
Exercise 1

Classification and detection

Make sure to save any functions that you create for the lab sessions. They might be useful. Exercises
marked with a ? are typically somewhat harder. They are never necessary to be able to follow the rest of
the course, so my advice is to keep them for last.

Getting organized

Ex 1.1 Create a folder where you can place everything concerning these exercises and the lab sessions. We
will assume you put it in your home folder and name it ssy097. To keep organized, it might be a good idea
to create a new folder for each set of exercises.

Ex 1.2 Download the stuff_for_ex_1 folder from the course page. Put it in ssy097.

Ex 1.3 Start Matlab and change working directory to the new folder either using the cd command or using
the graphical interface. It might be a good idea to add ssy097 and all its subdirectories to the Matlab
path. You can do this either using the graphical interface or commands addpath(genpath(x)), where you
replace x for the full path to the ssy097 folder.

Getting help

Writing help imread in Matlab gives you a not-so-short description of how the function imread works.
Using doc imread opens a new window with a longer help text. If you don’t know the name of the Matlab
function yet, try Google or the lab assistant.

Scripts

Whenever you do anything that requires more than two lines of code in Matlab it is a good habit to create
a script for it, even if you are not planning to repeat it more than once. The built-in Matlab editor is a
good option. Just type edit in Matlab to start it, or use the New button or Open button in the interface.

In this file you just list the Matlab commands that you would have run in the command window, one at
each row.

Basic image handling

Ex 1.4 Open the editor and start writing a script. First, load an example image using

raw image = imread(’lemon.png’);
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2 EXERCISE 1. CLASSIFICATION AND DETECTION

The semi-colon is used to suppress output. Run the script using the buttons in the Matlab editor or by
typing its name in the prompt.

Ex 1.5 Images are typically stored as uint8 with integer values in [0, 255] or uint16 with values in
[0, 65535]. It’s more convenient to work with floating point values in [0, 1]. Convert the image to dou-
ble using

img = im2double(raw image);

Ex 1.6 Draw your image in a plot window using imagesc(img). Also try viewing the individual color
channels. You can select the kth channel using img(:,:,k) How blue is a lemon?

Ex 1.7 Try to plot an asterisk * in the bottom left corner of the image. You will have to use hold on to
avoid clearing the figure and plot(icol,irow,’*’) to plot the asterisk. Note the order that you give the
coordinates in.

Ex 1.8 Convert the image to grayscale. There are different ways to do this but a simple one is to compute
the mean of the 3 channels. This can be done with the mean command. mean(img, 3) will compute the
mean over the third dimension, i.e., the color channels.

Ex 1.9 To correctly plot a grayscale image you use imagesc(img) followed by colormap gray. If you like
you can write them on one row

imagesc(img), colormap gray

Functions

The next thing to try is to create a function. Unlike a script, a function takes a number of arguments but
apart from these it cannot use the variables that you have defined in your workspace. To create a function
read_image you create a file read_image.m. To show that this is a function and not a script the first line
should look something like this:

function img = read image(path to file)

This specifies that the function takes an input argument path_to_file and produces an output img. Note
that the variable names are long but informative. Names such as a or x are fine in mathematics, but
normally not suitable for programming.

Ex 1.10 Make a function

function img = read image(path to file)

that takes the path to an image file and performs the steps in Ex. 1.4 and 1.5. Use this function whenever
you want to load a color image.

Ex 1.11 Make a function

function img = read as grayscale(path to file)

that calls read_image and then converts to grayscale as in Ex 1.8. Use this function whenever you want to
load a grayscale image. (You will save a lot of time if you actually follow this advice!)
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Simple classifiers

Ex 1.12 Run load bloodcells/cell_data.mat. This loads a struct cell_data with a set of patches
containing centered blood cells. Use

imagesc(cell data.fg patches{7})

to view the 7th patch. There is also a set of other patches from the same microscopic images found in

cell data.bg patches

Construct a linear classifier that separates the two sets as well as you can. Go through all the given patches
and compute how many errors your classifier does.

One problem in the next exercise is to load K images without writing K lines of code. Here’s one hint

for image nbr = 1:100
image name = [’img ’ num2str(image nbr) ’.png’];

Another way is to use the dir command in Matlab.

dir(’trafficsigns/speed/*.png’)

will give you a list of all the png-files in the folder trafficsigns/speed.

Ex? 1.13 In the trafficsigns/speed folder you find a set of 51 × 51-images of speed signs and in the
trafficsigns/bg folder you find a set of 51 × 51-images containing essentially anything but speed signs.
Try to construct a linear classifier that separates the two sets as well as you can. It is easier if you use all
three color channels. Go through all the given images and compute how many errors your classifier does.

Ex? 1.14 A linear classifier consists of a weight image w with the same size as the images that you want
to classify and a threshold τ. Given a set of training images and a fixed w, can you suggest an efficient
method to find the best τ.

Sliding window

Ex 1.15 Load one of the images in bloodcells/test_images using read_as_grayscale. It contains a
microscopic image with a lot of blood cells. In order to count the blood cells, apply your linear classifier in
a sliding window manner. To make this efficient, use imfilter for the sliding window and then threshold
the whole response image at once. Visualize the result as suggested below. You might want to change
the threshold to decrease the number of false detections. What is problematic about the way that you
generated the original threshold?

One way to visualize the response is to draw the image in subplot and the classification result in another.

subplot(121)
imagesc(img)
colormap gray
subplot(122)
imagesc(result)
colormap gray
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Another option is to mark the classified pixels with yellow in the original image (as you saw in the lecture).
You can do this with the provided view_with_overlay function. Assuming that result has ones at pixels
classified as cells you run

view with overlay(img, result);

Non-maximum suppression

The response that you just viewed cannot be used directly to count the blood cells as there are multiple
high-response pixels at the same cell. Next, we will fix this using non-maximum suppression.

Ex 1.16 Explore performing max filtering with ordfilt2 over 3 × 3-neighbourhoods. Also try median
filtering. What is the effect of median filtering.

There are many ways to solve the next exercise. If you are new to Matlab, here are some facts that might
help you out.

indicator = (image1 == image2)

will create an image with ones at pixels where image1 and image2 have the same values and zeros otherwise.

[row coords, col coords] = find(img1 > img2)

will output the coordinates of all pixels where img1 is strictly larger than img2.

Ex 1.17 Write a function

maxima = strict local maxima(image)

that computes the coordinates of all strict local maxima in image. Hint: Use ordfilt2 with 3 × 3-
neighbourhoods. Let the output maxima be a 2 × n-array. Since this is Matlab standard, let the first row
be the column coordinates and the second row the row coordinates.

Ex 1.18 Generate a simple test case for strict_local_maxima.m and verify manually that it is treated
correctly. You could, for example, generate a small random image using

img = randi(10,5,5)

This will create a 5 × 5-image with integer elements between 1 and 10. Verify manually that the correct
maxima are detected.

Ex 1.19 Try strict_local_maxima.m on the image produced by img = zeros(30,30). If you get any
maxima, then your function is not working properly.

The detector. . . finally

Ex 1.20 Make a function centres = cell_detector(img) that uses you linear classifier together and
non-maximum suppression to detect cell centres in an image img. Try it on a few of the images in
cells/test_images, that is, run the detector to produce a set of positions and then plot these positions in
the image to see if they are right. How well would it work to count the cells?

Ex? 1.21 Make a similar detector for speed signs and try it on one of the images in

trafficsigns/test images
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If you used all color channels you cannot do sliding window directly with imfilter. Do it one color channel
at the time instead. It’s a good idea to create a function

score = sliding window(img, w);

for that. How well does the detector work? Don’t expect too much.. We’ve just had one lecture.





Exercise 2

Mixed exercises

Ex 2.1 Figure 2.1 shows two images of John Lennon. The same images as

john_small.png and john_big.png

on PingPong. On the left, we have a low-resolution image. It could, for example, have been obtained at a
large distance. (It also appears to be slightly out of focus.) On the right we have a high-resolution variant
that has been filtered with a Gaussian. The two images can be seen as sampled from the same scale space
image L(x, y, σ2), but the distance between sample points is 5 times larger in the low-resolution image.

In the lectures, we computed gradient histograms for these images and concluded that they looked similar.
But if we want to compare the absolute length of gradients we have to be careful.

a. If we use the a filter
f = (−0.5 0 0.5) (2.1)

to compute horizontal derivatives in the two images. How do we need to rescale them to get similar values?
If you like you can load the images and verify your result.

b. When we computed gradient histograms in Lab 1, we computed one gradient per pixel. How will the
number of pixels at the two resolutions affect the absolute values in the histogram?

c. We use the gradient histograms for our SIFT-like descriptor and the last step in computing the SIFT-like
descriptor is normalization. So do we really need to bother about a and b?

Figure 2.1: Paul at a distance left (left) and a close-up after Gaussian filtering (right).
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8 EXERCISE 2. MIXED EXERCISES

The next exercise is concerned with subpixel precision. You can use any of the detectors that you have
designed or the example given in the file subpixel.mat. It contains a full-resolution image img, a low-
resolution variant low and a simple linear classifier (w, thr) for detecting motion capture markers in the
low-resolution image. The idea is to detect the markers in the low resolution image with sub-pixel precision.
It is 625 times faster than using the full-resolution image.

Ex? 2.2 Make a function

delta = subpixel max(patch)

that takes a 3 × 3-patch as input. Assuming that the centre point of this patch is a local maximum, the
function determines the offset of the true local maximum with subpixel precision.

Use your function to refine the local maxima produced by the provided w and thr when applied to the
image low. Multiply the resulting coordinates with 5and plot them in the full-resolution image. Also try
with the unrefined local maxima (without subpixel precision).

In the next exercise, we want to compute a sliding window standard deviation. To do this efficiently in
Matlab we want to use built-in functions such as imfilter. First note that

I · I = Isq · 1 (2.2)

where Isq is the result of squaring all the elements in I. Now

V ar(I) =
1

Nel
(I − µI1) · (I − µI1)

*
=

1

Nel
I · (I − µI1) =

1

Nel
Isq · 1−

1

N2
el

(I · 1)2 . (2.3)

The ∗-equality is proven in (2.9) in the lecture notes and the final equality follows from the definition of
µI , see (2.7) in the lecture notes. This result is the analogue of

V ar(X) = E[X2]− (E[X])2, (2.4)

in statistics. This allows efficiently computing the variance in Matlab using a combination of imfilter and
element-wise operations such as .* or.^

Ex? 2.3 Make a function

std img = local std(img, patch size)

that computes a sliding window standard deviation over all patches of size patch_size. Try to make your
implementation efficient by using sliding_window from Ex. 1.21.

Ex? 2.4 Try your local_std on images created with randn(100, 100, 3). What standard deviations do
we expect to see? What about 5*randn(100, 100, 3)?

Finding patches with maximum correlation is very useful to detect small movements or perspective changes
in video.

Ex? 2.5 Take your classifier from Ex. 1.21 or load the provided in trafficsign_classifier.mat. Your w
should already have mean 0. Rescale it so it also has standard deviation 1. Using

sliding window(img, w) ./ local std(img, patch radius) / numel(w)

you can compute a sliding-window correlation with w. Try to find a new threshold to turn this into
a classifier. Test it on the images in trafficsigns/test_images Does it work better than the linear
classifier?



Exercise 3

Mixed exercises

Ransac and camera geometry

Ex 3.1 Consider estimating an affine transformation for image registration. Assuming that the rate of
outliers is 90%, work out how many Ransac iterations you need to do perform to get approximately 100
outlier-free estimates. More precisely we want the expected number of outlier-free estimates to be 100.

Ex 3.2 A common digital SLR camera has 4000 × 6016 pixels, a sensor size of 15.4 × 23.2 mm and a
focal length of 105 mm (at full zoom). Consider two points with pixel coordinates (3008, 2000.5) and
(3009, 2000.5). How many degrees are there between the corresponding rays in 3D? You can assume that
the principal point is at the image centre, i.e., at (3008.5, 2000.5).

Ex 3.3 Given a camera matrix

P =

 100 0 50 −350
0 100 50 −250
0 0 1 −3

 , (3.1)

compute the camera position, C, (in world coordinates). Hint: Look at Section 10.2 in the lecture notes.

Ex 3.4 Compute the projections of

U1 =

 8
12
5

 and U2 =

 8
12
3

 (3.2)

in the camera of equation (3.1). What is the depth of U2? What happens when you try to compute the
pixel coordinates of U2?

Ex? 3.5 Consider a problem where we require five measurements to estimate the parameters of a model.
Assume that there are 75% outliers in the data. What is the probability that after 100 Ransac iterations,
we have never sampled an outlier-free set. After how many iterations is this probability less than 1%.

Iteratively reweighted least squares?

For affine and similarity transformations we can solve for a least squares solution by using \ on a system
Mθ = b. In some cases we want to weight the different residuals, for example, if we know that some
measurements are more uncertain. This is easy, we just multiply

r̄ = Mθ − b (3.3)
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10 EXERCISE 3. MIXED EXERCISES

with a diagonal matrix, W , with the square root of the weights on the diagonal. This creates a new system
M ′θ = b′ with M ′ = WM and b′ = Wb, that can be solved just as easily.

Recall from Section 8.6 in the lecture notes how we can use weighted least squares to minimize the Huber
loss. Start by solving a least squares problem. Then create a weight matrix such that the elements of the
ith residual are weighted with

wi =

{
1 if |ri| < δ
δ

|ri|
, otherwise.

(3.4)

and solve the weighted least squares problem. Note that W should contain the square roots of the wi’s!
Can you see why? Use the solution to compute new residuals and new weights. Iterate. Note that in (3.4),
the ri refers to the current estimate of ri, so it is to be considered as a constant when solving the least
squares problem. (Otherwise it wouldn’t be least squares.)

A disadvantage with using Ransac followed by least squares is that it is a little sensitive to the choice of
outlier threshold. In irls_affine.mat you find an example of this. pts and pts_tilde are the inliers
after Ransac with a large outlier threshold. In A_ls and t_ls you find the resulting transformation. If you
compare the resulting warped_ls to tgt you see the poor alignment. In the next exercise we will try to
improve this using the Huber loss.

Ex? 3.6 Implement iteratively reweighted least squares for affine transformation estimation. You can set
the number of iterations to 5 and δ = 3. Test it on the data in irls_affine.mat Warp the provided src
image using the resulting transformation and see how similar to tgt you can get it.

Filtering

Ex? 3.7 In guess_the_filter_1.mat there is a small image img and the response of filtering this image
with an unknown 3×3 filter (with integer elements). Try to estimate the filter. In guess_the_filter_2.mat
the problem is somewhat harder since moderate noise has been added to the response map. Does your
method still work?


