ t

0

cos(s)
x

2
√
π(t− s)3/2

e−x
2/(4(t−s))ds.

Since it might be helpful, here is basically how partial credit will be
dished out. In case any of these items is somewhat messed up, but
half-right, you’d get 1p instead of 2p.

(a) (2p) Choosing to use Laplace transform methods.

(b) (2p) Correctly Laplace transforming the PDE.

(c) (2p) Solving the ODE for the Laplace transform of the solution
correctly to get the general solution.

(d) (2p) Discarding the non-Laplace-transformable part of the solu-
tion and using the BC to determine the Laplace transform of the
solution to the PDE. (Basically going from the general solution of
the ODE to the particular solution correctly here).

(e) (2p) Correctly inverting the Laplace transform to obtain the so-
lution (going backwards correctly).



3. Lös ekvationen:

u(t) +

∫ ∞
−∞

e−|t−τ |u(τ)dτ =
1

1 + t2
.

(10p)

We have seen such equations in the exercises. The second term is a
convolution, and the term on the right is one of the items on our list
of Fourier transforms. So let us Fourier transform this entire equation:

û(ξ) + û(ξ)
2

ξ2 + 1
= πe−|ξ|.

This is because the Fourier transform of a convolution is the product
of the Fourier transforms, and the Fourier transforms of all functions
except for the unknown function are conveniently found in the table.
So we solve this equation for û(ξ):

û(ξ)

(
1 +

2

ξ2 + 1

)
= πe−|ξ| =⇒ û(ξ) = πe−|ξ|

ξ2 + 1

ξ2 + 3
.

This looks a little alarming so let us re-write the right side as

πe−|ξ|
(

1− 2

ξ2 + 3

)
= πe−|ξ| − πe−|ξ| 2

ξ2 + 3
.

Thus we have found that

û(ξ) = πe−|ξ| − πe−|ξ| 2

ξ2 + 3
.

To invert the Fourier transform, we use the fact that everything is
linear. We know which function has Fourier transform equal to πe−|ξ|,
and we also know that the Fourier transform turns a convolution into a
product. So, we just need a function whose Fourier transform is 2

ξ2+3
.

The function

e−
√
3|x| has Fourier transform

2
√

3

ξ2 + 3
.

So, the function

e−
√
3|x|
√

3
has Fourier transform

2

ξ2 + 3
.



Hence

u(x) =
1

1 + x2
−
∫
R

1

1 + (x− y)2
e−
√
3|y|
√

3
dy.

Points:

(a) (2p) Choosing to use Fourier transform methods.

(b) (2p) Correctly Fourier transforming the equation.

(c) (3p) Correctly solving for the Fourier transform of u.

(d) (3p) Inverting the Fourier transform to obtain u.

4. Lös problemet:
utt(x, t)− uxx(x, t) = cos(x) 0 < t, 0 < x < 1

u(x, 0) = x2 − 1 x ∈ [0, 1]

ut(x, 0) = 0

ux(0, t) = 0 = u(1, t) t > 0

(10p)

Now we have entered the geometric realm of bounded intervals. Indeed
0 < x < 1. The boundary conditions are fantastic. The initial con-
ditions are fine. The only issue is that the PDE is not homogeneous.
However, it is time independent. So we can attempt to deal with this
by finding a steady state (that means time independent) solution. So
we first seek a function φ which satisfies

−φ′′(x) = cos(x).

We would also like to preserve the beautiful boundary conditions, so
we politely request that

φ′(0) = φ(1) = 0.

Now the function cos(x) will certainly satisfy this ODE. Solutions to
the homogeneous version of this ODE are linear functions. So a general
solution is

φ(x) = cos(x) + ax+ b,



for some constants a and b. To achieve the boundary condition at zero,
we need a = 0. To achieve the boundary condition at 1 we need

0 = cos(1) + b =⇒ b = − cos(1).

So we define
φ(x) = cos(x)− cos(1).

Now, we just need to solve a nicer problem:
vtt(x, t)− vxx(x, t) = 0 0 < t, 0 < x < 1

v(x, 0) = x2 − 1− φ(x) x ∈ [0, 1]

vt(x, 0) = 0 x ∈ [0, 1]

vx(0, t) = 0 = v(1, t) t > 0

.

Then, the full solution will be

u(x, t) = φ(x) + v(x, t).

Note that our initial data is still beautiful, continuous, and certainly
therefore in L2(0, 1). Moreover, the boundary conditions are fantastic
(self adjoint in particular). So Fourier series methods ought to work
here.

We approach the problem at hand now by separating variables writing

v = X(x)T (t).

We put this into the PDE:

T ′′(t)X(x)−X ′′(x)T (t) = 0.

We tidy it up so that all time dependent terms are on one side, and
all space dependent terms are on the other side. So, to achieve this we
first divide by XT and then re-arrange:

T ′′

T
=
X ′′

X
.

Since the two sides depend on different variables, they must both be
constant. So, we look for solutions to

T ′′

T
= constant =

X ′′

X
.



We start with the X side because its conditions are homogeneous and
simple. In particular, we seek to solve

X ′′ = λX, X ′(0) = X(1) = 0.

First case, λ = 0. Then X would be a linear function. The condition
that X ′(0) would mean that the slope of the linear function is zero,
so that it is a constant function. The condition that X(1) = 0 means
that X is the constant zero function. So, no solutions when λ = 0. In
the next case λ > 0. So, the solution to the equation could be written
as either a linear combination of e±

√
λx or as a linear combination of

hyperbolic sine and cosine. Let us use the latter, because 0 is in our
interval. Writing

a cosh(
√
λx) + b sinh(

√
λx)

the condition for the derivative to vanish at x = 0 requires that b = 0.
The condition to vanish at x = 1 would require (if we want b 6= 0) that
cosh(

√
λ) = 0. The only real number at which the cosh vanishes is at

zero. So we would need λ = 0. However that contradicts the case we
are in. Therefore the case λ > 0 yields no non-zero solutions.

Finally, we have the case λ < 0. In this case the solutions are linear
combinations of sin(

√
|λ|x) and cos(

√
|λ|x). The condition for the

derivative to vanish at zero means that there cannot be a sine term.
Moreover, the condition to vanish at x = 1 means that we need

√
|λ|

to be of the form (2n + 1)π/2. Consequently, all solutions we find in
this way are, up to constant factors,

Xn(x) = cos((2n+ 1)πx/2), λn = −π2 (2n+ 1)2

4
.

This informs us what the T function must be since

T ′′n
Tn

= λn =⇒ Tn(t) = a linear combination of sin((2n+1)πt/2) and cos((2n+1)πt/2).

In the last step, we put together all theXnTn pairs, by the superposition
principle, because the PDE is homogeneous, thereby creating our super
solution:

v(x, t) =
∑
n≥0

Xn(x) (an cos((2n+ 1)πt/2) + bn sin((2n+ 1)πt/2)) .



We shall need the constant factors now to guarantee that the initial
conditions are satisfied. First we have the condition at t = 0 for the
function,

v(x, 0) =
∑
n≥0

anXn(x) = x2 − 1− φ(x) =⇒ an =

∫ 1

0
(x2 − 1− φ)Xn∫ 1

0
|Xn|2

.

The reason we can expand the function in a Fourier Xn series is that
the SLP theory guarantees that the functions Xn form an orthogonal
basis for L2 on the interval [0, 1]. Moreover, the functions x2− 1 and φ
are continuous on the closed interval, hence bounded on that interval,
hence certainly elements of the Hilbert space L2([0, 1]). So they can
indeed be expanded in terms of the functions Xn.

Next we have the condition for the derivative at zero, so

vt(x, 0) =
∑
n≥0

bn((2n+ 1)π/2)Xn(x) = 0 =⇒ bn = 0 ∀n.

We have therefore specified all quantities in our solution.

Points:

(a) (1p) Choosing to find a steady state solution to deal with the
inhomogeneity in the PDE.

(b) (2p) Correctly solving for the steady state solution to solve the
inhomogeneous PDE and not screw up the nice BC.

(c) (1p) Setting up the next problem to solve correctly. (homog. PDE,
modified IC, same BC, then observe full solution will be sum of
these two).

(d) (2p) Choosing to use separation of variables.

(e) (2p) Obtaining the Xn part of the solution correctly.

(f) (2p) Obtaining the Tn part of the solution, in particular getting
the an and the bn coefficients correctly.

5. Beräkna:

lim
N→∞

N∑
n=−N

1

e+ n
.



(Tips: beräkna Fourier-serien av den 2π periodiska funktionen som är
lika med cos(ex) i intervallet (−π, π).)

(10p)

Let’s follow the hint. The Fourier coefficients are

cn =
1

2π

∫ π

−π
cos(ex)e−inxdx.

For me, it is easier to turn the cosine into

cos(ex) =
eiex + e−iex

2
.

So I will do this and then compute

cn =
1

4π

∫ π

−π
eiex−inx + e−iex−inxdx

=
1

4π(ie− in)

(
eπ(ie−in) − e−π(ie−in)

)
+

1

4π(−ie− in)

(
eπ(−ie−in) − e−π(−ie−in)

)
.

=
1

2π(e− n)
(−1)n sin(eπ) +

1

2π(e+ n)
(−1)n sin(eπ)

=
(−1)n sin(eπ)

2π

(
e+ n+ (e− n)

(e− n)(e+ n)

)
=

(−1)n sin(eπ)

2π

2e

e2 − n2
.

So the Fourier series for the function which is equal to cos(ex) in the
interval (−π, π) and is 2π periodic is∑

n∈Z

(−1)n sin(eπ)e

π(e2 − n2)
einx.

Now we are going to have to think a bit. We want to use this somehow
to compute the rather mysterious sum

N∑
n=−N

1

e+ n
.



Note that we can pair up terms of the form ±n for all non-zero n.
When we do this we get:

1

e
+

N∑
n=1

1

e+ n
+

1

e− n
=

1

e
+

N∑
n=1

e− n+ e+ n

e2 − n2
=

1

e
+

N∑
n=1

2e

e2 − n2
.

Hope springs eternal! To get our Fourier series looking like this we
want to get rid of the pesky alternation (−1)n. To do that we choose
to evaluate the series at x = π. What is the limit of the series? We
must use the theorem on the pointwise convergence of Fourier series.
When we do this, we get that the series at x = π converges to the sum
of the left and right limits of our function. It is 2π periodic. So

lim
x→π,x<π

is cos(eπ).

On the other hand

lim
x→π,x>π

is lim
x→−π,x>−π

= cos(−eπ).

(maybe draw a picture to see this? It is because of the 2π periodicity.)
So the average of these limits gives us that the Fourier series converges
to

cos(eπ) + cos(−eπ)

2
=
∑
n inZ

(−1)n sin(eπ)e

π(e2 − n2)
einπ.

Note that einπ = (−1)n. So this series simplifies to∑
n∈Z

e sin(eπ)

π(e2 − n2)
.

The terms are the same for n = ±1,±2, . . ., so the series simplifies to

e sin(eπ)

πe2
+
∑
n≥1

2e sin(eπ)

π(e2 − n2)
.

Hence we have the equality

cos(eπ) + cos(−eπ)

2
=
e sin(eπ)

πe2
+
∑
n≥1

2e sin(eπ)

π(e2 − n2)
.



The cosine is even, so we can simplify and re-arrange things a bit to
obtain

cos(eπ)− sin(eπ)

eπ
=

sin(eπ)

π

∑
n≥1

2e

e2 − n2
.

We therefore obtain:∑
n≥1

2e

e2 − n2
=

(
cos(eπ)− sin(eπ)

eπ

)
π

sin(eπ)
= π cot(eπ)− 1

e
.

So, we therefore have that

lim
N→∞

N∑
n=−N

1

e+ n
= lim

N→∞

1

e
+

N∑
n=1

2e

e2 − n2
=

1

e
+
∑
n≥1

2e

e2 − n2

=
1

e
+ π cot(eπ)− 1

e
= π cot(eπ).

Points:

(a) (1p) Correct definition of Fourier coefficient cn for the function
cos(ex).

(b) (1p) Correctly computing these coefficients.

(c) (4p) Correctly applying the theorem on pointwise convergence of
Fourier series to evaluate the series at x = π.

(d) (2p) Correctly manoeuvring the series in question from the state-
ment of the problem to make it look like the Fourier series.

(e) (2p) Solving for the sum and getting it right.

6. Lös problemet:
uxx + uyy = y, 0 < x < 2, 0 < y < 1

u(x, 0) = 0, u(x, 1) = 0

u(0, y) = y − y3, u(2, y) = 0.

(10p)

We see an inhomogeneity in the PDE. Fortunately it only depends on
the variable y rather than on both variables. So, we can look for a



function which depends only on y and solves this. OBS! We do not
want to screw up the boundary conditions. So, we seek a function f to
solve:

f ′′(y) = y, f(0) = f(1) = 0.

We integrate both sides of the eODE twice, obtaining

f(y) =
y3

6
+ ay + b.

To obtain the desired boundary conditions, we need b = 0 so that
f(0) = 0, and then we need a = −1/6 so that f(1) = 0. Hence this
part of our solution is

f(y) =
y3

6
− y

6
.

To continue we look for a function to solve
vxx + vyy = 0, 0 < x < 2, 0 < y < 1

v(x, 0) = 0, v(x, 1) = 0

v(0, y) = y − y3 − f(y), v(2, y) = −f(y).

Our full solution will then be

u(x, y) = v(x, y) + f(y).

So, now to look for v we use separation of variables in the PDE, writing
(means to an end, that’s all it is) v = X(x)Y (y) so that

X ′′(x)Y (y) + Y ′′(y)X(x) = 0.

Tidying things up so that all x dependent terms are on the left, and
all y dependent terms are on the right, we have

X ′′

X
= −Y

′′

Y
.

These two sides of the equation must then both be constant. To obtain
the vanishing at y = 0 and y = 1 we will need to have

Y (0) = Y (1) = 0.



This is rather lovely. We have −Y ′′/Y = constant. Let us call the
constant λ. If λ = 0 then Y is a linear function. The only linear
function that has Y (0) = Y (1) = 0 is the constant 0 function. In case
λ < 0, then −λ > 0. Solutions to the ODE will be linear combinations
of e±

√
−λy. It is a good exercise to show that no linear combination

of these, (except 0), vanishes at 0 and 1. So we are left with the case
λ > 0. In this case Y is a linear combination of sin(

√
λy) and cos(

√
λy).

To get vanishing at y = 0, the coefficient of cosine must be zero. To get
the vanishing at y = 1 we need

√
λ to be an integer multiple of π. Hence

we obtain, up to multiplication by non-zero coefficients, solutions

Yn(y) = sin(nπy), λn = n2π2.

We return to the equation for its friend, Xn. The equation is

X ′′n
Xn

= n2π2.

This means that Xn is a linear combination of e±nπx. Equivalently we
can write Xn as a linear combination of hyperbolic sine and cosine. At
this point, since there is both the hyperbolic sine and cosine, and we
do not know anything more about their coefficients, we write

Xn(x) = an cosh(nπx) + bn sinh(nπx).

Since our PDE is homogeneous, we can combine all these together using
the superposition principle to obtain a super solution

v(x, y) =
∑
n≥1

Xn(x)Yn(y) =
∑
n≥1

sin(nπy) (an cosh(nπx) + bn sinh(nπx)) .

We need to determine the coefficients. To do this we use the boundary
conditions for the x variable. We want

v(0, y) =
∑
n≥1

sin(nπy)an = y − y3 − f(y).

So we want to expand the function y−y3−f(y) in a Fourier sine series.
We therefore set

an =

∫ 1

0
sin(nπy)(y − y3 − f(y))dy∫ 1

0
| sin(nπy)|2dy

.



Next, at x = 2 we wish to have

v(2, y) =
∑
n≥1

sin(nπy) (an cosh(2nπ) + bn sinh(2nπ)) = −f(y).

So, we again expand in a Fourier sine series, making the request that

(an cosh(2nπ) + bn sinh(2nπ)) =

∫ 1

0
sin(nπy)(−f(y))dy∫ 1

0
| sin(nπy)|2dy

.

Solving the equation for bn we obtain

bn =

(∫ 1

0
sin(nπy)(−f(y))dy∫ 1

0
| sin(nπy)|2dy

− an cosh(2nπ)

)
1

sinh(2nπ)
.

We have already specified an above. Our solution v is now defined and
the whole problem has solution u = v + f .

Points:

(a) (4p) Dealing with the “steady state solution” inhomogeneity in
the PDE, that is finding a function of y alone (independent of x
to solve:

f ′′(y) = y, f(0) = f(1) = 0.

(Idea to do this steady state approach gets 2 points, solving the
ODE f ′′ = y gets 1 point and getting the boundary conditions
right gets another 1 point).

(b) (1p) Setting up the new problem correctly (like remembering to
subtract off the “steady state solution.”)

(c) (1p) Idea to use separation of variables.

(d) (2p) Solving the Y part of the problem.

(e) (2p) Solving the X part of the problem.

7. (Bevisa Samplingsatsen) L̊at f ∈ L2(R). Antar att det finns L > 0 s̊a
att om |x| > L, f̂(x) = 0. Visa att gäller:

f(t) =
∑
n∈Z

f
(nπ
L

) sin(nπ − tL)

nπ − tL
.



(10p)

Please see the theory proofs document for the proof!

Points: (note that you don’t have to do everything in the same order
listed below!)

(a) (2p) Idea to expand f̂(x) in a Fourier series on the interval [−L,L].

(b) (2p) Correct calculation of the Fourier coefficients as

cn =
1

2L

∫ L

−L
e−inπx/Lf̂(x)dx.

(c) (2p) Using the FIT to relate f and f̂ , that is

f(t) =
1

2π

∫
R
eixtf̂(x)dx =

1

2π

∫ L

−L
eixtf̂(x)dx.

(d) (1p) Substituting the Fourier series into this expression, to get
f(t) is equal to an integral of the Fourier series of f̂ .

(e) (2p) Using the FIT to obtain:

cn =
1

2L

∫
R
eix(−nπ/L)f̂(x)dx =

2π

2L
f

(
−nπ
L

)
.

(f) (1p) Correctly computing the integral of the Fourier series of f̂ to
obtain the statement in the theorem for f(t) = . . .

8. (Generating function for Bessel functions) Bevisa att ∀x ∈ R och z ∈ C
med z 6= 0 Bessel funktionerna, Jn, uppfyller

∞∑
n=−∞

Jn(x)zn = e
π
2 (1− 1

z ).

(10 p)

Please see the theory proofs document for the proof!

Points:

(a) (2p) Idea to Taylor expand the exponential function on the right
side.



(b) (2p) Idea to expand each of the two functions,

exz/2 =
∑
j≥0

(
xz
2

)j
j!

,

and

e−x/(2z) =
∑
k≥0

(−x
2z

)k
k!

as their own Taylor series.

(c) (2p) One point each for getting these expansions right.

(d) (2p) Variable change to get a sum from −∞ to ∞ rather than 0
to ∞. (1p for the idea and 1p for doing it right).

(e) (2p) Correct algebraic manipulations to make the series expansion
for the Bessel functions to appear.

So now you can check for yourself to verify that these rules of grading
were precisely followed on each exercise. It is rare, but possible, that a
mistake could occur, so if you find anything which is inconsistent with
this point scheme, please let us know and we shall correct it! ♥

Fourier transforms
In these formulas below a > 0 and c ∈ R.



f(x) f̂(ξ)

f(x− c) e−icξf̂(ξ)

eixcf(x) f̂(ξ − c)
f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)

e−ax
2/2

√
2π/ae−ξ

2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a



H(t) :=

{
0 t < 0

1 t > 0

Laplace transforms
In these formulas below, a > 0 and c ∈ C.

H(t)f(t) f̃(z)

H(t− a)f(t− a) e−azf̃(z)

H(t)ectf(t) f̃(z − c)
H(t)f(at) a−1f̃(a−1z)

H(t)f ′(t) zf̃(z)− f(0)

H(t)
∫ t
0
f(s)ds z−1f̃(z)

H(t)(f ∗ g)(t) f̃(z)g̃(z)

H(t)t−1/2e−a
2/(4t)

√
π/ze−a

√
z

H(t)t−3/2e−a
2/(4t) 2a−1

√
πe−a

√
z

H(t)J0(
√
t) z−1e−1/(4z)

H(t) sin(ct) c/(z2 + c2)
H(t) cos(ct) z/(z2 + c2)

H(t)e−a
2t2 (

√
π/(2a))ez

2/(4a2) erfc(z/(2a))

H(t) sin(
√
at)

√
πa/(4z3)e−a/(4z)

Lycka till! May the force be with you! ♥ Julie Rowlett.


