
Master Thesis:
Animations and Analysis
of Distributed Algorithms

Boris Koldehofe

12th April 1999

Contents

� Introduction �

1.1 Distributed System and Models . 2

1.2 Complexity Measures and Causality 3

1.3 The LYDIAN environment . 4

� Structure of the Animations �

2.1 Basic View . 7

2.2 Communication View . 7

2.3 Causality View . 7

2.4 Process Step View . 8

2.5 Process Occupation View . 8

� Broadcast ��

3.1 A Broadcast Algorithm . 10

3.2 A Broadcast with Acknowledgement Algorithm 11

3.3 Animation of the Broadcast Algorithms 12

� Minimum Spanning Tree ��

4.1 The GHS Spanning Tree Algorithm 16

4.1.1 Description of the Synchronous GHS Spanning Tree 17

4.1.2 Description of the Asynchronous GHS Spanning Tree 20

4.1.3 The Detailed Asynchronous GHS Spanning Tree Algorithm . 22

4.2 Animation of the GHS Spanning Tree Algorithm 25

� Resource Allocation ��

5.1 The General Dining Philosophers Problem 29

5.2 The Ricart and Agrawala Algorithm 30

5.3 Animation of the Ricart and Agrawala Algorithm 32

5.4 � � � Colouring by Luby . 35

5.5 The Chandy and Mistra Algorithm 37

5.6 Animation of the Chandy and Mistra Algorithm 41

5.7 The Choy and Singh Algorithms . 43

ii CONTENTS

5.7.1 A Solution with Failure Locality � 47

5.7.2 A Solution with Failure Locality 4 51

5.8 Animation of the Choy and Singh Algorithms 54

� Counting Networks ��

6.1 Properties of Counting Networks . 59

6.2 The Bitonic Counting Network . 63

6.3 The Periodic Counting Network . 65

6.4 Applications of Counting Networks 66

6.4.1 Shared Counter . 67

6.4.2 Producer/Consumer Buffer 67

6.4.3 Barrier Synchronization . 68

6.5 Animation of the Periodic Counting Network 69

	 Implementation 	�

7.1 Introduction . 72

7.1.1 POLKA: A Library for Building Animations 72

7.1.2 DIAS: The Simulator of LYDIAN 73

7.1.3 LEDA: Library of Enhanced Data Structures and Algorithms . 73

7.2 Animation Using POLKA . 73

7.2.1 Classes of the Animation . 75

7.2.1.a Animator . 76

7.2.1.b Basic View . 77

7.2.1.c Communication View 78

7.2.1.d Causality View 80

7.2.1.e Process Step View 81

7.2.1.f Process Occupation View 81

7.2.2 The Graphical Interface . 83

7.2.3 Main Program and Events 84

7.2.3.a The Broadcast with Acknowledgement Algorithm . 84

7.2.3.b The GHS Spanning Tree Algorithm 85

7.2.3.c The Ricart and Agrawala Algorithm 86

7.2.3.d The Chandy and Mistra Algorithm 87

7.2.3.e The Choy and Singh Alg. with Failure Locality � . 89

7.2.3.f The Choy and Singh Alg. with Failure Locality 4 . 91

7.2.3.g The Periodic Counting Network 92

7.3 Algorithm Implementations Using DIAS 93

7.3.1 The Broadcast with Acknowledgement Algorithm 94

7.3.2 The GHS Spanning Tree Algorithm 95

7.3.3 The Ricart and Agrawala Algorithm 97

CONTENTS iii

7.3.4 � � � Colouring by Luby 99

7.3.5 The Chandy and Mistra Algorithm 100

7.3.6 The Choy and Singh Algorithm with Failure Locality � 102

7.3.7 The Choy and Singh Algorithm with Failure Locality 4 104

7.3.8 The Periodic Counting Network 106

7.4 Creation of Network Description Files 108

 Basic Findings and Future Work ���

Chapter �

Introduction

Distributed algorithms are by nature difficult to understand due to the existence of
asynchronous threads of control that interacts and due to the lack of global state and
time. Even if an algorithm starts from the same initial system configuration, it may
not result in the same output. The animation of an algorithm shows graphically its
execution, thus it can assist in understanding the behaviour of algorithms concerning

1. ”key ideas” of functionality of the algorithm

2. their behaviour under different timing and traffic of the system

3. their communication and time complexities

This thesis focuses on four classes of distributed algorithms, namely: broadcast
algorithms, spanning tree algorithms, resource allocation and synchronization algo-
rithms and counting network algorithms. Besides studying and investigating these
classes, work done in the context of the thesis includes implementations of the algo-
rithms as well as design and implementation of animation programs for them. It will
be explained how animations for these algorithms were built and how they are helpful
regarding functionality, behaviour and complexity of each algorithm.

The introductory part explains shortly the main concepts which are used for this the-
sis. In chapter 2 a general structure for building animations is given. The subsequent
chapters 3, 4, 5 and 6 cover the previously mentioned areas of distributed algorithms.
Every algorithm is explained and analyses. They show how the respective animation
was designed and how the analysis results are represented inside the animation by also
considering the general structure applied to animations according to chapter 2. Finally,
chapter 7 gives basic information about the implementation itself.

Animation and implementation of the algorithms are part of an environment called
LYDIAN [12] in which an algorithm can be simulated and its execution can be an-
imated. The user has the possibility to change the structure of the network and the
timing of links between processes so that any possible execution of the algorithm can
be seen. For the purpose of changing network structures a modified graphwin of the
library of enhanced data structures and algorithms (LEDA) [10] is used. It offers an
easy way of constructing graphs and helps the user specifying timing assumptions for
the network of processes which is represented by the constructed graph.

2 CHAPTER 1. INTRODUCTION

In order to built the animations itself, a library called POLKA [14] is used. This li-
brary supports many important features for building visualizations like multiple views,
animation speed tuning, step-by-step execution and call-back events to assist interac-
tive animations.

��� Distributed System and Models

A distributed system can be defined as a collection of autonomous processors, pro-
cesses or computers which can communicate with each other through a communication
medium (see, e.g. G. Tel [15]). The communication between processes can be done
either through a shared memory medium (� shared memory model) or through links
which interconnect processes directly with each other (� message passing system).

p�p� pn� � �

Shared Memory

Figure 1.1: a shared memory model

In the shared memory model (cf. figure 1.1) processes can access in parallel mem-
ory locations which they share with all other processes. The communication between
processes is achieved by writing information to common memory locations. In the
message passing model (cf. figure 1.2) each process can read and write information
only to a local memory; thus it must exchange information by sending messages via
links to other processes.

The described and animated algorithms in the following chapters are all based on
a message passing implementation. It is assumed that all processes of the distributed

Memory
Local

Memory
Local

Memory
Local

p�p� pn� � �

Communication Medium

Figure 1.2: a message passing model

1.2. COMPLEXITY MEASURES AND CAUSALITY 3

system execute the same algorithm and work correctly for any possible interconnection
of processes. In this case the distributed system is described by a graphG�V�E�, called
communication graph, where nodes in V represent processes and edges �u� v� � E
represent a link from u to v. Through a link �u� v� process u can send messages to
process v. Each process knows its state and can register following events:

� send event: a message is produced i.e it is sent to another process

� receive event: a message that was sent on a link is consumed by a process

� internal event: local computation

On an event a process performs a transition which means that it changes its state and
might trigger some new events.

The described system is said to be an asynchronous message passing system if
messages can be sent and received on links at arbitrary time. If a sender is only allowed
to send a message on a link when the receiver is ready to receive this message then the
described system is said to be a synchronous message passing system.

��� Complexity Measures and Causality

The quality of correct algorithms is analyzed by their complexity measures. In order
to measure the complexity of a distributed algorithm in a message passing system one
usually considers the time complexity and the communication complexity.

The time complexity measures the maximum time the algorithm needs in the worst
case starting with its initialization until it comes to a halt. For this purpose an idealized
timing is used in which the time is measured in message transmission units. Hereby
it is assumed that the transmission of a message takes at most one time unit and the
time which a process task needs to proceed is encapsulated in the time unit. Hence,
the longest chain of dependent events will give a measure for time the algorithm was
working as the execution is event driven. Often the analysis includes the upper bounds
for a process task to proceed and a message to traverse on a link. However, it should
be remarked that in real systems it is not possible to guarantee an upper bound for
messages traversing on a link.

The communication complexity measures the traffic load of the system. This is
achieved by counting the total number of messages that are exchanged among the
system in the worst case. Also the size of messages might be interesting if it is not
constant.

Causal relations are interesting in distributed computing due to the lack of global
state in an asynchronous system. They show for each process which events were
caused by an event of another process e.g. in a message passing system: the event
of receiving a message will cause the process to do some local computation and/or
sending messages to some other processes.

By computing local clocks for each process (see Lamport [8]) it is possible for
a monitoring process to compute an order of all events that happened in the system,
respecting the causal relations. This order needs not necessarily to be the same order
in which the events really occurred, but it will lead to the same result of computation.

4 CHAPTER 1. INTRODUCTION

��� The LYDIAN environment

The simulation of distributed algorithms provides the possibility to test the behaviour
of the algorithm under different timing and interconnection of processes. Its animation
shows the algorithm’s execution and allows to retrace this execution as well. Further
it assists in the analysis by showing the algorithms complexity and causality.

a set of
distributed algorithms

a set of
experiment files

a set of
algorithm trace files

a set of
network description filesa set of

animations

Simulation Animation

Tracefile

LYDIAN

create a
network description file

create a
distributed algorithm

create an
experiment file

manages

network, algorithm, animation

experiment file

Figure 1.3: Overview of LYDIAN

LYDIAN [12] is an user friendly environment for the simulation and animation of
distributed protocols (see overview in figure 1.3). Users can create their own experi-
ence files which consist out of a distributed algorithm, a network description file, an
animation and a debug file for collecting information about the algorithm’s execution.
LYDIAN offers a set of implemented algorithms which can be selected by the user,
but new algorithms can also be added. Further the user can choose among existing
network description files or create some new. The network description file contains
the whole communication graph including information about initialization, message
transmission times among links and time which a process need to proceed from one
state to another. Also the user must specify which kind of time model is associated
with the algorithm (e.g. synchronous or asynchronous). As a small part of this thesis
a new interface is implemented by using graphwin from the LEDA library [10] for the
creation of network description files.

1.3. THE LYDIAN ENVIRONMENT 5

With the experiment file it is possible to start a simulation and view the results in-
side the debug file. In order to help the user in understanding these results an animation
assists in reproducing the main events of the simulated algorithm. The construction of
such animations was a main part of this thesis.

Chapter �

Structure of the Animations

The introduced animation programs were built such that a program expects an input
of important algorithm events and the time when an event happened. These events can
be received either from a trace file or online during the evaluation of the algorithm.
According to the receiving of those events the animation of the algorithm proceeds.
The user is able to control the speed of the animation via a window called Control
Panel.

In a distributed algorithm different aspects (e.g. main idea of the algorithm, com-
munication complexity etc.) of the algorithm that needs to be shown will lead to dif-
ferent animation ideas. Therefore, this work suggests to use more than one animation
window, called view, such that each view shows one of these aspects. On the other
hand it is required to avoid confusion caused by showing too much at the same time,
thus the user can select views, considered to be important, inside a window called
Animation Control Window. The following set of views is available:

� The Basic View shows the main idea of the algorithm.

� The Communication View shows per process the traffic (messages) induced by
the algorithms execution.

� The Causality View shows causal relations between events in the system execu-
tion.

� The Process Step View displays for a selected process its status information

� The Process Occupation View shows in actual time the time-period for each
process when it was kept busy.

The animation of all views evolves simultaneously. At any time the user can change
the selection of shown views. Some animations might not fit in the predefined window
frame. Therefore each view offers possibilities to change the window size, move to
different regions of the animation and to zoom in or out the displayed part of the
animation. The next sections will give a deeper description of each view.

2.1. BASIC VIEW 7

��� Basic View

The basic view illuminates the main idea of the algorithm by showing the user its most
significant features. For a message passing system these are given by the states of
processes and the exchange of messages. Depending on each algorithm further relation
between processes will be shown e.g. for a resource allocation algorithm (described in
chapter 5) it is important to see which process is owning which kind of resources.

An animation of the basic idea often shows the communication graph of the net-
work. Nodes are represented by circles and edges by polylines between two nodes.
Different colours are used in order to distinguish between states of processes and links.
Sending a message is visualized by an arrow which points from sender to receiver and
is continuously changing its size along the edge connecting sender and receiver pro-
cesses. The arrow appears as long as the accordant message is not received. Since
an algorithm may use different types of messages, for each message type a different
colour is selected. Sending more than one messages is indicated by the arrow flashing
between the colours of messages that have been sent along a link.

By their nature, algorithms can differ a lot, so this view is designed for algorithms
in a different manner.

��� Communication View

The communication view shows the contribution of each process in the traffic induced
by the algorithm’s execution. The user can see a bar chart where each bar indicates
the number of messages which have been sent for a process. An additional bar shows
the average number of messages per process. The chart bar is useful regarding the
message complexity of the algorithm. Often the user will easily find for processes a
connection with their induced traffic. The bars grow online so that the user can see
when traffic is induced.

In some algorithms the size of messages is not constant. Therefore for every process
a circle indicates the size of the longest message that has been sent. The area of
the circle is proportional to the size of the message. In order to recognize better the
message sizes their number of bits are written below each circle. The variation of
message sizes is also animated online, thus one is able to observe how fast the message
size is increasing. In several algorithms, e.g. the ones that employ time stamping, this
is important (see also chapter 5.2).

This view is implemented in a way that it can be used for all animations. The im-
plementation allows flexibility in the way of counting messages. For some algorithms
it might be better counting only some significant messages. Also a different colouring
of bars and message sizes is allowed.

��� Causality View

In the causality view causal relations between processes are shown by an arrow point-
ing from process p, which caused event e, to process q, which was driven by e. The

8 CHAPTER 2. STRUCTURE OF THE ANIMATIONS

Figure 2.1: Communication view and causality view

arrow starts at the local clock’s time of p, when e was originated, and stops at the
local clock’s time of q, when e was received. The local clock’s time of processes is
computed according to the computation of local clocks by Lamport [8]. Receiving a
message causes a process to set its local clock value to

max�send tm� old value of local clock� � �

where send tm denotes the local clock value of the sender at the time it sent the mes-
sage.

The view shows how a monitoring process would see the current execution of the
algorithm. The longest directed path gives an upper bound for the length of the exe-
cution in units of message transmission times. The implementation allows to use this
view in all algorithms for which the colouring of causal relations can be shown in
different ways.

��� Process Step View

The process step view helps the user to understand an execution of an algorithm by
giving him the latest status of a selected process. The status contains information
about identifier, state, latest event, latest message sent or received, local clock and real
time. It is possible to select the process interactively by clicking with the mouse on
the respective node inside the basic view. Furthermore the user can retrace the whole
execution for a process by selecting interactively inside the process step view previous
or next status information. Although algorithms use different states and events, the
outfit of the view can be used by all animations.

��� Process Occupation View

The process occupation view shows in real time i.e. time given by the simulation
trace the period when each process was kept busy by the algorithm. The user can
conclude how the computation is distributed among the system. The occupation time

2.5. PROCESS OCCUPATION VIEW 9

Figure 2.2: Process step view and process occupation view

is shown for a process by a bar that increases online as the algorithm evolves. The
implementation allows all animations to use different colours for bars. Usually this
is helpful to distinguish between processes when the algorithm needed such a long
time that the whole animation does not fit in a window frame and the user must move
to different regions. In some cases it is also significant to see how long a process
was kept busy in a certain state. Therefore a bar can be split in sections which are
distinguished by different colours chosen according to each algorithm. Further some
important causal relations can be displayed by an arrow which can also be coloured
differently.

Chapter �

Broadcast

A broadcast algorithm is a basic algorithm used inside many other distributed algo-
rithms e.g during initialization of a network where all processes should be waken up.
It distributes an information known by a single process to all other processes of the
network. Often the process initiating the broadcast algorithm needs to be acknowl-
edged that all processes received the broadcasted information. Algorithms satisfying
this property are called broadcast with acknowledgement algorithms.

In the following sections two broadcast algorithms for a message passing system are
introduced. The underlying communication graph representing the network is required
to be connected, since it is impossible for two unconnected components of the network
to communicate. For the analysis of the algorithms l denotes the upper bound given for
the time that any process task needs to proceed and d denotes the upper bound given
for the time that any message needs to traverse on a link i.e the time between sending
and receiving of a message. Further, n denotes the size, D denotes the diameter and �
denotes the degree of the communication graph.

��� A Broadcast Algorithm

This algorithm is an straight forward way of performing a broadcast. The initiator
sends to all its neighbours a message of kind broadcast. When a process receives
message broadcast for the first time, it sends to all other adjacent processes further
broadcast messages.

Time Complexity

After l � d time units the distance between the initiator and the processes which have
not received the broadcasted information increases at least by one. Thus it takes at
most O�D�l�d�� time units until every process received the broadcasted information.

Message Complexity

Every process needs to send at most one message on a edge which results in a total of
O�jEj� sent messages.

3.2. A BROADCAST WITH ACKNOWLEDGEMENT ALGORITHM 11

��� A Broadcast with Acknowledgement Algorithm

The described broadcast with acknowledgement algorithm of this section is an exten-
sion of the previous algorithm. As before the initiator sends messages of kind broad-
cast to all its neighbours. Also processes that receive message broadcast for the first
time still send to all other adjacent processes further broadcast messages. In addition
to this a process marks the sender of the first received broadcast message as its par-
ent. Every process keeps track on broadcast messages it sent to adjacent processes by
storing the receiver of each message in a set of expected acknowledgements, called
ack. As long as ack is not empty the process waits to receive acknowledgements from
processes stored in this set. On receiving an acknowledgement a process deletes the
sender from ack. When ack is an empty set then all acknowledgements are received.
Then a process sends an acknowledgement to its parent node and terminates the al-
gorithm. Processes which receive a message broadcast although they have already
decided for their parent node reply with an acknowledgement. This guarantees that
every broadcast message will be answered by an acknowledgement. The algorithm is
finished when the initiator received all acknowledgements.

Time Complexity

According to previous algorithm every process received the broadcasted information in
time O�D�l� d�. Due to asynchrony the path on which an information is broadcasted
might be of length O�n� as messages might proceed on some links much quicker than
messages on the shortest path (see example in figure 3.1).

1

2

3

45

0

Figure 3.1: Example for a graph with diameter �. Process � is guaranteed to receive a broad-
casted message from process � in time d� l, but it is still possible that process � received the
first broadcast message along the path indicated by the arraows.

In the convergecast phase of the algorithm the distance between the initiator and
processes having received all acknowledgements decreases by at least one after time
d � l, so it takes O�n�d � l�� until the initiator has received all acknowledgements.
Hence, the whole algorithm is guaranteed to terminate in time O�n�d� l��.

12 CHAPTER 3. BROADCAST

Message Complexity

Every process sends along each adjacent link at most one broadcast and one acknowl-
edgement messages. For this reason a total of O�jEj� messages are sent along the
network during the execution of the algorithm.

Conclusion

It should be noted that this algorithm also computes a spanning tree which is formed by
the edges on which a process receives its first broadcast message. This spanning tree
can be useful for further broadcasts. Then each process receives at most one broadcast
message and sends one acknowledgement. Hence, the message complexity is reduced
to O�n�.

��� Animation of the Broadcast Algorithms

The broadcast with acknowledgement algorithm is an extension of the broadcast algo-
rithm introduced in section 3.1. Therefore this section introduces only an animation
for the broadcast with acknowledgement algorithm. This animation was built accord-
ing to the proposed structure in chapter 2. In the following the usage of the introduced
views is described:

Basic View

The basic view (cf. figure 3.2) shows the communication graph of the network. By
default all processes are shown as yellow circles. As the animation proceeds processes
will change their colour according to their state:

� A process in state sleeping i.e. it has not started running the algorithm is coloured
yellow.

� The initiator of the algorithm is coloured red.

� A process which received some broadcast messages, but still waits for acknowl-
edgements is coloured green.

� A process which received all acknowledgements is coloured blue.

With each process a unique identifier is associated in order to help the user to recognize
this node in other views.

Links usually appear as black polylines, but will change their appearance when
a link is determined as a spanning tree edge. These are links on which a process
received its first broadcast message. The link will change its shape into a red arrow
which points from sender to receiver of the accordant broadcast message. At the end
of the animation the user can see a complete spanning tree and observe the longest path
from initiator to any other process. This determines the worst case execution time.

Messages are shown by arrows which point from sender to receiver. As long as a
message is transmitted the respective arrow is continuously changing its size along the

3.3. ANIMATION OF THE BROADCAST ALGORITHMS 13

Figure 3.2: Basic view of the broadcast-with-acknowledgement algorithm

link connecting sender and receiver of the message. Messages broadcast are coloured
green while messages acknowledgement are coloured blue. If two messages, one of
kind broadcast and the other of kind acknowledgement, are sent along the link at the
same time the arrow, representing these messages, will start flashing between green
and blue.

Communication View

The communication view counts for each process the number of sent messages. More-
over it shows the average number of messages which are sent by a process. Although
the message size is constant, the message size is displayed below every process as
well.

For this algorithm it is easy to observe that the number of sent messages is propor-
tional to the degree of a node. Hence, an initialization of this view assuming that for
each process the message size is bounded by �� messages will guarantee an optimum
scale for this view.

Causality View

The causality view shows the causal relations of the algorithm. A relation is shown in
form of an arrow pointing from sender to receiver of a message beginning at send tm
and ending at rec tm. Hereby send tm denotes the local clock of the sender when it
sent the message, while rec tm denotes the local clock of the receiver when receiving
the message. The local clock of a process is updated when a message was sent or

14 CHAPTER 3. BROADCAST

received. Before sending a message a process increases its local clock by one, while
receiving a message causes a process to set its local clock to

max�send tm� old value of local clock� � ��

The causal relations are coloured according to a local colour value. Initially this
value is � for all processes. The local colour value of a process is updated when a
message is received. Then the process updates its local colour value to

max�own local colour value� sender’s local colour value� � ��

Process Step View

The process step view has the same appearance as in all other animations. A user can
click on a process inside the basic view in order to see inside the process step view
information about latest state, event, time and local clock. For every process the user
can retrace the sequence of events by clicking inside this view on buttons “Previous
Event” or “Next Event” (see also page 8).

Process Occupation View

This view shows in real time the period between processes start and stop participating
at the algorithm i.e. a process starts participating when it sends broadcast messages
and it stops participating when it received all acknowledgements. In order to illustrate
which process invokes other processes, arrows pointing from sender to receiver are
shown. They appear in the colour associated with the sender. The bars showing the
process occupation are displayed according to the colour associated with the processes
identifier.

Chapter �

Minimum Spanning Tree

For distributed systems a minimum weight spanning tree is useful to reduce the costs
for broadcasting information along the network. In the previous chapter it is observed
how a spanning tree helps reducing the message complexity of a broadcast algorithm.
A minimum weight spanning tree minimizes the total cost of edges selected for the
spanning tree. Hence, it minimizes the cost of a broadcast that uses tree edges, if the
weight of each edge represents the cost of sending the information over the respective
link.

Let G�V�E� be an undirected graph where V denotes a set of nodes and E a set
of edges. A subgraph G��V�E�� of G which contains no cycles, is defined to be a
spanning forest. A spanning forest G��V�E�� of G which is also connected is said to
be a spanning tree of G. For every edge e � E let be a weight we associated. The
spanning tree G��V�E�� of G is called a minimum weight spanning tree (MST) when
for every other spanning tree G���V�E��� of GP

e�E� we �
P

e�E�� we

is valid.

An easy way of computing a MST is to sort the edges of E in ascending order ac-
cording to its weights. Initially, each node is one set called component. The algorithm
by Kruskal [7] takes each edge �u� v� � E in the order they were sorted and checks
whether nodes u and v belong to the same component. If u and v belong to different
components �u� v� will be an edge of the MST and the components of u, v and edge
�u� v� will be united. If an union find implementation with path compression is cho-
sen the MST is computed in time O�jEj log jEj� (cf. analysis in the book of Cormen,
Leiserson and Rivest [4]).

The algorithm uses the invariant that every component created by the algorithm is
part of a MST. For two components united on edge e, it is assured that e is the mini-
mum outgoing edge of both components since e is of minimum weight among all by
the algorithm not touched edges. Further lemma 4.1 will show that every component
united with its minimum outgoing edge will be part of a MST. Thus, the unification
between both components must also be part of a MST.

Lemma 4.1 LetG��V �� E�� be an arbitrary acyclic and connected subgraph of G(V,E)
where V � � V . If the edges of E� are part of a MST then there exists a MST of G which

16 CHAPTER 4. MINIMUM SPANNING TREE

contains all edges ofE� and the minimum edge �u� v� with the property that u � V �V�

and v � V �.

Proof. Let T be the minimum spanning tree that contains E� and �u� v�. Assume there
exists a spanning tree T� with smaller weight than T which is also containing all edges
of E�, but not �u� v�. If one constructs T from T� by adding �u� v� to its edges there
will be at least one edge which has only one endpoint in V� causing a cycle. Otherwise
T � would not be connected. These edges have weight greater or equal the weight of
�u� v� because �u� v� was the minimum weighted edge with only one endpoint in V�.
By removing these edges T becomes a spanning tree with weight less or equal the
weight of T � which is a contradiction to the assumption that weight of T� is smaller
than weight of T . �

��� The GHS Spanning Tree Algorithm

The idea of merging components is also used for the distributed implementation of
the algorithm by R.A Gallager, P.A. Humblet and P.M.Spira [5]. There exists a syn-
chronous and an asynchronous implementation of this algorithm which are both de-
scribed according to N.Lynch [11]. Hereby the understanding of the synchronous part
will give an easier understanding of the asynchronous part.

Modeling the MST problem within a communication graph

Let G�V�E� be the graph for which the computation of a MST is required. It is as-
sumed that there exists exactly one process for each node of V and exactly one link
for every edge �u� v� � E between processes that represent nodes u and v. Every pro-
cess knows about its own identifier which is different from all other processes and the
weight of its incident edges. For simplicity reasons it is assumed that all edges have
different weights although allowing edges to have the same weight can be resolved by
applying a total order to the edges regarding identifiers of processes.

Basic Idea

The basic idea is inspired by the previous algorithm. In the beginning every process
represents its own component, but in this algorithm all components try to expand at the
same time without knowledge of an order in which edges are sorted by weight. Every
component tries to find its minimum outgoing edge (MWOE) and to combine itself
with the component adjacent to the MWOE. The algorithm terminates when there is
only one component left.

The parallel unification brings new problems. According to lemma 4.1 the com-
ponents which are united along the MWOE of one component will be part of a MST.
Due to the parallel unification of components it is possible that cycles among the united
components occur e.g. a complete graph of three nodes A�B�C where each edge is
of weight one. Thus component A could be combined with component B, while B

4.1. THE GHS SPANNING TREE ALGORITHM 17

is combined with C and C is combined with A. However, cycles can be avoided by
assuming that all edges are of distinct weights.

Lemma 4.2 If all edges � E of a graph G�V�E� have distinct weights, then there will
exist exactly one MST for G.

Proof. Assume there exists two MSTs T and T� of G. Let e denote the minimum
weighted edge which is in T , but not in T�. Then T �� � T � � e will form a cycle in
T �� with at least one edge e� which is not in T . Due to the choice of e, e� must have
a greater value than e. Removing e� will result in a tree of smaller weight than T�, a
contradiction that T� was a minimum spanning tree. �

����� Description of the Synchronous GHS Spanning Tree

The algorithm constructs the MST in levels. Initially in level 0 every component is a
single process. Inductively each component of level k is built out of components of
level k � � such that it is guaranteed to have at least �k�� processes. The levels are
built synchronized which means that after round k only level k components exist. Each
round is guaranteed to be finished in time O�n�, where n is the number of processes.

A

C

B

D

Figure 4.1: Example of a combination of four level k components which are going to form a
new level k � � component. The edges represent MWOE pointing from its component to the
component they are connecting.

It is assumed that every process knows a unique identifier (UID) and which of its
adjacent edges belong to the component’s tree. Further every component has a leader
and all processes of the component knows the leader’s UID. In round k all level k
components try to find their MWOEs. This is realized by the leader broadcasting to all
processes of the component the information to search for their local MWOE along their
non tree edges i.e. nodes of the components spread initiate messages along tree edges
and test messages along all non-tree-edges. The synchronization guarantees that test
messages will be sent at the time when all members of the component received initiate
messages. The initiate message includes also information about the leader’s UID so
that in every level all processes are informed which process is the component’s leader.
Similar to the way acknowledgements are convergecast to the initiator of a broadcast
with acknowledgment algorithm (see chapter 3), the local MWOE is convergecast to

18 CHAPTER 4. MINIMUM SPANNING TREE

the leader which determines the new MWOE. The leader sends message change-root
to the component’s process along the MWOE. This message induces the receiver to de-
termine a new leader by sending message connect along the MWOE. Both components
will be combined along the MWOE by marking this edge as a tree edge. It should be
noted that more then two components can be combined in one step as one can see in
figure 4.1, but only for one pair of components inside a set of combined components
the MWOE is the same edge. Along such an edge the node with lower UID is chosen
as the leader of the new component. An edge with such a property can be determined
locally by the adjacent processes since two connect messages must be sent along this
edge.

Hence, it is possible two describe the combining process by two possible scenarios.
In the first scenario the MWOE of component A is also the MWOE of component B.
In this case A and B will be united and the node with lower UID along the MWOE will
be the new leader of the new component. The new UID of the leader will be broadcast
together with the initiate message of the next round.

In the second scenario, let e be connecting components A and B and e be a MWOE
of A, but not of B. In this case A will be absorbed by B and e will be known as an tree
edge connecting components A and B. The initiate message of the next round will
broadcast the UID of component Bs leader. Of course, component B will be united or
absorbed along its MWOE as well.

Time Complexity

Due to both scenarios of combining components it is guaranteed that a level k com-
ponent will consist out of at least �k�� processes. Hence it takes at most logn rounds
until one single component remains and the algorithm terminates. Since a component
cannot exceed the number of n processes, every broadcast within a round takes time
at most O�n� steps. After time O�n� all nodes know to which component they belong
and start sending test messages which are straight replied along their non-tree-edges.
Convergecasting the local MWOEs to the leader and sending change-root message to-
wards the MWOE will take another O�n� steps, which implies a total bound of O�n�
steps per round. Therefore the whole algorithm is guaranteed to terminate in time
O�n log n�.

Communication Complexity

In every round each process sends messages to all its neighbours (initiate messages
to tree-edges and test messages to non-tree-edges) in order to determine the MWOE.
Thus O�jEj� messages are necessary to compute MWOEs of all components. Another
O�n� messages are necessary to determine new leaders of components. Altogether this
gives a bound of O�log n�n� jEj�� for the total number of messages send during the
execution.

This bound can be improved by marking non-tree-edges which are known to belong
to the same component. Then test messages need only be sent to processes which are
not known to belong to the same component. Further in each round edges are tested
one after the other in increasing order according to their weights until an edge is found

4.1. THE GHS SPANNING TREE ALGORITHM 19

which leads outside the component. Along tree-edges still a total amount ofO�n logn�
messages are sent. An amortized analysis is used in order to determine the number of
messages along non-tree edges. Each tested edge gets rejected at most once, leading to
a total of O�jEj� messages. During each round at most one tested process is accepted
by each process, which is a total of O�n logn� messages. Since each test message is
either accepted or rejected altogether O�jEj � n logn� messages are sent along non-
tree edges which implies a total bound of O�jEj� n logn�.

Correctness

For correctness it must be shown that all determined MWOEs belong to the MST
and that the algorithm guarantees progress. Further the leader of each component is
required to be unique during each round.

For all edges distinct weights are applied. According to lemma 4.2 the MST of the
graph is unique. Hence, MWOEs belong to the MST if their components are also part
of a MST (see lemma 4.1). Initially all components are part of the MST and they are
combined with other components on their MWOEs. Thus at each level a component
is part of the MST. As long as there exists more than one component MWOEs can be
determined. Thus the algorithm guarantees progress at each level.

Initially, all components consist out of a single process which implies a unique
leader for level �. In round k for each set of level k components, which are combined
to a level k � � component, a unique leader is selected along the MWOE, which is
the MWOE of two components. The process with lower UID along this MWOE will
be selected as the new leader. Lemma 4.3 will show that for such a set of level k
components this MWOE is unique.

Lemma 4.3 LetG��V �� E�� be a directed graph. Nodes of V � represent level k compo-
nents which are part of the MST of graph G�V�E� whose edges have distinct weights.
Edges �u� v� � E� represent the MWOE of the component to which u belongs. For
each subgraph of connected components there is exactly one unique cycle between
two components.

Proof. The MST is unique because of Gs distinct weights, and MSTs allow no cycles.
Since all MWOEs are part of the MST, there can only occur cycles in G� of the form
�u� v� and �v� u�.

Assume there is no such cycle among a set of connected components. Then there exists
one component which has no outgoing edges, a contradiction to every component has
a MWOE.

Assume there are more such cycles among a set of connected components. Then there
must exist a path between the pairs of cycling components. Hence one component
must have more then one MWOE contradicting that every component has only a single
MWOE. �

20 CHAPTER 4. MINIMUM SPANNING TREE

����� Description of the Asynchronous GHS Spanning Tree

The asynchronous GHS spanning tree algorithm is quite similar constructed to the
synchronous version, but asynchrony leads to new problems which must be resolved.
In the following these problems and solutions are described in order to give the reader
an idea of its correctness, although a real proof of its correctness is omitted due to
its length. One proof of correctness for this algorithm is shown in a paper by Welch,
Lamport and Lynch [16].

Problems to be Resolved

The first problem arises for a process by checking along non-tree-edges whether ad-
jacent processes belong to the same component. Synchrony guarantees that two pro-
cesses communicating with each other can conclude from their leaders UID whether
they belong to the same component. In the asynchronous case the process might not
have received the UID of the latest leader when receiving a test message.

The second problem is caused by components which might grow with different
speed because levels are not synchronized anymore. Therefore one could gain an
increase in the communication complexity since combining a component constantly
with level one components will lead to ��n�� rounds and increases the number of
messages which have to be sent. Also two neighbour components searching for their
MWOE in different levels might cause unpredictable interference.

Solutions

The above described problems can be avoided when each node keeps track of its level.
As in the synchronous version, the leader of a level k component broadcasts an initiate
message including its UID, but also its level throughout its component. The nodes of
the component update on receiving message initiate their entry for UID and level. It
should be noted that in the following for a process p UID�p� denotes the UID of the
leader known by p, while level�p� denotes the current known level information of p.

A process p that receives a test message by a neighbour process q together with q’s
level can conclude the following:

� If UID�p� � UID�q� then p and q belong to the same component as two nodes
once belonged to one component will do so also in the future.

� If UID�p� �� UID�q� and level�p� 	 level�q� then both nodes do not belong
to the same component because a component proceeding to a new level implies
that local MWOEs of previous levels are determined. Thus a node of higher
level will never receive a test message from a node of the same component. If
the levels of nodes are equal they must belong to different components since all
processes of a level k-component know the same leader

� If UID�p� �� UID�q� and level�p� � level�q� then p cannot decide whether
it belongs to the same component as q. Therefore it delays its answer until
level�p� � level�q�.

4.1. THE GHS SPANNING TREE ALGORITHM 21

These conclusions directly solve the first problem. The use of levels is also a solution
to the second problem by merging only components which are of the same level and
thus guaranteeing that a level k component has at least �k�� processes. However, a
component of lower level can be absorbed by a component with higher or equal level,
but a component cannot absorb a neighbour component of higher level since it might
want to merge with this component when it reached a level of same height.

Progress

Components can reach different levels at a time so that it has to be reconsidered
whether the algorithm is guaranteed to make any progress, an important feature for the
correctness of the algorithm. Regarding components with lowest level will show that
progress is still guaranteed. Since these components cannot be delayed by neighbour-
ing components, they will manage to determine their MWOEs. If MWOEs lead to a
higher level component an absorb operation will be performed. Otherwise, if for a con-
nected set of these components the MWOE leads only to same-level-components then
according to lemma 4.3 a merge operation is possible and a higher-level-component
will be created. So after a finite number of steps all lowest-level-components will
be part of higher level components. Thus latest at level log n there will be a single
component and the algorithm terminates.

Time Complexity

Let l denote the upper bound given for the time that any process task needs to proceed
and let d denote the upper bound given for the time that any message needs to traverse
a link i.e time between sending and receiving the message. If all processes are woken
up and each process determined a sorted order of its edges weights then lemma 4.4
will show by induction that the time for all processes to reach level at least k will be
O�kn�l � d�. This implies time O�n logn�l � d�� for the whole algorithm because a
broadcast algorithm wakes up all nodes latest in time O�n�l � d�� and each process
will determines a sorted order of its edges in time O�nl logn�.

Lemma 4.4 Assuming all process are woken up and each process determined a sorted
order of its weight. The time for all processes to reach at least level k of the asyn-
chronous GHS-MST algorithm is O�kn�l � d��.

Proof. Initially all processes are level one components after are woken up. Thus all
components reach in O��� steps the initial level. Assume that all processes reached at
least level k in time ckn�l � d� �	 s, with c denotes a constant. After the leader of
a level k component started with broadcasting message initiate it takes time n�l � d�
until all processes of the component received this information. Therefore, after time
s � n�l � d� the last process starts sending test messages along their non-tree-edges.
For each sent test message it takes at most time ��l � d� until an answer is received.
Note that there is no additional delay because all neighbour components are at least
of the same level or even of higher level. A process will will send at most n � � test
messages one after the other such that the local MWOE is determined latest after time
s�
n�l�d� and after time s��n�l�d� all information are convergecast to the leader.

22 CHAPTER 4. MINIMUM SPANNING TREE

Sending messages change-root and one message connect takes at most additional time
n�l � d�. So after time �n�l � d� all MWOEs of all level k components must have
been determined and due to the message connect these components are merged with
each other or absorbed. Hence latest after time c�k � ��n�l � d� all components will
have progressed to level k � � if c 	 � is chosen. �

Communication Complexity

The analysis, similar to the synchronous case, divides messages into two groups. Mes-
sages test which are answered by a reject message belong to the first group. A rejected
test message, which was sent along �p� q� by process p, implies that p and q belong to
the same component. Therefore p will send a test message which will be rejected at
most once along an incident edge. Hence, O�E� messages of the first group are sent
during the algorithms execution.

The second group counts the accepted test messages, initiate messages, report mes-
sages and change-root messages. Every node of the component will receive in each
level at most one accepted test message because it tests its adjacent edges one after
the other in increasing order according to the weight of edges. Further each node of a
component receives at most one initiate and one change-root message. Each initiate
message will be replied by one report message. Then for a component C the number of
messages, which are sent during its existence (which is until it is combined with other
components), is O�jCj� where jCj denotes the number of processes that belong to C .
Thus the total number of messages that belong to the second group is proportional toP

C jCj. This can be transformed to

log nX
k��

X
C�level�C��k

jCj

where level�C� denotes the components level. All level k components consist out of a
distinct set of processes. Hence for each level k

X
C�level�C��k

jCj � n

which implies a total of O�n log n� messages of the second group. Therefore the
algorithm needs to send O�n logn� jEj� messages.

����� The Detailed Asynchronous GHS Spanning Tree Algorithm

In the following a detailed description of the asynchronous GHS-spanning-tree is
given. It includes a description of the different messages and the possible states of
edges known by the adjacent processes. The algorithm is described in the way it was
also implemented and later animated inside LYDIAN.

Messages�

4.1. THE GHS SPANNING TREE ALGORITHM 23

� Initiate: An initiate message is broadcast throughout a component, starting from
the leader, along the edges of the component’s spanning tree. The message
triggers processes to determine their local MWOEs.

� Report: A report message convergecast information about minimum-weight
edges back towards the leader.

� Test: A process sends to its neighbour a test message when it wants to find out
whether both belong to the same component. This is going to happen when
nodes look for their local MWOE.

� Accept/Reject: These messages are used for responding on a test message. The
process sends an accept message when the sender is in a different component
and a reject message otherwise.

� Change-Root: After determination of the MWOE the leader of a component
sends this message to the process which is incident to the MWOE and belongs to
the same component. This process will attempt to combine with the component
on the other side of the MWOE.

� Connect: This message is used when a process attempts to combine its com-
ponent with the component of its adjacent process along the MWOE. If two
connect messages were sent along the MWOE it means that a merge operation
is performed such that the node along the MWOE with higher UID becomes
the new leader. Otherwise the component that sent the connect message will be
absorbed by the other.

State of edges

� Branch: An edge in state branch is associated to be an edge along the MST.

� Rejected: An edge in state rejected is determined not to be an edge of the MST
since it connects a process with a neighbour of the same component.

� Basic: An edge in state basic is an edge which have not been classified in one
of the above categories.

The Algorithm

Initially all processes are level 0 components.

1. Finding the MWOE:

Leader of a component: starting a new phase

send initiate messages containing information about components id (also
called core) and level along its MST edges (edges in state branch).

24 CHAPTER 4. MINIMUM SPANNING TREE

as long as their exists edges in state basic (edges that have not been clas-
sified yet) and test messages along these edges are replied by a reject
message, send a test message along the edge of minimum weight in state
basic in order to find the local MWOE

wait for the convergecast of information of local MWOEs along MST
edges

Processes: on receiving a message initiate

pass initiate message to all other MST edges

as long as their exists edges in state basic and test messages along these
edges are replied by a reject message, send a test message along the edge
of minimum weight in state basic in order to find the local MWOE

wait until all sent messages have been replied and compute out of this
information the local MWOE

reply this information in form of a report message to parent process

Processes: on receiving a message test

if process and sender have the same component id

 send reject

if process and sender don’t have the same component id
and level�process� 	 level�sender�

 send accept

if process and sender don’t have the same component id
and level�process� � level�sender�

 delay answer until level(process) 	 level(sender) or both will have the
same component id

2. Determine the new leader of the component

Leader: having been answered all initiate and test messages

if there is no MWOE
 the algorithm is finished

otherwise send a change-root message to the process that belongs to the
component and is incident to the MWOE

Processes: on receiving a message change-root

if process is the target process of this message

send a connect message along the MWOE

if a connect message along the MWOE was received before (this
is the case if this edge is already marked as a MST edge) and
UID(process) � UID(sender)

 start next phase as the leader of the merged component

mark the MWOE as a MST edge

4.2. ANIMATION OF THE GHS SPANNING TREE ALGORITHM 25

else pass message along the minimum weight edge (edge which leads to
the MWOE)

Processes: on receiving a message connect on edge e

if the component of the sender has a lower level

 absorb this component by sending message initiate

else if the state of e is basic

 delay decision until it is clear whether e is also a MWOE of this com-
ponent.

else if UID(process) � UID(sender)

 start next phase as the leader of the merged component

��� Animation of the GHS Spanning Tree Algorithm

The structure of this animation relies on the general structure introduced in chapter 2.
All proposed views (Basic View, Communication View, Causality View, Process Step
View and Process Occupation View) are implemented. A description of the animation
ideas for each view is given in the following.

Basic View

The basic view (cf. figure 4.2) shows the communication graph of the network which is
at the same time the graph for which a MST should be computed. Nodes and edges are
coloured according to their states. Messages are shown by arrows which are pointing
from sender to receiver and are resizing along this edge. Each message is represented
by a different colour. If more than one messages are sent along a link the arrow repre-
senting these messages will start flashing between the colours of the sent messages. In
the following the colouring and shapes of the animation items is listed:

� Nodes: All nodes are by default a yellow circle. Each node has a unique identi-
fier which helps to recognize this node in other views. If a node becomes leader
of a component then it changes its colour into red. A leader of a component
which tries to combine along one of its adjacent edges with another component,
changes its colour into orange. This way it shows that it is not decided whether
this node will also be leader of the combined component. A node coloured in
orange will be coloured yellow again when this node receives a message initiate.
This means there must exist another leader of the component. Hence this node
cannot represent the leader any longer. A red node v will be coloured yellow
when an adjacent node received a message change-root sent by v.

� Edges: The default shape of all edges is a black polyline connecting two nodes.
An edge will be changed into a thick red polyline when it was determined as a
tree edge of the MST. During the combination process of two components, the
edge connecting these components is shown as a thick red dotted polyline. The
combination process is finished when an initiate message is sent along this edge
such that this edge changes into a solid thick red polyline.

26 CHAPTER 4. MINIMUM SPANNING TREE

Figure 4.2: Basic view of the GHS minimum weight spanning tree animation

� Messages:

� Accept: This message is coloured light green. It shows the relation to
message reject, but is still easy to distinguish from the dark green colour
of reject.

� Connect: This message is coloured red because of the idea that this edge
will later be a tree edge of the MST and tree edges are always coloured
red.

� Change-Root: This message is coloured violet. As this message is sent
after a sequence of blue report messages and will cause a red connect mes-
sage, a colour between red and blue was selected.

� Initiate: This message is coloured black because it is sent always along red
tree edges such that a good contrast is guaranteed.

� Reject: For this message a dark green was chosen as it shows the relation
to accept and is distinguishable from the light green.

� Report: The colour for this message is blue.

� Test: This message is coloured in magenta.

Communication View

The communication view counts for each node all messages that have been sent by
this node. It also shows the average number of messages that have been sent by a

4.2. ANIMATION OF THE GHS SPANNING TREE ALGORITHM 27

process. Although the message size is constant, the message size is displayed below
every process. For the initialization of this view the maximum possible number of
messages is computed in order to guarantee a nice layout.

A process sends at most � � log n test messages because in every round a process
sends test messages as long as there are non-tree edges which do not belong to the same
component. The number of sent accept messages is in the worst case � log n, while
the number of reject messages is bounded by �. If in every round a node has to send
initiate to all its neighbours then additional � log n messages are sent. In each round
one additional message for change-root, connect and report has to be considered. This
results in a total cost of logn� � logn� �� � � messages.

Causality View

The causality view appears as for all animations except from the colouring of the
arrows. A relation between two processes is shown, when a message was sent from
one process to the other. If a process receives a message it updates its local clock by
taking max�send tm� local tm� � � as the new value, where send tm denotes the
local time of the sending process when the message was sent while local tm denotes
the current local time of the receiving process. An arrow will point from the row of
the sending process at send tm to the row of the receiving process at the new value
of local tm. The colouring of the arrows was inspired by the idea that the user should
be able to consider with each relation a component. Therefore the following colouring
strategy was chosen:

� initiate and report messages are coloured always in the colour associated with
the leader of the component. Note that with each node a colour is associated.
This colour is the same for all views, but two nodes might have associated
the same colour which results from the animation program having no previous
knowledge about the number of processes.

� test, reject, accept, change-root and connect messages are coloured in the colour
associated with the sender.

Process Step View

This view looks the same as in all other animations. A user can click on one node in
the basic view and will see inside the Process Step View information about latest state,
event, time and local clock. The user can also retrace a sequence of events by clicking
inside this views on buttons “Previous Event” or “Next Event”.

Process Occupation View

The Process Occupation View shows in real time how long a process was busy with
determining MWOEs or being leader of a component. In order to clarify the sequence
of messages of kind change-root and connect which are used to determine a new leader,
arrows are displayed for each such message. The arrow is coloured in the colour
associated with the receiver pointing from senders row at sending time to receivers

28 CHAPTER 4. MINIMUM SPANNING TREE

row at receiving time. The bars showing the process occupation are formed in the
same way as for other animation and coloured as the associated process is coloured.

Chapter �

Resource Allocation

The heart of the resource allocation problem is about resolving conflicts between pro-
cesses in a distributed system. Usually processes share common resources e.g. a
shared memory where only one holder of the resource should be able to access the
resource. Thus the problem can be described by a finite set of resources and a finite set
of processes that compete for accessing their resources. Any solution of the problem
is required to guarantee:

� mutual exclusion: no resource may be accessed by more than one process

� no starvation: as long as processes do not fail every process which is trying to
access the resource will succeed in finite time.

In the following three algorithms are described which solve the resource allocation
problem for an asynchronous message-passing network model. In section 5.1 the din-
ing philosopher problem will give a formal description for the resource allocation prob-
lem. The algorithms introduced in section 5.5 and section 5.7 assume an initial graph
colouring algorithm. Therefore in section 5.4 an algorithm using randomization is de-
scribed which colours the graph with at most degree of the graph�� different colours.
The analysis uses the following convention: l denotes the upper bound given for the
time that any process task needs to proceed and d denotes the upper bound given for
the time that any message needs to traverse on a link i.e the time between sending
event and receiving event of a message. Further n denotes the number of processes, D
the diameter of the graph and � the degree of the graph.

��� The General Dining Philosophers Problem

A formal description of the resource allocation problem for an asynchronous message
passing system is given by the dining philosophers problem. It deals with a number of
philosophers dining together. Each philosopher shares forks with other philosophers
and is allowed to eat when possessing all shared forks. Again a solution to this problem
must satisfy starvation freedom and mutual exclusion.

Let G�V�E� be the communication graph of the modeled network, for which V
denotes the set of processes and E the set of links between processes of V . Then,

30 CHAPTER 5. RESOURCE ALLOCATION

every process p � V represents a philosopher, who works independently and may
request resources at any time. Further for every resource which is shared between two
processes p and q there exists a link �p� q� � E and vice versa. Thus, every process can
request directly resources from its neighbours. A resource is represented by a token
called fork. A process owns the resource if and only if it owns the fork. It can transmit
its own fork to the neighbour with which it shares the resource. The fork will be sent
via their common link.

It is assumed that every process can be in one of the following three states: think-
ing, hungry and eating. A process in state thinking is not interested in its neighbours
resources and sends requested forks to its neighbours. A process will switch from
state thinking to hungry when it wants to access its resources. Then it tries to collect
all forks of its neighbours. When a process in state hungry collected all forks from
its neighbours it will start accessing its resources. It changes to state eating in which
it keeps all forks until it finishes with accessing the resources and changes to state
thinking again.

The main problem is how to resolve starvation scenarios for two hungry processors
competing for a resource. The following algorithms are solutions with different quality
concerning time complexity and fault tolerance. It should be noted that that in the
described case exactly two processors can share a resource, but the more general case
where more than two processors share a resource can be extended from the above
description.

��� The Ricart and Agrawala Algorithm

The algorithm of Ricart and Agrawala [13] resolves conflicts between processes by
sending messages with time stamps. For this purpose a process which changes its state
to hungry sends messages, called request, to all its neighbours. A request message
includes information about the unique identifier of the sender and a time stamp. The
time stamp is the local clock of the sending process when the message was created.
It is increased when a message request is sent or received. Before sending a set of
request messages the local clock is increased by one, while on the receiving of request
the local clock will be set to

new value 	� max�old value� received value� � ��

The time tuple �local clock� unique identifier� gives a lexical order of events. Although
in real time the events might occurred in a different order the received lexical order of
events results in an equivalent execution. Hence on the receiving of request a pro-
cess, which is competing with another process for a resource, can distinguish whether
receiver or sender were requesting first for a Resource assuming the lexical order of
events.

Therefore, a process p that receives a message request from process q does the
following depending on its state:

� If p is thinking, then it sends a message fork to q. Sending a fork message
symbolizes that a process gives access to a resource and guarantees not to access
the resource until it received itself a message fork.

5.2. THE RICART AND AGRAWALA ALGORITHM 31

� If p is hungry, then it is competing with q for the same resource. This means that
p sent before a message request to q, so p compares by using the lexical order of
events which process sent its message earlier. If p sent its message later then it
replies by sending message fork. Otherwise it delays sending message fork until
it finished with accessing its critical section.

� If p is eating it also delays sending message fork until it finished with its critical
section.

A process may access its critical section, when it received a message fork from all its
neighbours. When it is finished it sends to all neighbours which requested to access a
resource messages fork and changes its state to thinking.

Correctness

The algorithm works correct if it guarantees mutual exclusion, progress and starvation
freedom. These properties are shown by following lemmas.

Lemma 5.1 The algorithm guarantees mutual exclusion.

Proof. Let processes p and q be two arbitrary processes which share a resource. As-
sume that p and q were in their critical section at the time.

In order to gain access to their critical section processes p and q sent request messages
to all their neighbours. In particular they sent request messages to each other. Let tp
denote the local clock time when process p sent its request messages and let tq denote
the local clock time when process q sent its request messages. Due to the lexical order
of time either tp � tq or tp � tq is valid.

If tp � tq was valid then pwould have delayed replying the request message of process
q until p finished accessing its critical section. This implies that tp � tq was valid.
However, if tp � tq was valid q would have delayed replying the request message of p
until q finished with accessing its critical section, leading to a contradiction that both
processes were at the same time in the critical section. �

Lemma 5.2 The algorithm guarantees progress.

Proof. Assume there is a point in the execution in which some processes are hungry,
and after this point no process can enter its critical section. Then the system will reach
a state in which no messages are sent any longer and no process changes its state. Let p
be a process in state hungry with smallest request time. All neighbours in state thinking
must have answered the request messages of p with sending messages fork. As p is the
process that sent its request messages with the smallest time tuple, also all processes
in state hungry will send messages fork to p. Thus p will receive fork messages from
all its neighbours and will change its state to hungry. This is a contradiction to the
assumption that no progress happens. �

Lemma 5.3 Every process is able to access its critical section.

32 CHAPTER 5. RESOURCE ALLOCATION

Proof. Receiving message request will make the local clock of a process at least
one unit greater than the time stamp of message request. Therefore, a process which
sends request messages to all its neighbours will loose at most once a competition
with each neighbour while it is trying to access a resource. Assume some processes
never manage to enter their critical section. Then, there must exist for these processes
at least one neighbour which requested the shared resource before, and also cannot
enter its critical section. Let C 	� p�� p�� � � � � pl be the longest chain of neighbouring
processes �pi� pi��� such that all those processes never manage to enter their critical
section and pi�� prevents pi from using its resource. Each process pi requested the
resources from its neighbours at local clock time ti. Thus t� � t� � � � � � tl must
hold. All neighbours of pl which requested earlier for their resource will succeed with
entering their critical section since they are not part of C . Therefore, pl will be able
to enter its critical section because it will receive from all neighbours which sent their
request messages earlier a message fork. Receiving all messages fork from neighbours
that sent their messages later than pl is guaranteed by the algorithm. This leads to a
contradiction due to the assumption that pl never manages to enter its critical section.

�

Time Complexity

While a process is competing for a resource it will loose at most once a competition
with each of its neighbours. The longest possible chain of neighbours that prevent
each other from accessing a resource is n. Therefore a process has to wait in the worst
case until all other n� � processes entered once their critical section and received all
messages fork. This gives a time bound for accessing a resource of O�n�l � d��.

Message Complexity

In order to access the critical section a process needs to send at most d request mes-
sages and receives at most d fork messages. This gives a total communication com-
plexity of O�d� for each access of a critical section.

Fault Tolerance

A failure in the critical section of a process might stop all other processes from being
able to access the critical section. Therefore, this algorithm does not guarantee any
fault tolerance.

��� Animation of the Ricart and Agrawala Algorithm

The animation consists out of the views which were proposed in chapter 2. For each
view a description of its usage is given in the following:

5.3. ANIMATION OF THE RICART AND AGRAWALA ALGORITHM 33

Figure 5.1: Basic view of the Ricart and Agrawala algorithm

Basic View

The basic view (cf. figure 5.1) shows the communication graph of the network in
which each edge also represents a shared resource. Initially all nodes are shown as
yellow circles. As the animation proceeds nodes change their colour to

� green when they get interested in a resource

� red when they managed to access their critical section

� yellow when they left their critical section

The unique identifiers used for the lexical ordering of events are displayed for each
node. They also help to identify nodes in other views.

The edges appear as black coloured polylines by default. If two nodes are compet-
ing with each other for a resource then the edge changes into a red arrow. The arrow
points to the node which may access a resource first.

For a message which is transmitted on a link an arrow will be shown until the mes-
sage is received. The arrow points from sender to receiver and continuously changes
its size along the edge connecting sender and receiver. A request message is coloured
green, while a fork message is coloured blue. If both messages are sent at the same
time one arrow will be shown which will flash between both colours.

34 CHAPTER 5. RESOURCE ALLOCATION

Communication View

The communication view counts for each process the number of request messages
which are necessary when trying to collect all neighbouring resources. When a process
changes its state to hungry the number of sent messages will be set to zero and the
process starts with counting request messages again. A mark shows the maximum
number of messages which were necessary when trying to access all its resources.
The average process shows the average for request messages sent by all processes
for accessing once a resource. A mark shows the maximum average value during
the execution. It will be easy to observe that the number of sent request messages is
proportional to the degree of a process. Below each bar of a process the bit complexity
of a message is shown. The bit complexity of messages is interesting for this algorithm
as the user can observe the logarithmic increase of request messages. The bars and
message sizes are coloured according to the colour associated with each process.

Causality View

The causal relations between processes are shown in form of arrows pointing from
sender of a message to the receiver. It starts at the local clock time of the sender when
sending the message and ends at local time of the receiving process when receiving
the message. It should be noted that the local clock time for the causality view is
computed different from the local clock used for the time stamp of request messages.
On receiving a message the causality view’s local clock is set to

new value 	� max�old value� received value� � ��

The colouring of relations is realized by colouring all request messages in the asso-
ciated colour of the sending process while fork messages uses the associated colour of
the receiving process. This helps the user to see which relations were caused by each
other.

Process Step View

The process step view has the same appearance as in all other animations. A user
can click on one node in the basic view and will see inside the process step view
information about latest state, event, time and local clock. The user can also retrace a
sequence of events by clicking inside this view on buttons “Previous Event” or “Next
Event” (see also page 8).

Process Occupation View

The process occupation view shows for each process a bar for the period of time when
a process started to compete for its resources until the process left its critical section.
In order to distinguish how long a process needed to access its resources and to spend
inside its critical section, the bar is separated into two sections. The first section shows
the period which a process needs to receive access to all its resources and is coloured in
the associated colour of this process. The second section shows the access time inside
the critical section and is coloured in a lighter shade of colour than the first part.

5.4. � � � COLOURING BY LUBY 35

��� � � � Colouring by Luby

The � � � colouring problem is about associating a colour with each vertex of an
undirected graph such that two neighbouring vertices of the graph receive different
colours. A colouring algorithm can be used for the resource allocation problem by
solving which kind of resources a process can access initially. Then, a process holds
a fork when its determined colour is smaller then the colour of its neighbour and the
longest chain of processes that wait for other processes with higher priority is reduced
to � � � in the beginning. The algorithms in section 5.5 and section 5.7 will use the
��� colouring in order to guarantee each process a quicker access to its critical section
and gain a better fault tolerance.

The Algorithm

The following randomized algorithm is based on the algorithm by Luby described for
a shared memory model [9] and implemented for a message passing system.

It is assumed that every vertex of the undirected graph is associated with a process
and every edge with a link. Each process p initially knows the set of colours

avail�p�� f�� � � � � deg�p� � �g

and the set of neighbours which have not decided for a colour

neighb�p�� f�� � � � � deg�p� � �g�

The algorithm proceeds in phases and finishes when all processes determined a colour.

1. Process p starts with a new phase. With probability �
� , p chooses a random

value temp�p� out of the set avail�p�, otherwise it chooses temp�p� 	� �. It
sets color�p� 	� temp�p� and sends a colour message including color�p� to all
neighbours in neighb�p�.

2. When p receives a colour message it compares the received value with color�p�.
If these values are equal then color�p� will be set to �.

3. After receiving colour messages from all neighbours in neighb�p�, p will either
send confirm messages to all neighbours if color�p� holds or it will send confirm
messages to all neighbours in neighb�p�. With each confirm message the current
value color�p� is sent.

4. When receiving a confirm message p will delete the sender from neighb�p� if
the value of the message is greater than �. Then, it will also delete the value
from the set avail�p�.

5. After receiving confirm messages from all neighbours neighb�p� p will start
with the next phase if colour�p� � � is determined.

6. Process p will terminate if colour�p� � � is determined and from all neighbours
a confirm message with value greater than zero is received.

36 CHAPTER 5. RESOURCE ALLOCATION

Correctness

The algorithm works correct if all processes can determine a colour which is different
from all neighbouring processes.

Lemma 5.4 For all processes p , Pr�color�p� �� �� 	 �
	 at the end of each phase.

Proof. Fix an arbitrary process p. Let t � javail�p�j. At the end of a phase

Pr�color�p� �� ��

�
X

c�avail�p�

Pr�color�p� � c j temp�p� � c� Pr�temp�p� � c�

�
�

�t

X
c�avail�p�

��� Pr�color�p� � � j temp�p� � c�

�
�

�
�

�

�t

X
c�avail�p�

Pr�color�p� � � j temp�p� � c�

�
�

�
�

�

�t
P r��q � neighb�p� 	 temp�q� � c j temp�p� � c�

	
�

�
�

�

�t

X
c�avail�p�

X
q�neighb�p�

Pr�temp�q� � c j temp�p� � c�

As q and p choose their values independently

Pr�color�p� �� �� 	
�

�
�

�

�t

X
c�avail�p�

X
q�neighb�p�

Pr�temp�q� � c�

�
�

�
�

�

�t

X
q�neighb�p�

X
c�avail�p�

Pr�temp�q� � c�

	
�

�
�

�

�t

X
q�neighb�p�

�

�

and because of jneighb�p�j � javail�q�j � t

P r�color�p� �� �� 	
�

�

�

From lemma 5.4 it can be concluded that in each phase 	 �
	 processes are expected

to decide for an colour. Hence all processes are expected to decide after O�n logn�
phases. It remains to show that all neighbouring processes are of different colours.

Lemma 5.5 After the end of the algorithm, all pairs of neighbours �p� q� have deter-
mined different colours.

Proof. Assume for a process p the existence of q � neighb�p� such that color�p� �
color�q� � �. Then, p and q decided for the same value in the same phase. Otherwise

5.5. THE CHANDY AND MISTRA ALGORITHM 37

if p had determined a colour value earlier than q, p would have confirmed color�p�
such that the q would have removed color�p� from avail�q�. Therefore, q could have
never decided for a value which equals color�p�. For the same reason q would not
have determined a colour value earlier than p.

As color�p� � color�q� holds in phase k, also temp�p� � temp�q� must be valid. If
after the exchange of colour messages temp�p� � temp�q� holds, processes p and q
set color�p� � color�q� � � which leads to a contradiction. �

Time Complexity

In each phase a process which has not determined a colour will send colour messages
to neighbours, receive colour messages from neighbours, send confirm messages to
neighbours and receive confirm messages until it starts with the next phase or decides
for a colour. This will take time � ��d � l� such that according to lemma 5.4 the
algorithm is expected to terminate in time O�n�d� l� log n�.

Communication Complexity

In each phase every process sends at most �� messages. Further 	 �
	 processes are

expected to stop with sending messages at the end of a phase. Therefore an upper
bound for the expected total amount of messages is given by

�n
�X
k��

�

�

�k
� �n

�

��

	

�
�

�n

Hence a total of O��n) messages are expected until the algorithm terminates.

Animation

The purpose of this colouring algorithm is to give to a process a colour as an initial
phase of a particular algorithm that needs this colour. Therefore the functionality of the
colouring is of secondary interest and will only be symbolized by flashing the colour
of a process as long as no colour could be determined.

��� The Chandy and Mistra Algorithm

The algorithm by Chandy and Mistra [2] resolves conflicts by defining for every pos-
sible conflict a precedence. When two processes compete for a resource the one with
higher precedence may access the resource first. In order to receive a solution which
is fair these precedences will have to change dynamically.

Chandy and Mistra derive from the undirected communication graph, in which
edges represent shared resources between processes, a directed graph called prece-
dence graph. For each resource an edge of the precedence graph is directed from pro-
cesses with lower precedence to processes with higher precedence. The precedences of

38 CHAPTER 5. RESOURCE ALLOCATION

the graph are chosen such that it is always possible to distinguish at least one process
from all other processes i.e. this process can enter its critical section. This is ensured
by the existence of at least one process which has higher precedence for all its shared
resources. A process with this property is called sink. Its existence is guaranteed when
the precedence graph is always acyclic. By changing directions of edges it is possible
to change the precedences dynamically. This must happen in a way that the precedence
graph stays acyclic, so progress, fairness and mutual exclusion is guaranteed.

Let H denote the precedence graph for a given communication graph. Then, it
is enough to assume that each process has partial knowledge about H concerning
the precedences to neighbour processes. Consequently, for the implementation of H
Chandy and Mistra introduced forks which have the property to be either clean or dirty.
A fork will be cleaned if and only if it is sent to a neighbour process. A clean fork will
be dirty when it was used to eat i.e the holder of the resource entered the critical sec-
tion. After use it remains dirty until it is sent to a neighbour process. The respective
precedence graph H can be defined in the following way:

For all pairs of processes p and q which share a common resource,

�p� q� � H
 one of the following statements is true:

1. p holds the fork for the resource and the fork is clean

2. q holds the fork for the resource and the fork is dirty

3. the fork for the resource is in transit from q to p

H is initialized acyclic for example by the colouring algorithm in section 5.4. It will
remain acyclic if after use of the critical section a process reverse all adjacent prece-
dences in one step. All edges are now directed from this process to neighbour processes
and therefore no additional cycles occur.

The request of forks is realized by request tokens. For each fork there exist one
request token such that only the holder of the request token can request a fork. A
hungry process requests a fork by sending the request token to the owner of the desired
fork. Then, a process is not interested in accessing its resources when it holds a request
token but not a fork. Further a process which holds a request token and the respective
fork has an outstanding request for a token.

The Algorithm

1. The algorithm is initialized by an acyclic precedence graph H and all processes
with lower precedence own dirty forks while processes with higher precedence
own request tokens. All processes are thinking i.e they are not interested in their
resources.

2. A process which becomes hungry will send all its request token to neighbour
processes and wait until it received all forks.

3. A process which received all forks will change its state to eating.

5.5. THE CHANDY AND MISTRA ALGORITHM 39

4. A process which leaves the critical section changes the state of all its forks to
dirty. Then for all held request token the respective fork is sent to neigbour
processes.

The above steps assume following rules:

� Receiving a request token for fork f : If processors state is different from eating
and f is dirty then f will be sent to the requeting processor. If processors state
was also hungry then the request token will also be sent back.

� Receiving a fork f : The state of f will be set to clean.

Correctness

The algorithm is correct if mutual exclusion und starvation freedom i.e. fairness is
guaranteed. The mutual exclusion property follows directly from the acyclic prece-
dence graph. Thus it remains to show that H is always acyclic and every process
manages to eat.

Lemma 5.6 The precedence graph H is acyclic.

Proof. Initially H is guaranteed to be acyclic by definition. An edge e of H will
change the direction only if the accordant fork changes from clean to dirty (sending
a fork will automaticly clean it such that the accordant edge keeps its direction). A
process p will change the state of a fork if and only if it is leaving the criticical section.
Then, it holds all forks shared with neighbour processes and changes the state of all
forks to dirty. Hence, all indicent edges point away from p and therfore it cannot cause
a cycle. �

Lemma 5.7 Every process is able to enter the critical section.

Proof. Let the depth in H of any process p be defined as the maximum number of
edges along a path from p to another process without predecessor. The proof will
show by induction that a process of depth k will eventually eat if predecessors at depth
k � � can eat.

k�0: Process p tries to access its resources and is of depth � i.e.there are no predeces-
sors. For each fork which is needed by p one of the following is true:

1. The fork is clean and hold by p. Hence p will keep it until entering the critical
section.

2. The fork is in transit from neighbour process q to p.

3. The fork is dirty and a neighbour process q holds the fork. Process q will receive
a request token sent by p. Since q has lower precedence a request token is
streight replied by sending the fork. The only exeption is when q is eating.
Then, process q delays sending the fork until it left the critical section.

40 CHAPTER 5. RESOURCE ALLOCATION

Therefore p will receive latest after time ��d� l� all forks and manages to eat.

k-1 � k: Assume all processes at depth k � � will manage to eat and process p is of
depth k when it tries to access its resources. Each fork f which is tried to be collected
by p knows the states dirty or clean.

case f is clean: If f is hold by p it will remain by p until leaving the critical section.
Oherwise, it is held by a neighbour q with higher precedence. Process q will manage
to eat and will have to give p higher precedence to the fork. Hence on a request the
fork will be sent to p and remain there until p can eat.

case f is dirty: If f is hold by p it might be requested by a process with a higher
precedence and changes its state to clean and similar to the above case p can receive f
in state clean. Otherwise p has higher precedence and will succeed with requesting a
fork latest in time ��d� l� (similar to the case k � �).

Therefore p will access in finite time all forks and manages to eat. �

Time Complexity

From the correctness proof it can be concluded that a process at depth k will have
to wait for forks from neighbours with lower precedence time ��d � l� plus the time
neighbours of depth� k�� needs to be able to eat. This results in following recursion:

T �k� � T �k � �� � ��d� l�

� ��k � ���d � l�

Although the acyclic graph is initially of depth �, the worst case depth is n due to
transformations of H . Therefore, a process must wait time O�n�d� l��.

Communication Complexity

A process sends at most one request token to each neighbour and receives from each
neighbour at most one fork. Hence O��� messages are necessary until a process can
access the critical section.

The size of messages is always constant.

Fault Tolerance

If a process at depth � fails processes at depth n might never get access to their critical
section. Hence this algorithm does not guarantee any fault tolerance.

Conclusion

The only real improvement to the algorithm by Ricart and Agrawala is the constant
size of messages while message complexity and time complexity stays the same. Nev-
ertheless one would expect better results by the algorithm of Chandy Mistra when the
number of conflicts is low. Then, a process might not need to request all forks because
it might still hold some dirty forks. The algorithm of Ricart and Agrawala assumes

5.6. ANIMATION OF THE CHANDY AND MISTRA ALGORITHM 41

sending requests to all neighbours. Hence a lower amount of traffic and shorter access
time to the critical section could be expected by the algorithm of Chandy and Mistra.

��� Animation of the Chandy and Mistra Algorithm

The animation consists out of two parts. The introductory part shows how processes
determine an acyclic graph by performing the colouring algorithm by Luby(see sec-
tion 5.4). The main part shows the algorithm by Chandy Mistra. Due to asynchrony
both parts are not necessarily separated from each other. The user might observe that
some processes already try to access their resources while other still try to determine
a colour.

The animation is built according to chapter 2. Except from the basic view all other
views are related only to the second part of the animation. A detailed description for
each view is given in the following:

Basic View

Initially the basic view (cf. figure 5.2) shows the communication graph of the network.
All processes appear in the shape of yellow circles while links are shown as black
polylines. When processes wake up they begin with the colouring phase. As long as a
process has not decided for a colour it is continuously flashing colours between a dark
and a light blue. When a colour is determined the colour of a process will change to
yellow again.

The colouring phase for a process p is finished when all neighbour colours are
received. Hence p will initialize the partial knowledge of the precedence graph by
taking a fork shared with neighbour q if colour of p is smaller than colour of q and
q did not request this fork before. Otherwise p will take a request token. This is
visualized by showing an red coloured arrow which points to the holder of a fork. The
arrow appears dotted if the fork is dirty (which is initially the case) or solid if a clean
fork is hold.

In the main phase of the animation processes are coloured according to their states:

� A process will be coloured yellow when it is not interested in accessing the
critical section.

� If a process is trying to access all its resources it will be coloured green.

� A red colour will be applied if a process is inside the critical section.

Similar to the initialization for each edge a red solid or dotted arrow will indicate which
node is the holder of the fork. If a fork is in transit from one process to another this
will be shown by a solid arrow which is continuously resizing its length. Sending a
request token is indicated by a blue arrow continuously resizing its length. It should
be noted that a fork and a request token can be sent to a process on the same link at
the same time. The user will recognize this by observing a resizing arrow which is
flashing between red and blue.

42 CHAPTER 5. RESOURCE ALLOCATION

Figure 5.2: Basic view of the Chandy and Mistra algorithm

Communication View

Analogous to the animation of Ricart and Agrawala (see section 5.3) the communi-
cation view counts the number of request tokens which a process needed to send in
order to gain access to the critical section. When process p becomes interested in its
resources the number of sent request tokens will be initialized with zero. For each sent
request token p’s associated bar increases by one unit. A mark will indicate the max-
imum number of send request tokens among all attempts of entering once the critical
section. The average bar shows the average number of sent request tokens for access-
ing once the critical section. A mark will show the highest average value. All bars are
coloured according to the colours associated with each process.

The user will observe that the number of sent request token might strongly differ
between two attempts of accessing resources. However, the shown marks will indicate
that the maximum number of send messages is proportional to the degree of a process.

Causality View

The causality view shows causal relations given by send and receive events considering
the local time when events occurred. An arrow will point from sender to receiver
starting at local time of the sender and ending at local time of the receiver. The local
clock time of a process will be changed when a message is received. Then, the local
clock will be set to

new value 	� max�old value� received value� � ��

5.7. THE CHOY AND SINGH ALGORITHMS 43

The colouring of a relation depends on the occurred event. If a request token is sent
the animation colours the accordant relation by using the colour associated with the
sending process. If a fork message is sent the animation uses the colour associated
with the receiver.

Process Step View

As in all other animations a user can click on a process inside the basic view in order
to see inside the process step view information about latest state, event, time and local
clock. The user can also retrace a sequence of events by clicking inside this view on
buttons “Previous Event” or “Next Event” (see also page 8).

Process Occupation View

Similar to the animation of Ricart and Agrawala (see section 5.3) the process occupa-
tion view shows for each process the periods of time between switching to state hungry
and finisth eating. Each time period is indicated by a bar. Since a user might
also desire to distinguish between the period of trying and eating, the animation sepa-
rates the bar into two parts. The first part will be shown in the associated colour of a
process when it tries to access resources. The second part will use the same colour in
a lighter shade indicating that a processor eats.

��� The Choy and Singh Algorithms

The algorithms by Choy and Singh [3] are motivated by the aim of achieving a better
time complexity and fault tolerance than previous algorithms could guarantee. Hereby
the idea of using a ���-coloring conflict solution should reduce the maximum access
time. As described for the algorithm by Chandy and Mistra (see section 5.5) a � � �-
coloring will result in an acyclic precedence graph. In contrast to Chandy and Mistra
the precedences will remain static and hence reduce the maximum chain of processes
waiting for resources of neighbours with higher precedence to �. The problem that a
static precedence solution could hinder some processes entering their critical section
is avoided by a mechanism called double doorway. This will guarantee that processes
with lower precedence will loose at most once a competition with each higher neigh-
bour and consequently will not starve.

Doorways

A doorway is a separation mechanism between two areas e.g. rooms for managing
which processes are allowed to enter an area. Processes which passed a doorway at
time t will prevent neighbour processes entering the same area at greater time than t
until exiting the doorway. Thus a doorway guarantees for a process that after a certain
point in time no neighbours will access an area. However, it is still possible that in
spite of using a doorway neighbour processes will occur in an area, since moving from
one area to another will take some time.

44 CHAPTER 5. RESOURCE ALLOCATION

Asynchronous Doorway

An asynchronous doorway is implemented by requiring for each process p which de-
sires to enter the doorway to check neighbours states. Let Np denote the set of neigh-
bours of process p and Lpq the actual state of q known by p. If neighbour processes
q�� � � � � ql � Np have entered the doorway, p must wait until q�� � � � � ql will have exited
the doorway. The code for entering and exiting this doorway can be described as it is
shown in figure 5.3.

Doorway entry code:
��q � Np: wait until Lpq �� m��;
broadcast message m� to neighbours;

Doorway exit code:
broadcast a message different from
m� to neighbours;

Figure 5.3: Asynchronous doorway entry code

Note that process qi, � � i � l, will not block p after leaving the doorway even
if qi would try straight after leaving to enter the same doorway again. In the worst
case qi and p would both enter the doorway at the same time since p considers only
processes which passed the doorway before it started trying. For the same reason any
other neighbour process r cannot prevent p from passing the doorway when r passed
the doorway after p checked the state of its neighbours.

(1) (2) (3)

(4) (5)

Figure 5.4: Example of a process being successively blocked in the doorway by its neigh-
bours. The filled circles denote processes which have entered the doorway. Note that pro-
cesses which enter the doorway in (2) and (4) must have been waiting for some other processes
leaving the doorway.

The attempt of using such a doorway together with a � � �-colouring algorithm
for solving the resource allocation problem would lead to a solution where processes
might have to wait time which is exponentially in �. The reason is given by the pos-
sibility that a process p might successively be blocked by lower coloured neighbour
processes after p entered the doorway (see example of blocked processes in figure
5.4). Recursively a lower coloured neighbour q of p, can be blocked successively by
q’s lower coloured neighbours. Let T �c� denote the maximum time which a process
of colour c will have to wait. Assume every process with colour � � has exact � � �
neighbour processes with lower colour. Further let us assume an execution where each

5.7. THE CHOY AND SINGH ALGORITHMS 45

process will get successively blocked by its lower coloured processes. Then a process
with colour c will need time

T �c� � �� � ��T �c� �� � �� � ��c

and therefore

T ��� � �� � ���

until a process will be able to access its critical section.

Synchronous Doorway

A process which desires to enter a synchronous doorway is required to wait for a
situation in which all neighbours are outside the doorway. This is implemented by a
process checking states of neighbours before entering the doorway. If all states show
that no other process has entered the doorway the process will be able to enter itself.
The code for entering and exiting this doorway can be described as it is shown in figure
5.5.

Doorway entry code:
wait until ��q � Np: Lpq ��m��;
broadcast message m� to neighbours;

Doorway exit code:
broadcast a message different from
m� to neighbours;

Figure 5.5: Synchronous doorway entry code

Note that it is still possible that more than one processes passed the doorway at the
same time since all processes found their neighbours outside the doorway and therefore
were allowed to pass the doorway.

p

q r

Figure 5.6: Example of a graph structure where two processes q, r can hinder process p from
entering a synchronous doorway when either p or q will be inside the doorway.

Although a synchronous doorway allows no process to be successively blocked
inside a doorway it does not solve the dining philosopher problem fairly because some
processes might never be able to enter the doorway. Assume three processes p, q and
r using the graph structure of figure 5.6. It is possible that q and r will cooperate such
that at least one of them will be inside the doorway. Therefore process q waits until r is

46 CHAPTER 5. RESOURCE ALLOCATION

inside the doorway before exiting (this is possible since q and r are no neighbours and
thus will not prevent each other passing the doorway). and r will do the same before
it is exiting the doorway. Hence p will never be able to gain excess to the doorway.

Double Doorway

By using the previous described doorways for resource allocation either processes
could be blocked before entering the doorway (synchronous case) or while inside the
doorway (asynchronous case). On the other hand the usage of a static precedence
graph will need some further selection criteria for processes like even doorways. The
double doorway, a combination out of the previous described doorways, will prevent
processes from being blocked for long periods inside or outside the doorway and hence
lead to a solution of the resource allocation problem in which higher fault tolerance
and faster access time to the critical section can be achieved.

entry code of double doorway exit code of double doorway

code

entry

doorway

asynchronous

code

exit
based

colour

resolution

conflict

doorway

synchronous

code

exit

asynchronous

doorway doorway

synchronous

code

entry

Figure 5.7: A double doorway together with a static colour based conflict solution.

As shown in figure 5.7 the entry code consists out of the synchronous doorway
entry code embedded in an asynchronous doorway entry and exit code. Processes
that wish to enter the double doorway cannot forever be hindered from entering by
neighbour processes as the asynchronous doorway will allow a process to proceed
latest when all neighbours inside the doorway have passed the asynchronous doorway
exit code. Further the asynchronous doorway guarantees that process p which passed
the asynchronous doorway will be blocked from entering the synchronous doorway at
most once by each neighbour. If a process q could block p once more after passing
the synchronous doorway it would try to enter the asynchronous doorway while p was
still trying to enter the synchronous doorway. This leads to a contradiction to the
property of the asynchronous doorway which will disallow q to pass until q passed
the asynchronous doorway exit code. Also the problem of successive blocking after
passing the doorway will be avoided by the double doorway using the synchronous
doorway entry code. Hence no neighbour process can pass the double doorway after
a process is known to be inside the doorway and thus neighbour processes cannot
successively block this process.

5.7. THE CHOY AND SINGH ALGORITHMS 47

����� A Solution with Failure Locality �

From the previous described double doorway one could gain directly an algorithm for
solving the resource allocation problem. However, the double doorway can be opti-
mized concerning which neighbours are blocked at which kind of doorway and there-
fore save unnecessary blocking of processes and messages by the implementation. In
the synchronous doorway one wishes to avoid that higher coloured processes will not
starve because of lower coloured processes when using the static precedence graph. On
the other hand the asynchronous doorway will guarantee that lower coloured processes
will not forever be blocked by higher coloured processes passing the synchronous
doorway. As a result the synchronous doorway will block only lower coloured neigh-
bours while the asynchronous doorway will block only higher coloured neighbours.

wait until
h�q with q � Np and colour�q� � colour�p� �

broadcast m� to all neighbours
Lpq �� m�i;

wait until

broadcast m� to low neighbours
h�q � Np � forkpqi;

h�q with q � Np and colour�q� � colour�p�:
wait until Lpq �� m�i;

broadcast m� to high neighbours

release forks

wait until hungry

Thinking

Wait1

Wait2

Collect

Eat

Figure 5.8: The state diagram of an algorithm with fault tolerance �

The state diagram of figure 5.8 shows a solution in which the optimized double
doorway is used. The solution uses states thinking and eat as in previous versions. A
process in state thinking is not interested in its resources and will not compete with
other processes until it wants to access its critical section, while a process in state
eat has access to all its resources and is inside its critical section. Due to the double
doorway the hungry state of the standard resource allocation solution is split in three
states:

� In state wait1 a process waits for its lower coloured neighbours inside the asyn-
chronous doorway (in state wait2) to exit the asynchronous doorway (meaning
neighbours change their state to collect).

� If a process is in state wait2 a process will wait until no higher coloured neigh-
bours are inside the double doorway (no higher coloured neighbour is in state
collect). Process p of state wait2 blocks higher coloured neighbour processes
from entering the asynchronous doorway because p sent message m� to all those
neighbours before it had changed its state from wait1 to wait2.

48 CHAPTER 5. RESOURCE ALLOCATION

� In state collect process p tries to receive access to its resources. By sending
message m� to all neighbours before entering state collect p ensures that on
the one hand all processes know about p requesting its forks and on the other
hand lower coloured processes will be blocked from passing the synchronous
doorway. When p in state collect received all forks it signals all lower coloured
neighbours by sending m
 that they are not blocked any longer and p starts
eating.

When process p receives a message mi by neighbour q, it will update its local state
variable Lpq 	� mi. Since message m� also equals a request message, p in state
thinking, wait1 or wait2 would also send a message fork to q if forkpq � �. In state
collect pwill only send message fork if forkpq � � and colour�p� � colour�q� holds.
When p is in state eat it will send messages fork to neighbour q � Np after leaving its
critical section if forkpq � � and Lpq � m� is valid. A process p which sends a fork
to neighbour q sets forkpq � �.

Correctness

The algorithm is correct if it satisfies mutual exclusion and fairness which will be
shown by lemma 5.8 and lemma 5.10.

Lemma 5.8 The algorithm of Choy and Singh guarantees mutual exclusion.

Proof. With every resource a unique fork is associated. As a process will enter its
critical section only if it possesses all forks which are shared with neighbours, none of
the neighbour processes will enter the critical section at the same time. Also a process
inside its critical section will keep all forks until it finished with eating. Thus mutual
exclusion is guaranteed. �

Lemma 5.9 will show that any process in state collect will reach in a finite number
of steps the critical section. Using this result lemma 5.10 will show, that a process in
any state finally will succeed with entering its critical section.

Lemma 5.9 Processes which managed to enter state collect will manage to eat in time
O���d � l��.

Proof. A process that changed to state collect will send message m� to all lower
coloured neighbours in order to signal them not to enter state collect. Hence, a process
has at most �d�l� time units to change to state collect after a higher coloured neighbour
sent m�. Thus, process p of state collect and colour c can be sure that after time c�d�l�
for any path �p � q�� � � � � ql�, in which qi�� is lower coloured neighbour of qi in state
collect, no other lower coloured neighbour in fq�� � � � � qlg will reach state collect. The
longest of those paths will decrease by one latest after time ��d � l� since the lowest
coloured processes will directly manage to access their resources after requesting them
and processes inside the critical section will transmit forks after time �d � l�. By
induction p will need time ��c � ���d � l� until it can access the critical section. As
c � � holds a time bound of O���d � l�� can be concluded. �

5.7. THE CHOY AND SINGH ALGORITHMS 49

Lemma 5.10 The algorithm of Choy and Singh guarantees starvation freedom.

Proof. A process in state wait1 could be prevented to proceed to state wait2 only by
lowered coloured neighbours in state wait2. Further a process in state wait2 would
only be hindered by processes in state collect of higher colour. Processes hindering
lower coloured neighbours to proceed to state collect will not be able to enter state
wait2 until the blocked lower coloured processes will have managed to proceed to
state collect due to the asynchronous doorway. Hence, if a process of state collect will
mange to eat all other processes will manage to eat and no process can starve. This
was the result of lemma 5.9. �

Time Complexity

From lemma 5.9 it is known that a process in state collect will need time O���d � l��
until it will manage to eat, but it is not shown how long a process will need to pass the
double doorway.

Lemma 5.11 A process in state wait2 will need time O����d � l�� to transit to state
collect.

Proof. A process p which enters state wait2 will send message m� to all higher
coloured neighbours. It will take time �d � l� until all higher coloured neighbours
know about p’s state and stop entering state wait2. Therefore the last higher coloured
neighbour could enter state wait2 ��d � l� time units after p had sent m�. Process p
can proceed latest when all higher coloured neighbours in state collect or wait2 have
managed to eat. Higher coloured neighbour processes of state collect will eat latest
after time O���d � l��, while higher coloured neighbours might have to wait for their
higher coloured neighbours to eat. By recursion one gains for a process of colour c
following upper bound to access the critical section:

T �c� � ��d � l� � const��d � l� � T �c� ��

� �� � c����d � l� � const��d � l��

� O����d� l��

�

Lemma 5.12 A process in state wait1 will manage to enter state wait2 in time
O����d� l��.

Proof. Due to the asynchronous doorway this time results directly from lemma 5.11.
Let process p be in state wait1 and fq�� � � � � qlg denote the set of lower coloured neigh-
bours known to be in state wait2 when p got hungry. Process p is allowed to proceed to
state wait2 when q�� � � � � ql managed to proceed to state collect. According to lemma
5.11 this will happen after time O����d� l��. �

Therefore a process is guaranteed to enter the critical section in time

O����d� l�� �O����d� l�� �O���d � l�� � O����d� l���

50 CHAPTER 5. RESOURCE ALLOCATION

Communication Complexity

In order to access all resources a process sends m�, m� to all higher coloured neigh-
bours, while m� and m
 is sent to all lower neighbours. Hence it needs to send O���
messages.

Fault Tolerance

The fault tolerance of process p depends on the distance of the furthest neighbour
process which is not allowed to fail. The analysis will show for a process which fails
the furthest possible distance in which processes might be affected. Processes may
fail in different states, but in the worst case a process fails when it has collected all
forks. This could happen in any state as a process will release only requested forks.
Neighbour processes will not be able to proceed further than state collect since they
will never be able to collect all forks and thus never manage to eat.

collect

collect

wait2

wait2

wait2

� � �

collect

� �

any state

any state

wait1

any state

wait2

Figure 5.9: This diagram shows how the neighbourhood is affected when a process remains
forever in state collect or wait2. The arrows show precedences between processes i.e. whether
the neighbour process uses a higher or lower colour.

As shown in figure 5.9 a process that stays forever in state collect will force its
lower and higher neighbours to remain in certain states. Straight from the description
of the doorways it follows that

� processes with higher colour will also remain forever in state collect if they reach
this state.

� processes with lower colour will remain forever in state wait2 if they reach this
state

Notifying figure 5.9 it can be concluded that a process will not starve if none of its
neighbours remain forever in state collect or wait2 and neighbours do not fail. Further

5.7. THE CHOY AND SINGH ALGORITHMS 51

a failing process will affect other processes to remain in state collect forever only if
they are not further distant than � � � because only higher coloured neighbours are
affected in this sense and the maximum colour is limited by �. Hence, a process will
affect processes to remain forever in state wait2 only if they are not further distant than
� � � since a processes will remain in state wait2 only if a neighbour process remains
forever in state collect.

Therefore, a process will manage to eat if none process in the neighbourhood of
� � � fails. The algorithm guarantees fault tolerance O���.

����� A Solution with Failure Locality �

In the previous algorithm of 5.7.1 processes would never manage to collect all forks if
lower coloured neighbours of state collect could not eat. This allowed chains with �
processes in state collect waiting for the forks of their lower coloured neighbours. In
order to remove such kind of chains a new collection scheme is used for the following
algorithm. Although the algorithm will guarantee a better fault tolerance than the
previous of 5.7.1, a process will need to send more messages in order to achieve access
to its critical section.

A New Fork Collection Scheme

When a process p starts with collecting its forks it will proceed in the following way:

1. Process p requests forks only from lower coloured neighbours and waits until
all requested forks are received. During this time when p receives a request
message for one of its forks it will release the fork.

2. If p received all forks from lower neighbours, it starts with requesting forks
from all higher coloured neighbours. When p receives a request message from a
higher coloured neighbour, it will delay answering until

� either p finished with eating

� or p has to release its forks because a lower coloured neighbour requested
one of its forks.

3. When p receives a request message from a lower coloured neighbour it will
release all requested forks and continue with 1.

4. If p received all forks it will eat and release all forks after eating.

The algorithm

Apart from the collection scheme the new algorithm works exactly as the algorithm
of 5.7.1 which is shown in figure 5.8. Receiving message m� will not be interpreted
as a request message and does not lead to releasing forks. For this purpose the algo-
rithm sends extra request messages in state collect according to the previous described
collection scheme. Assume process p receives a request message by q:

52 CHAPTER 5. RESOURCE ALLOCATION

� if p is in state thinking, wait1, wait2 it will reply with sending message fork and
updating its value forkpq � �

� if p is in state collect and has lower precedence(colour�p� � colour�q�) it will
reply with sending message fork and updating its value forkpq � �

� p will also reply with sending message fork and updating its value forkpq � �
if p has not collected all forks from lower coloured neighbours

� if p of state collect has higher precedence than q and also collected all lower
coloured forks it will delay sending message fork until it either will manage to
eat or it will have to release a lower coloured fork before eating

� if p is eating it will delay releasing the fork until exiting the critical section.

Correctness

The mutual exclusion property is still valid for the same reason as given in the proof of
lemma 5.8. Although the collection scheme has changed a process which entered state
collect is still guaranteed to enter its critical section in time O���d � l��. Considering
that processes will receive requested forks from higher coloured neighbours after time
��d� l� the proof of lemma 5.9 will explain why. Moreover the new collection scheme
does not affect processes in other states than collect. Therefore, it can be concluded
from lemma 5.10 that the algorithm is still starvation free.

Time Complexity

As the time bound of lemma 5.8 still holds the time complexity of O����d � l�� will
not change either.

Message Complexity

A process will have to send �� messages of kind mi, i � f�� ��
g because it sends
m� and m� to all higher coloured neighbours, while it sends m� and m
 to all lower
coloured neighbours. Further a process will have to request forks from all its neigh-
bours. Due to the new collection scheme a process must release its forks whenever
a lower coloured neighbour request a fork. This could lead to an exponential size of
messages, if the period until a process will be able to eat was not limited by k��d� l�,
where k denotes a constant. Let s denote the lower bound which a process needs to
perform any process task and let v denote the lower bound which a message needs to
traverse on a link. Then a process will be able to receive a requested fork from a neigh-
bour in time 	 ��s� v�. In the worst case a process has to release forks straight after
receiving them. A process only send request messages after releasing a fork. Hence,
for each neighbour a process sends at most k��d�l���s�v� messages until it collected all forks

and thus k�d�l�
��s�v��

� to all neighbours.

Altogether this results in a total amount of O���� messages which a process can
send in order to achieve access to its critical section. The size of messages will remain
constant.

5.7. THE CHOY AND SINGH ALGORITHMS 53

Fault Tolerance

Similar to the previous algorithm in 5.7.1 the analysis will show the maximum possible
distance of affected processes if a process fails. A process p of state collect will not
receive a requested fork from a neighbour process q because either

� q failed

� q is inside its critical section

� q is lower coloured neighbour of p and has collected all forks from lower coloured
neighbours, but is still waiting for higher coloured neighbours to send their forks.

If some process fails, neighbour processes will not be able to collect all forks. A
neighbour process p of a failing process which enters state collect will not be able to
proceed any further and thus will remain forever in state collect. Although p will never
be able to collect all forks, it could manage to collect at least all lower coloured forks
(only if the failing process was of higher colour) and for this reason cause a higher
coloured neighbour process q to remain forever in state collect. Notifying that q will
never be able to get access to all its lower coloured forks (because of p), neighbours ri
of q behave in the following way:

� If colour�ri� � colour�q� ri will remain forever in state wait2 when entering
this state.

� If colour�ri� � colour�q� ri will be able to reach state collect and also receive
a requested fork by q. Hence it will manage to eat in time O���d � l��.

collect

wait2

wait2
lower forks
collected all

any state

any state

any state

wait1

any state

wait2

Figure 5.10: This diagram shows how the neighbourhood is affected when a process remains
forever in state collect or wait2. The arrows show precedences between processes i.e. whether
the neighbour process uses a higher or lower colour.

The analysis of a process remaining forever in state wait2 is the same as described
for the algorithm in 5.7.1 and shown in the state diagram of figure 5.10. One can see
that a process is guaranteed not to starve when in the neighbourhood of no processes

54 CHAPTER 5. RESOURCE ALLOCATION

remain forever in state wait2. This holds if no processes in the neighbourhood of 2
remain forever in state collect and hence processes may not fail in the neighbourhood
of 4. The algorithm guarantees fault tolerance of 4.

��	 Animation of the Choy and Singh Algorithms

This section describes the animations visualizing the algorithms in 5.7.1 and 5.7.2.
Since the two algorithms differ only in the fork collection scheme their animation is
constructed quite similar and for this reason only one description for both algorithm
is given. Hereby the animations were built according to the general considerations of
chapter 2, as this was also the case for previous animations.

The algorithms are initialized by Luby’s colouring algorithm in 5.4 in order to
achieve a � � � colouring of the graph. The colouring phase is the first part of the
animation affecting only the basic view. The second and main part starts with the
algorithms by Choy and Singh. Due to asynchrony some processes might still perform
the colouring algorithm while others have already started with the main part.

In the following a description will be given for each view. It should be notified that
the basic view for these algorithms consists out of two windows due to the complexity
of the algorithm. The main window shows the communication graph and messages
transmitted among the system, while the state window, informs the user about states
of processes. These views will be explained and shown separately.

Basic View	 Main Window

The main window (cf. figure 5.11) shows the communication graph and messages
transmitted among the system as usually the basic view does. Inside the main win-
dow processes will appear as yellow circles while links are shown as black polylines.
Initially processes do not have knowledge about the precedences towards neighbour
processes. Hence the polylines representing links will be shown undirected. After
waking up, processes start continuously flashing between a dark and light blue visu-
alizing the colouring phase of the algorithm. When a process determines a colour the
accordant circle will appear in yellow colour again. If also neighbour processes deter-
mined a colour the precedences are shown by transforming the undirected polyline into
a directed polyline whose arrow points to the process with lower colour. The process
with lower colour also takes the fork associated with the link between both processes.
This will be represented by a blue dotted polyarrow pointing to the owner of the fork.
The fork appears dotted since the user should also be able to see the colour of the
underlying edge.

In the main phase of the algorithm processes are coloured according to their state.
A process will appear

� yellow if it is in state thinking.

� green when it is hungry. The green colour will be shaded

� light when the process cycles in state wait1.

5.8. ANIMATION OF THE CHOY AND SINGH ALGORITHMS 55

Figure 5.11: Basic view of the Choy and Singh algorithm

� medium when the process cycles in state wait2.

� dark when the process passed all doorways and starts with collecting forks.

� red when it eats.

The algorithm with fault tolerance 4 also distinguishes whether a process could collect
all lower coloured neighbours. This is shown by a red mark around a process.

As mentioned before edges will appear after the colouring phase as directed black
polylines. If two neighbour processes compete with each other for a resource the
accordant edge will change its colour to red until one process finished with eating.
This should help to observe chains caused by competitions.

While a message is transmitted on a link an arrow will be shown. The arrow points
from sender to receiver and continuously changes its size along the edge connecting
sender and receiver. For each message a different colour is used. When there are more
than one messages in transit this will cause the arrow flashing between the colours of
sent messages. In the following the colours associated with each message are listed:

� m�: This message is sent when a process passed the asynchronous doorway and
switched from state wait1 to wait2. The message will be coloured in a light
shaded green which is the colour processes have when they stay outside the
asynchronous doorway because of having received m�.

� m�: Message m� is sent when a process passed the synchronous doorway and
entered the state collect. The message will be coloured in a medium shaded

56 CHAPTER 5. RESOURCE ALLOCATION

Figure 5.12: State window of the Choy and Singh algorithm

green which is the colour processes have which will have to remain outside the
synchronous doorway because of having received m�.

� m
: Message m
 is sent when a process has collected all forks and can start to
eat. Neighbour processes are signaled that they are not any longer blocked by
this process to enter state collect. Therefore m
 is coloured in a dark shaded
green according to processes in state collect.

� fork: According to the initialization of the algorithm forks are represented by a
dotted blue arrow pointing to the owner of the fork. Hence, m
 is also coloured
blue.

� request: This message is only needed the 4-fault-tolerant algorithm to request
forks from neighbour processes. Message fork is shown in a yellow colour.

Basic View	 State Window

The state window (cf. figure 5.12) will inform the user about states of processes if
these processes try to access their critical section. This window should describe the
affect of the double doorway mechanism.

The window shows four different areas represented by a rectangle and coloured
according to the state of a process: light shaded green for state wait1, medium shaded
green for state wait2, dark shaded green for state collect and red for eat. The rectangles
are stapled one upon the other beginning with the area representing wait1 and ending
with the topmost area representing state eat. If a process gets interested in its resources

5.8. ANIMATION OF THE CHOY AND SINGH ALGORITHMS 57

it will appear inside the area representing state wait1 in form of a yellow coloured circle
labeled with the process number. As long as a process remains in a certain state it will
keep cycling around the respective area. When a process changes its state the process
will move up to the next area. Finally, if a process finished with eating it will vanish.

The user can observe which processes are interested in its resources. Further it
can be seen how long processes remain in certain states and how the double door-
way mechanism really works. Also using the main view the user can conclude which
processes prevent neighbour processes to proceed to the next state.

Communication View

According to previous resource allocation algorithms the communication view counts
the number of request tokens which a process has needed in order to gain access to
its critical section. When process p becomes hungry it will initialize the number of
sent messages with zero. For each message m�, m�, m
 (request messages will also
be considered in case of the 4-fault-tolerant algorithm) the bar showing the number of
sent messages increases by one unit. A mark will indicate the maximum number of
those messages needed to enter the critical section among all attempts. The average
bar shows the average number of sent messages for accessing once the critical section.
A mark will also show the highest average value. All bars are coloured according to
the colours associated with each process. Below every bar also the message size is dis-
played although it will remain constant during the whole execution of the algorithms.

When showing the animation of the �-fault-tolerant algorithm the user will observe
that the number of sent messages is proportional to the degree of the process as shown
in the analysis. A process will send each time the same amount of messages in order
to gain access to its critical section. This view was initialized with a maximum of ��
messages.

Due to the different collection scheme of the 4-fault-tolerant algorithm the anima-
tion of this algorithm will show for each access to the critical section that numbers of
needed messages may differ. The user will observe that more messages are needed
than in the case of the �-fault-tolerant algorithm, but increasing the degree of the com-
munication graph will not lead to an exponential increase in number of messages since
the analysis gave an upper bound of O����. The view was initialized with a maximum
of �� � �

	�
� messages. Although this value is not the upper bound it will give a good

initial scaling and fit for most executions. The user is able to zoom in and out of the
animation and thus can handle executions where more messages are needed.

Causality View

The causality view shows causal relations given by send and receive events considering
the local time when events occurred. An arrow will point from sender to receiver
starting at the local time of the sender when it sent the message and ending at the local
time of the receiver when it received the message. The local clock time of a process
will be changed when either a process changes its state or a message is received. When
changing the state e.g. from wait1 to wait2 a process sets the local clock to

new value 	� old value � ��

58 CHAPTER 5. RESOURCE ALLOCATION

If a message is received the local clock will be set to

new value 	� max�old value� received value� � ��

The colouring of a relation depends on the event that takes place. Messages m�,
m�,m
 are shown with the colour associated with the sender while for request message
and a fork messages the colour associated with the receiver is used.

Process Step View

The process step view shows information about latest state, event, time and local clock
for a process. The user can select a process by clicking inside the basic view the ac-
cordant node and retrace events for this process by clicking inside this view on buttons
“Previous Event” or “Next Event”. The functionality (see details on page 8) does not
differ from other animations.

Process Occupation View

The process occupation view shows in real time or the time given by the simulator for
each process how much time it spent in one of the states wait1, wait2, collect or eat.
A bar for each process will be displayed at the time when a process is hungry or eats.
For each state a different colour is used similar to the processes state in the basic view:

� A light shaded green will be used for the time period a process remained in state
wait1.

� A medium shaded green will be used for the time period a process remained in
state wait2.

� The bar is coloured in a dark shaded green for the period it remained in state
collect.

� Red will be used when a process eats.

In order to describe which bar belongs to which process the user can observe marks at
the beginning and at the end of each bar which are coloured according to the colour
associated with each process.

Chapter �

Counting Networks

For solving many multi processor synchronization problems it is important to have a
good solution to the counting problem. It may even be the case that the synchroniza-
tion problem itself can be expressed as a counting problem. The counting problem is
to associate to a set of n tokens consecutive numbers by using a kind of fetch-and-
increment mechanism. Many solutions to this problem perform poorly because of
synchronization bottlenecks.

This chapter describes an efficient solution called counting networks (first intro-
duced by Aspnes, Herlihy and Shavit [1]). Besides analyzing its properties, it gives a
set of applications to well known multi processor synchronization problems; in partic-
ular, it shows how a sharable counter, a producer-consumer buffer and a barrier syn-
chronization can be implemented by using counting networks. For one sort of counting
networks called periodic counting network an animation will be introduced.

��� Properties of Counting Networks

Counting networks belong to a larger class called balancing networks. They consist
out of simple two-input/ two-output elements called balancer (similar to the way that
comparison networks consist out of two-input/ two-output elements called compara-
tors). Basically, a balancer accepts tokens from its input wires and alternately outputs
them to its upper and lower output wires.

4 1

23

1

2

3

4

55

Balancer

Input Output

x�

x�

Balancer
y� � bm��c

y� � dm��e

Figure 6.1: This figure shows the relation between the number of input tokens and the number
of output tokens for a balancer. In the example of the right side one can see the output of tokens
which were input in the sequence of their numbering.

In the following xi� i � f�� �g denotes the number of tokens having arrived at the

60 CHAPTER 6. COUNTING NETWORKS

balancer’s ith input channel, while yi� i � f�� �g denotes the number of tokens having
arrived at the balancer’s ith output channel (see also figure 6.1). The balancer is defined
to be in a quiescent state when x� � x� � y� � y� holds. Further, it must satisfy the
following properties:

1. In any state x� � x� 	 y� � y� holds.

2. Given any finite number of input tokens m � x� � x� to the balancer, it is
guaranteed that it will reach in finite amount of time a quiescent state.

3. In any quiescent state y� � dm��e and y� � bm��c must hold.

Balancing Networks

A balancing network of width � (cf. figure 6.2) is defined as a collection of balancers
where output wires of balancers are connected to input wires of balancers such that
no cycles occur. Tokens are input from � designated input wires and output to �
designated output wires. Let xi be the number of tokens entering the network at the
ith input wire and yi the number of tokens leaving at the ith output wire then for a
balancing network the following safety properties must hold:

1.
P���

i�� xi 	
P���

i�� yi

2. for any finite sequence of m input tokens, within finite time it will reach a qui-
escent state, i.e. one in which

P���
i�� yi � m

Balancers
Connected

y�

y�

y���

x�

x�

x���

...
...

Figure 6.2: A balancing network of width �. Hereby, xi denotes the the number of input
tokens on wire i, while yi denotes the number of output tokens on wire i.

Timing Assumptions

For balancing networks there are not any timing assumptions made. The passing of to-
kens along the network is assumed to be completely asynchronous. In order to analyze
the time a token needs from input to output of the network the depth of the network
is an important parameter. The depth of the network is the depth longest directed path
from an input wire to an output wire of the network. Under the assumption that a tran-
sition from input to output of a balancer takes at most time
, then any token will exit
the network within time at most
 times the depth of the network.

6.1. PROPERTIES OF COUNTING NETWORKS 61

Counting Networks

Counting networks are balancing networks with a special property called step property:
In any quiescent state of the network

� � yi � yj � �� for any i � j�

must hold. The step property is another way to express that the network counts.

In the following some characteristics of counting networks will be introduced. The
first characteristic given by lemma 6.1 shows better why counting networks are usable
for counting. It is directly derived from the step property (see also figure 6.3). Lemma
6.2 expresses that every gap in the output sequence corresponds to some tokens which
are still in the network, while lemma 6.3 shows a relation between counting networks
and sorting networks. From this relation a lower bound for the depth of a counting
network can be concluded (see lemma 6.4) since comparison networks that sort have
smaller or equal depth than counting networks.

Step
1 l� � �

1 l� � �

1 l� � �

1 l

Counting Network

x���

x�

xi��

xi

...

...
...

� yi��

� y�

� yi

� y���

...
...

...

...

� � � l+�

l+�

Figure 6.3: This figure should illuminate the step property for a counting network in a qui-
escent state. One can see the step in the number of output tokens between the i� �th and ith

output where � � i � �. For i � � there will not occur any step.

Lemma 6.1 If
P���

i�� xi �	 m �
P���

i�� yi holds then yi � dm�i
� e.

Lemma 6.2 Suppose that in a given execution a counting network with output se-
quence y�� � � � � y��� is in a state where m tokens have entered and m� have left it.
Then there exist non-negative integers di, such that

���X
i��

di � m�m�

and

yi � di � d
m� i

�
e�

Proof. Let e be an execution where there do not exist such integers di. Then e can
be extended to an execution e�that does not allow further tokens to enter the network.
At the end of e� the counting network must reach a quiescent state in which the step

62 CHAPTER 6. COUNTING NETWORKS

property does not hold. This is a contradiction to the definition of counting networks.
�

Lemma 6.3 If a balancing network counts, then its isomorphic comparison network
sorts, but not vice versa.

Proof.
“�”: The Batcher’s odd-even merging network is an example (cf. figure 6.4 for a
sorting network which does not count.

1 1

2

3

3

2 1,3 1,3

2 2 2 2
� y� � �

� y� � �

� y� � �

� y� � �

Figure 6.4: One can observe that the shown Batcher’s odd-even merging network is in a
quiescent state, but y� � y� � �.

“
”: In order to show that a balancing network sorts, the balancing network will
simulate a comparison network. The network sorts if and only if it sorts all sequences
of �’s and �’s. For this purpose, the following coding is applied to tokens:

� � a token � � no token

The balancing network will be run in lockstep to the comparison network. By induc-
tion on the depth of the network it will be shown that the balancing network behaves
in the same way as the comparison network.

k � � 	 Obviously the input sequences are not changed.

k � k � � 	 Assume that the balancing network at depth k has the same behaviour as
its isomorphic comparison network. Then at each balancer of depth k � � there will
be a combination of f�� �g � f�� �g at its inputs. This is equivalent to one or none
token for each input of a balancer. From comparing the four possible cases in figure
6.5 it results that the balancing network has the same behaviour than its isomorphic
comparison network.

The step property of the balancing network assures that in the output there does not
exist any gap of tokens (see lemma 6.1) and tokens representing �’s appear at the
topmost outputs. Let k be the number of �’s, then for all i � k yi � � and for i 	 k
yi � � hold. Hence, the network is sorting. �

Lemma 6.4 The depth of any counting network is at least ��log��.

Proof. A comparison network needs at least depth ��log�� to sort. According to
lemma 6.3 also a balancing network will need at least depth ��log�� to count. �

6.2. THE BITONIC COUNTING NETWORK 63

(i)

(iii) (iv)

(ii)

� �

� � � � � �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Figure 6.5: The four possible cases of inputs which can appear to a balancer of depth k � �
when simulating a sorting network.

��� The Bitonic Counting Network

In this section a specific counting network called bitonic counting network of depth
O�log� �� is introduced. Hereby, the width of the network � is always a power of �.
The network is recursively constructed from two bitonic networks of width�

� which
are merged together by an element called merger (cf. figure 6.6).

Bitonic Counting NW
of Width �

�

...

...

Merger[�]

Bitonic Counting NW
of Width �

�

x�
...

x�
�
��

x�
�...

x���

y�
�

y�
...

y�
�
��

...
y���

Figure 6.6: Construction of a bitonic counting network of width �.

A merger��k� (cf. figure 6.7) has the property that it combines two input sequences
x 	� x�� � � � � xk�� and x� 	� x��� � � � � x

�
k�� (xi and x�i denote a number of tokens at

position i) which both satisfy the step property and creates an output sequence y 	�
y�� � � � � y�k�� which satisfies the step property in a quiescent state as well. A merger���
will be a simple balancer. For k � � a merger��k� is recursively constructed from
two merger�k� elements M and M�. It derives from M and M� output sequences
z 	� z�� � � � zk�� and z� 	� z��� � � � � z

�
k�� by applying to

� M the even subsequence x�� x�� � � � � xk�� and the odd subsequence
x��� x

�

� � � � � x

�
k��.

� M � the odd subsequence x�� x
� � � � � xk�� and the even subsequence
x��� x

�
�� � � � � x

�
k��.

The output sequences z and z� are combined by sending zi, z�i through a final balancer
which is connected to the merger’s outputs y�i� y�i��.

64 CHAPTER 6. COUNTING NETWORKS

x�
...

xk��

x�
�

...
x�k��

Merger[k]

Merger[k]

...

...

...

y�k��

y�k��

y�

y�
z�

zk��

z�
�

z�k��

Figure 6.7: Construction of a merger��k�.

Correctness

The construction of the bitonic counting network is correct if merger��� merges two
sequences x and x� derived from the output of two bitonic counting networks of width
�
� such that in a quiescent state its output sequence y satisfies the step property.

Lemma 6.5 If two input sequences x, x� of length k that satisfy the step property are
input to the constructed merger��k� the output sequence y will satisfy the step property
as well.

Proof. By induction on k:

k � �: The output sequence of a balancer is defined to satisfy the step property in a
quiescent state.

k � �: By the induction step the output sequences of the two merger�k� elements
M , M � will satisfy the step property if its input sequences satisfy the step property.
Sequences x and x� satisfy the step property as their even and odd subsequences do.
Hence, the output sequences z of M and z� of M � also satisfy the step property in a
quiescent state. From

k��X
i��

zi �

k

�
��X

i��

x�i �

k

�
��X

i��

x��i�� �

�
kX
i��

�

�
xi

�
�

�
kX
i��

�

�
x�i

�

and
k��X
i��

z�i �

k

�
��X

i��

x�i�� �

k

�
��X

i��

x��i �

�
kX
i��

�

�
xi

�
�

�
kX
i��

�

�
x�i

�

one can derive �����
k��X
i��

zi �
k��X
i��

z�i

����� � ��

Thus one can conclude that there exist at most one l for which

max�zl� z
�
l� � min�zl� z

�
l� � �

and for all other i �� l
zi � z�i

holds. Hence, in a quiescent state the last layer of balancers merging zi, z�i to outputs
y�i, y�i�� guarantees the step property for output sequence y. �

6.3. THE PERIODIC COUNTING NETWORK 65

Depth of the Network

The depth of a bitonic counting network of width � is given by

depth�bitonic counting network of width �
� � � depth�merger[�]�

From the recursive construction of a merger it follows that a merger��� has depth log�.
Hence, the depth of the bitonic counting network is due to its recursive construction
O�log� ��.

��� The Periodic Counting Network

A periodic counting network of width � is built by concatenating log� subnetworks
called block��� networks (cf. figure 6.8). Hereby, � is a value which is chosen as a
power of �. The depth of O�log� �� for the periodic counting network is as good as
the result for the depth of the bitonic counting network, but the construction is simpler
since the whole network is constructed by only one element (the block��� network).
Later it will be shown that this subnetwork can also be used for barrier synchronization.

1st 2nd log���th...
...

...

x���

...

x�

x� y�
y�

...

y���

� � �

� � �

� � �

block[�]block[�] block[�]

Figure 6.8: Construction of a periodic counting network of width �.

The block��� networks are constructed by recursion (see also figure 6.9). A block���
is defined to be a balancer while a block��k� is constructed from two block�k� networks
MA, MB analogous to the mergers of a bitonic counting network. The input sequence
of tokens

x 	� x�� � � � � x�k��� with xi is the number of tokens at input i

is split in two subsequences xA and xB such that

xA 	� fxij index i’s two low order bits are �� � ��g

and

xB 	� fxij index i’s two low order bits are �� � ��g�

Sequence xA is applied to MA resulting in output sequence zA 	� zA� � � � � � z
A
k��,

while xB is applied to MB resulting in output sequence zB 	� zB� � � � � � z
B
k��. Finally,

zA and zB are combined by sending zAi and zBi to the input of a balancer which is
connected to outputs y�i and y�i��.

66 CHAPTER 6. COUNTING NETWORKS

xA
�

...
xAk��

xB
�

...
xBk��

Block[k]

Block[k]

...

...

...

y�k��

y�k��

y�

y�
zA
�

zAk��

zB
�

zBk��

Figure 6.9: Construction of a block��k� network.

Correctness

Let a level l chain of a sequence x 	� x�� � � � � xk�� be defined as the subsequence

x� 	�

	
xi

���� xi � x such that the l low order bits are identical for
all other index j with xj � x�

The basic idea of this construction is that in a quiescent state all level l � � chains of
the output of a block�k� will satisfy the step property if all level l chains of the input
sequence satisfy the step property. For example, the even subsequence xE and the odd
subsequence xO are level � subsequences of x. If xE and xO satisfy both the step
property and x is input to a block�k� network then the output, a level � chain, must
satisfy the step property in a quiescent state as well. Initially, in a periodic counting
network each input xi is a sequence which satisfies the step property. Hence, in a
quiescent state all level log� chains satisfy the step property before the first block���,
all level log� � � chains satisfy the step property before the second block��� and
finally all level � chains satisfy the step property before the log�th block��� which
explains why log� block��� networks are used. The correctness follows now directly
from lemma 6.6.

Lemma 6.6 Let block�k� be in a quiescent state with input sequence x and output
sequence y. If all level l input chains to a block have the step property, then this is the
case for all l � � output chains.

Aspnes, Herlihy and Shavit prove this by induction starting with the case i � �
which is the above example of even and odd subsequences. The proof technique is
similar to the correctness proof of the bitonic counting network. The interested reader
is referred to the paper of Aspnes, Herlihy and Shavit [1].

Depth of the Network

Due to its recursive construction a block��� has depth O�log��. Taking log� block���
networks one after the other leads to depth O�log� ��.

��� Applications of Counting Networks

The following part deals with practical applications for counting networks. In most
systems solutions are implemented by using lock mechanisms. From practical experi-

6.4. APPLICATIONS OF COUNTING NETWORKS 67

ments counting networks seem to outperform these methods (see Aspnes, Herlihy and
Shavit [1]).

Previous chapters dealt only with algorithm that allowed message passing. For
simplicity in the following description it is assumed that processes may access shared
memory locations. However, a periodic counting network was simulated and animated
according to the message passing model where each balancer is a process with two
input and two output links.

���� Shared Counter

A shared counter is an element which can be used to apply to a set of tokens a consec-
utive numbering. A shared counter can be realized by a counting network of width �
where each output i is associated with an integer cell ci and ci 	� i initially. A token
enters the network at an arbitrary input wire and will leave the network at some wire
j. Then the token sets in one atomic step its number to cj and increases cj 	� cj � �.

Correctness

If a finite set of tokens is applied to the counting network, the network is guaranteed
to reach a quiescent state. Hence, the number of output tokens will satisfy the step
property which assures that tokens have a consecutive numbering.

Time Complexity

Let
 denote the longest time for a token to traverse any balancer, and � denote the
depth of the network, then a token needs O��
�.

���� Producer�Consumer Bu�er

The producer/consumer problem can be described by m producer processes which
insert an item into a buffer and m� consumer processes which remove an item from
this buffer. A solution to this problem uses two counting networks of width � and a
�-element buffer buff�� � � � � � ��. The buffer cell buff�i� is associated with the ith
output wire of both counting networks.

The first counting networks is used by producers. A producer enters this network at
an arbitrary input and will exit the network at some output wire j. If buff�j� is empty
the producer will insert its item. Otherwise it waits with inserting its item until buff�j�
is empty.

The second counting network is used by consumers. A consumer enters this net-
work at an arbitrary output and will exit the network at some wire j. If there exist an
item in buff�j� it will consume the item. Otherwise, it will wait until there is an item
to consume.

Assume that the time to update a buff�j� is negligible. If m � m� then the step
property will guarantee that each produced item will find a consumer. Every producer
will leave the network in time O��
�. Analogous for m 	 m� the step property

68 CHAPTER 6. COUNTING NETWORKS

m Producer Buffer m� Consumer

Width �
Counting NW Counting NW

Width �...
...

...
...

Consumer entersProducer enters

� � �

0

buff[]

...

Figure 6.10: Producer/consumer Buffer with counting networks

guarantees that all consumers will find an item to consume. Hence, every consumer
will leave the network in time O��
�.

���� Barrier Synchronization

A barrier is a data structure which ensures that no process advances beyond a particular
point in a computation until all processes have arrived at that point.

The properties of a counting network imply an easy implementation. After a pro-
cess finished a step in computation it sends a token through a counting network. If one
token leaves the network with value n� � it can be concluded that all processes sent a
token through the network and consequently finished its computation step.

However, barrier synchronization can be achieved by subnetworks of counting net-
works which are called threshold networks. A threshold networks of width � is a bal-
ancing network with input sequence x�� � � � � x��� and output sequence y�� � � � � y���

such that in any quiescent state

y��� � m
 m� �
X

xi � �m� ���

holds. The counting network itself is a threshold network, but also the merger���
of the bitonic counting network and the block��� of the periodic counting network
are threshold networks. They detect each time when � tokens traversed through the
network.

Constructing a Barrier with a Threshold Network

Assume there are processes p�� � � � � pn�� which are synchronized by barriers. Then,
the barriers separate the algorithm in phases ��� ��� ��� � � �. A barrier is implemented
by a threshold network of width � such that

n � � mod ��

Each output is associated with shared variable ci, ci 	� i initially. Further all processes
can access a shared variable F which is initialized with value FALSE. Each process

6.5. ANIMATION OF THE PERIODIC COUNTING NETWORK 69

knows the local variable sense such that

sense � TRUE in even phases ��� ��� �	� � � �

and
sense � FALSE in odd phases ��� �
� ��� � � �

The processes execute the algorithm in the following way:

1. If a process pi finished with its computation for a phase it will enter the network
at some arbitrary input wire and finally exit at output wire j.

2. Process pi sets v�pi� 	� cj and cj 	� cj � � in one atomic step.

3. Case v�pi� � �n � �� mod n: Process pi left the network at wire � � � since
�jn. This implies that all other processes have already entered the network and
are finished with its computation for this phase. Hence, pi sets F 	� �F and
sense 	� �sense before it continues with the next phase.

4. Case v�pi� �� �n � �� mod n: Process pi does not know whether all other pro-
cesses entered the network. Hence it waits until sense � F holds before it sets
sense 	� �sense and continues with next phase.

��� Animation of the Periodic Counting Network

The animation of the periodic counting network is built according to the general con-
siderations in chapter 2. The user can choose among different widths for the counting
network. Further one can choose between an interactive and a trace file animation. In
the interactive animation the user selects with the mouse either to produce a token or
force a balancer to send one of its token waiting to proceed to an output. The trace file
animation built animation frames according events of a trace file as this was the case
for previously discussed animation. Both animations have the same appearance so that
the description concentrates on the trace file animation and points at differences. One
difference to other animations is that the basic view is split in three windows. The
main window shows the counting network and tokens which move between balancers.
The input window informs about the number of tokens produced for each input wire,
while the output window informs about which tokens vanished at which output.

Basic View	 Main Window

The main window shows processes, each representing a balancer, as arrows connecting
the wires from which they receive tokens and to which they output tokens. The arrow
points to the wire where the next token will be output. All balancers are placed on
� wires such that they satisfy the construction of the periodic counting network (see
figure 6.11).

Tokens are shown as yellow circles with an identifier which depends on the order
of appearance. They appear on one of the input nodes and travel from balancer to

70 CHAPTER 6. COUNTING NETWORKS

Figure 6.11: Placement of balancers for a periodic counting network of width 8.

balancer according to the algorithm’s events until tokens reach an output node where
they vanish.

In the interactive animation clicking on an input node of the network causes a token
to appear at this input and to move to the input of the next balancer. If there are any
tokens at a balancer clicking this balancer will cause a token either to move to the next
balancer or to move to an output of the network.

Basic View	 Input Window

The input window shows for each input of the network the number of tokens which
have been produced so far. Further the input node of which the last token appeared is
marked by an arrow.

Basic View	 Output Window

The output window illuminates gaps in the output sequence of tokens. For each output,
tokens with their identifier appear in the output window after vanishing in the main
window. If all output nodes reached level k i.e all output nodes produced k tokens
then the first k tokens which appeared inside the output view will disappear in a “tetris
manner”. The user should observe that in a quiescent state of the network the step
property holds.

Communication View

The communication view counts for each balancer the number of sent tokens indicated
by a bar chart. Each bar is coloured according the colour associated with each balancer.
Moreover an additional bar indicates the average of sent tokens. Although message
sizes are constant they are displayed below the accordant bar.

After sending tokens among the network the user can observe that the number of
sent tokens for balancers which are closely to the output is almost the same then the
average number of sent tokens. The maximum number of sent messages depends on
the number of produced tokens. Hence, it is not possible to specify an upper bound
for the expected number of messages before the end of the animation. For this reason
a user might have manually to resize the window size.

6.5. ANIMATION OF THE PERIODIC COUNTING NETWORK 71

Causality View

The causality view shows the causal relation of the algorithm induced by a balancer
sending tokens and receiving tokens. For each relation an arrow appears beginning at
local time when a token is sent and ending at local time when a token is received. The
local clock is increased on receiving a token such that its new value is set to

max�send tm� old value of local clock� � ��

Hereby send tm denotes the sender’s local clock when sending the token. The relations
are coloured according to the colour associated with the sender of the token.

Process Step View

The process step view shows for a balancer latest information about events. A balancer
can be selected by clicking inside the main window of the basic view on a balancer.
The sequence of events can also be retraced by clicking on buttons “Previous Event”
or ‘Next Event” of this view. The functionality (see details on page 8) does not differ
from other animations.

Process Occupation View

The process occupation view shows in real time how long a balancer was busy i.e. the
time tokens were waiting at a balancer to proceed. When a token arrives at a balancer
where no other tokens wait to proceed then a bar for this balancer will be created
starting at arrival time of the token. The bar ends when the balancer enters the state
again where no tokens wait to proceed. Every bar is coloured according to the colour
associated with each balancer.

Chapter �

Implementation

��� Introduction

The practical part of this master thesis consists out of building animations for the al-
gorithms described in previous chapters, the implementation of these algorithms for
the simulation environment of LYDIAN and the implementation of an interface which
enables users to create network description files for simulation. The code was imple-
mented in C++ and C. For building the animations a C++ library called POLKA was
used. The algorithms were implemented by writing procedures in C and combining
these procedures with transitions of events supported by the simulator. For the imple-
mentation of the interface creating network description files, graphwin of the LEDA li-
brary was used. The introductory part will explain the main concepts of these libraries.
The understanding will be helpful for reading the elaboration of each implementation
aspect introduced in the next sections.

����� POLKA	 A Library for Building Animations

POLKA [14] is a library of visualization and animation routines, useful to visualize
sequential and concurrent algorithms. It offers a class called animator which controls
a set of animation windows, called view, and animation objects inside a view. An
animation object can be any kind of graphical object e.g. a circle, a rectangle, a text
etc. Views and animation objects are organized as classes as well.

The animator controls the flow of significant events of an algorithm. According
to each event the programmer can define actions which modify an animation object
defined inside a view. For each action the animator will compute for the set of views
a series of animation frames such that for every time unit there exist for each view
a frame. The animator can be requested to show for a period of time the accordant
frames. The frames will be shown one after the other such that all views evolves
simultaneously. Since the creation of frames allows to apply more than one actions to
animation objects inside a view, an observer will receive the impression of parallelism.
For example two objects could be moved at the same time.

7.2. ANIMATION USING POLKA 73

����� DIAS	 The Simulator of LYDIAN

In chapter 1.3 the environment LYDIAN was already introduced. This subsection deals
only with the creation of programs for the simulator of LYDIAN called DIAS.

During the execution of a program the simulator chooses pending events of a pro-
cess and schedules them. The execution of these events will trigger the execution of
procedures that will use the type of the event and the local state of the process as an
input and will produce the new state of the process. Therefore, a programmer must
define procedures and transitions such that for a state and an event the accordant pro-
cedure will be called. Hence the simulator also needs information about possible states
and messages which are transmitted among the system.

The simulator knows following events for a process p:

� RECMES(TYPE): p receives a message of type TYPE. The simulator will regis-
ter this event if some process sends a message during its local computation.

� INITPROTOCOL: p will be waken up. The user can define by creating the net-
work description file which processes of the communication graph should be
waken up when starting the protocol.

� TIMEOUT X: p started in some previous local computation a timer and timeout
activates p again. The simulator offers 5 different timers.

With information about states, messages, procedures and transitions the LYDIAN
environment offers the possibility to create an executable program. This program will
be able to run with different network description files i.e. different communication
graphs and different timing assumptions. The output of the program can be used for
visualization.

����� LEDA	 Library of Enhanced Data Structures and Algorithms

LEDA [10] is a library which supports many data structures and algorithms. For the
creation of network description files a tool was needed which supports an easy way
of drawing graphs and manipulating the structure of graphs. With every vertex of the
graph representing a process timing assumptions must be associated. Further with ev-
ery edge representing a link between two processes message transmission times must
be associated. The graphwin utility of LEDA supports these properties. It offers al-
gorithms for manipulating graph structures and allows programmers to manipulate the
graphical user interface.

��� Animation Using POLKA

All animations work according to the same principle. The main program offers a
graphical interface for interaction with the user and reads events from a debug file
created by some simulation. The events are sent to a control unit, called controller.
The controller will cause the animator to create for all animation windows (views)

74 CHAPTER 7. IMPLEMENTATION

list.H animobj.H buf_items.H causality.H mess_inf.H procinfo.H procload.H

main.H

anim.C animscenes.C causality.C mess_inf.C procinfo.C procload.C animobj.C list.C

Figure 7.1: This figure shows the used program modules and their dependencies for building
an animation.

frames and ensures the frames to be displayed smoothly one after the other. The user
selects via the graphical interface the speed of which the animation evolves.

Due to the structure of animations introduced in chapter 2 some views will have
the same functionality for different animations. Therefore, the views are structured in
independent program modules which can be integrated in any animation. This allows
adding further modules and easier development of new animations although the basic
view may differ. Figure 7.1 shows the dependencies of the used program modules
which are introduced in the next paragraph.

The program modules

anim
C� ”anim” denotes the name of the animation. This module contains the main
program which initializes the graphical interface and registers all views. After ini-
tialization it reads the input events which will be transmitted to the controller of the
animator.

animscenes
C� As before ”anim” denotes the name of the animation. The module
includes all functions provided by the class animator. Further it includes all functions
of the class realizing the basic view. The animator functions evaluate the events which
have been transmitted by the main program. According to events it creates in cooper-
ation with the registered views new animation frames and initiates showing frames for
a period of time (depending on the event). Note that functions for animator and basic
view will differ for each animation.

causality
C� This module includes all functions of the class which realizes the causal-
ity view. The call of the class’s public functions will modify and create frames ac-
cording to the functions parameters. Finally, the animator can initiate the showing of
frames if this view was registered.

mess inf
C� The class realizing the communication view is included in this program
module. It supports modification and creation of frames for this view.

7.2. ANIMATION USING POLKA 75

procinfo
C� This module contains the public functions of the class realizing the pro-
cess step view. Again the class supports modification and creation of frames for this
view.

procload
C� It includes the functions of the class realizing the process occupation
view supporting modification and creation of frames for this view.

animobj
C� It includes new defined animation objects which realize undefined ani-
mation objects of the POLKA library.

list
C� This module supports a dynamic linked list which is used in almost all other
program modules.

From this general structure of program modules the following parts will move on
to a more detailed description of classes and data structures realized in each module.
Hereby, the beginning deals with those mechanisms which are common for all anima-
tions before describing specific elements for each animation.

����� Classes of the Animation

All views of the animation and the animator itself are implemented as separate classes
which can be used for any animation. The implementation of classes uses given classes
from the POLKA library and derives subclasses.

MyAnimator

ProcLoad

Animator

ProcInfo

Lamport

MessInfo

Main_View

View

Figure 7.2: This figure shows the dependencies between used classes. A solid arrow pointing
from class X to class Y means that an instance of class X is used inside class Y . A dashed
arrow arrow from class X to class Y shows that class Y is a subclass derived by class X .

76 CHAPTER 7. IMPLEMENTATION

The dependencies of the used classes are shown in figure 7.2. The following part
of this section introduces these dependencies.

	
�
�
a Animator

The animator is the control center of each animation. It controls the showing of frames
inside its registered views. Further it creates or modifies animation frames according
to events transmitted by the main program. The POLKA environment provides a class
called Animator for registering names and types of algorithm events, sending algo-
rithm events to a control unit and animating frames of registered views. From this
class a subclass called MyAnimator was derived in which the control unit, functions
for computation of animation frames and views were defined. MyAnimator is struc-
tured in the following way:

class MyAnimator : public Animator
f
private:

Main View net; /� basic view �/
Lamport causal; /� causality view �/
ProcInfo procinf; /� process step view �/
MessInfo messinf; /� communication view �/
ProcLoad procload; /� process occupation view �/

/� Initialization of views �/
int Init Views();

/� functions according algorithm events �/
� � �

/� functions which support animations using a communication graph �/
� � �

public:
MyAnimator();
int Init Graph();
int Controller();
int Time();

g;

views:

The animator object knows for each view described in chapter 2 an object (net, causal,
procinf, messinf and procload) for the modification of each view. The respective
classes will be introduced in the following subsections.

int MyAnimator::Init Views()

This routine will cause each view to be initialized. Each view will show its initial
objects.

7.2. ANIMATION USING POLKA 77

event functions:

These functions have to be designed according to each animation. They will change
the animation objects inside each view according to the events of the algorithm. This
is realized by calling the provided public functions of each view object. The only
exception is given by the basic view object called net of which the animation objects
are controlled directly by the animator.

graph functions:

Some animations will have to consider the structure of the communication graph. In
this case the animator object will support the respective functions.

MyAnimator::MyAnimator()

This constructor of the subclass MyAnimator registers the previous defined view ob-
jects and causes the basic view to appear on the screen. For all other objects references
of each view are assigned to global variables in order to control the visibility of these
views by a graphical interface. Finally, the private variables are initialized.

int MyAnimator::Init Graph()

This function is used to read the structure of a communication graph. Naturally this
function is only used if the animation deals with such a graph.

int MyAnimator::Controller()

The controller of the animator decides which event functions are called when an algo-
rithmic event happened. Further it causes all not shown frames which happened before
the algorithmic event to be shown.

int MyAnimator::Time()

The function informs about the time when the latest algorithmic event happened. This
value will be changed by the animation when frames for an event are created.

	
�
�
b Basic View

The basic view is implemented as a subclass derived from the class View of the POLKA
library. It provides the window in which the main animation is shown. It offers func-
tions to open the window and change a time parameter indicating from which frame on
modification or creation of frames is allowed. The class Main View has the following
structure:

class Main View : public View
f
public:

void Open Window();
int Time();
int NewTime(int);

g;

78 CHAPTER 7. IMPLEMENTATION

void Main View::Open Window()

The animation window will be generated and will appear on the screen.

int Main View::Time()

The time of an animation frame is returned with the property that it is the first frame
guaranteed not to be shown on screen when calling this function. This function can
be used by the animator in order to select the frame to be shown next. Note that this
function differs from the time-function of MyAnimator which informs about the time
of the latest algorithm event.

int Main View::NewTime(int newtime)

Parameter newtime specifies the time that indicates the first frame which has not been
animated yet. This function can be called by the animator after initiating frames to be
shown.

All animation objects which will appear inside the basic view are controlled by the
animator’s event functions. For this reason this view will provide the same functions
for all animations, but it will look quite different. The functions for information and
modification the time of the basic view are important for selecting the frames to be
shown by the animator.

	
�
�
c Communication View

Also the class MessInfo is a subclass derived from the class View provided by POLKA.
In contrast to the class Main View it manages all animation objects. For modification
it offers public functions which allow the animator to change the communication view
according to algorithm events. All animations use the following structure of the com-
munication view:

class MessInfo:public View
f
public:

MessInfo();
void Init(int, int, int);
void Increase(int, int, int);
void Reset(int, int, int, int);
void ChangeAv(int, int);
void MessSize(int, int, int, int);

private:
� � �

g;

MessInfo::MessInfo()

The function realizes the constructor of the class.

7.2. ANIMATION USING POLKA 79

void MessInfo::Init(int frametime, int max proc, int max mess)

The initial layout for the communication view will be generated. This includes also
the initialization of all variables and animation objects. Hereby frametime denotes
the animation frame for which the layout will be created, max proc the number of
used processes and max mess the maximum number of messages which will be sent.
The values max proc and max mess will be used to create a layout which fits to the
animation. However, it is possible to send more messages for a process than specified,
but in this case the user might have to manually rearrange the shown animation window
to see everything of the animation.

void MessInfo::Increase(int frametime, int id, int send tm)

For the animation frame given by send tm an increase by one unit in messages will be
shown for the process identified by id. Also the average bar will be modified according
to this event at send tm. The user will see the accordant rectangles being increased.
The variable frametime denotes the next possible frame which can be modified. It is
used for deletion of old actions and animation objects which not needed for frames to
be animated at time 	 frametime.

void MessInfo::Reset(int frametime, int id, int send tm,
int average)

The sent messages of process identified by id will be set to � at send tm. With param-
eter average it can be specified how the computation of the average of sent messages
is computed. If this value equals the number of processes the average of the actual
displayed messages is shown.

However, in many animations the resetting of messages means that the process
starts with a new job. Then it is interesting to know the average number of messages
among all processes necessary to finish a job. In order to achieve this, the average
value should contain the actual number of jobs. Note that during an animation the mix
of both methods would lead to wrong results.

The parameter frametime denotes the next possible frame which can be animated.
As in the previous function it is used for deletion of old animation objects and old
actions.

void MessInfo::ChangeAv(int average, int frametime)

This function allows to modify directly the way how the average is computed. Hereby
the value average has the same meaning as described in function Reset. Parameter
frametime specifies the animation frame for which the change will be valid.

void MessInfo::MessSize(int frametime, int id, int size,
int send tm)

This function allows to specify the message size of the process identified by parameter
id. The new message size given by parameter size will be valid at animation frame
specified by send time. According to previous functions parameter frametime de-
notes the next possible animation frame which can be animated.

80 CHAPTER 7. IMPLEMENTATION

	
�
�
d Causality View

The causality view was taken from an tool called PVaniM and modified according
to the requirements of the constructed animation. The class Lamport is a subclass
derived from the class View provided by POLKA. All animation objects of this view
are controlled by class Lamport. Public functions allow the animator to communicate
with this view. Following structure was applied to Lamport:

class Lamport : public View
f
public:

Lamport()
int Init(int);
int Send(int,int,int,int,int,int);
int Receive(int,int,int,int,int,int);

private:
� � �

g;

int Lamport::Init(int c nvprocs)

The animation window including the initial layout will be created. Further the anima-
tion objects will be initialized.

int Lamport::Send(int myprocid, int clockval, int polkatime,
int friendprocid, int type, int total)

Inside the animation window a relation will be shown at time polkatime. The relation
will be indicated in form of a small arrow which points from process identified by
myprocid into direction to the process identified by friendprocid, but not touching
this process. Further a circle located at the position of the sender indicates the message
which is sent along the link. The size of this circle is indicated by parameter total.
Parameter clockval denotes the local clock of the sender. With parameter type the
message type is defined. The type influences in which colour the arrow will be shown.

int Lamport::Receive(int myprocid, int clockval,
int polkatime,int friendprocid,
int type, int total)

Receiving a message defines the end of the relation. At frame given by polkatime the
top of the arrow which was created by the accordant send event will grow to the loca-
tion defined by parameter clockval and parameter procid. Hereby clockval denotes
the local clock’s time when the message arrives at the receiver. The sender is specified
by parameter myprocid, while the receiver is specified by parameter friendprocid.
The message is identified by parameters type influencing also the colour of the arrow
and total defining the message’s size. The call of this function will animate the cir-
cle moving along the arrow to the receiver beginning at animation frame defined by
polkatime.

7.2. ANIMATION USING POLKA 81

	
�
�
e Process Step View

The process step view is implemented as a subclass derived from POLKA’s class View.
It offers public functions which allow modification of the view. The class ProcInfo has
following structure:

class ProcInfo: public View
f
public:

ProcInfo();
void Init(int, int);
void Show(void�, int, int);
int IsShown(int);

Button� prev;
Button� next;

private:
� � �

g;

ProcInfo::ProcInfo()

The constructor initializes variables and data structures.

void ProcInfo::Init(int frametime, int processes)

Inside the animation window the initial layout will be created at frametime. Pa-
rameter processes denotes the number of used processes. Further with the animation
objects prev and next a call-back function will be associated. Clicking with the mouse
on one of these buttons will call the accordant functions and show for a selected pro-
cess either the previous or next event.

void ProcInfo::Show(void * data, int frametime, int send tm)

Parameter data defines the event which will be shown at send tm. If the value of
data 	 � then data specifies the latest event of the process whose identifier equals the
value of data. Otherwise the previous event (case data � ��) or the next event (case
data � ��) of the already displayed event will be shown. Parameter frametime
denotes the next possible frame which can be animated.

int ProcInfo::IsShown(int id)

This function returns for a process identified by parameter id whether events of this
process are shown (� is returned) or not (� is returned).

	
�
�
f Process Occupation View

The process occupation view is derived by a subclass of POLKA’s class View. Pub-
lic functions allow modification of the view. Following structure is applied to class

82 CHAPTER 7. IMPLEMENTATION

ProcLoad:

class ProcLoad:public View
f
public:

ProcLoad();
void Init(int, int, int);
void Send(int, int, COLOR, int);
int Receive(int, int, int, COLOR, int, int);
void Create Start(int, COLOR, int);
void Create Grey Start(int, COLOR, double, int);
int End(int, int, COLOR, int);
int Grey End(int, int, int);

private:
� � �

g;

ProcLoad::ProcLoad()

The constructor of the class initializes private variables.

void ProcLoad::Init(int frametime, int max proc,
int expect time)

The initial layout will be created at frametime for max proc processes. The param-
eter expect time denotes the period of time shown inside the window. If some bars
cross this value the view will automatically scroll to the end of the bar.

void ProcLoad::Create Start(int id, COLOR col, int send tm)

For the process identified by parameter id a new bar will be created at send tm. The
mark which colours the beginning of the bar will be coloured according to parameter
col. Its beginning will be located at the position defined by send tm and id.

void ProcLoad::Create Grey Start(int id, COLOR col,
double intensity,
int send tm)

For the latest existing bar of the process identified by parameter id a new colour given
by col will be associated at send tm. Parameter intensity allows to modify the in-
tensity of the given colour by applying values between � and �.

void ProcLoad::Send(int frametime, int id,
COLOR col, int send tm)

If there does not exist any bar for the process identified by parameter id a new bar
coloured according to parameter col will be created at send tm. Otherwise the lat-
est bar of this process will grow to the location defined by send tm and id. This
action will start at the next possible frame which can be animated (this is defined by
frametime) and be finished at send tm.

7.2. ANIMATION USING POLKA 83

int ProcLoad::Receive(int frametime, int id, int from,
COLOR col, int send tm, int rec tm)

This function has the same functionality than defined by ProcLoad::Send, but also
supports showing the relation between sender and receiver. Additional an arrow will
be shown pointing from the sender at send tm to the receiver at rec tm. Hereby the
sender is identified by parameter id, while the receiver is identified by rec. Parameter
frametime denotes the next possible frame to be animated and is used for deletion of
old objects and actions.

int ProcLoad::End(int frametime, int id, COLOR col, int end tm)

The end of a bar for the process identified by parameter id will be marked at end tm.
Therefore the latest bar of this process will increase to the position given by end tm
and id. The action will start at the first possible frame to be animated and will end at
end tm.

int ProcLoad::Grey End(int frametime, int id, int end tm)

The latest bar of process identified by id will increase to the location defined by id
and end tm. The action will start at the first possible frame to be animated and end at
end tm.

����� The Graphical Interface

The graphical interface offers two windows. The “Polka Control Panel” is directly
invoked by the animator and allows to tune the speed of the animation, execute the
animation in a step by step mode or to halt an animation. Every event of this window
directly effects the animation.

The “Animation Control Window” is implemented in Motif [6]. It offers the user
the possibility to select which of the offered views appear on the screen. A view can be
caused to appear or disappear at any time of the animation. The interface communicate
with a view by accessing references of global variables which are initialized by the
animator. The following functions realize the “Animation Control Window”:

void console()

Creates the window and initializes with each button a call-back function.

void toggled(Widget w, void *f1, void *f2)

This function is called when a box of the window was toggled. Parameter f� identifies
the box and f� returns the state of the box. According to parameters f� and f� the
selected view will appear or disappear on the screen.

void quitCB(Widget, XtPointer, XtPointer)

The quit button in one of the graphical interfaces was selected. The program will quit
the animation.

84 CHAPTER 7. IMPLEMENTATION

����� Main Program and Events

The main program creates an instance of MyAnimator called anim (for every animation
this variable is named after the animation name) and initializes the graphical interface
by calling the appropriate function. Afterwards all possible algorithmic events are reg-
istered for the animator. For this purpose the function called RegisterAlgoEvt provided
by class Animator is used. Hence, the animator knows which events are expected and
in which format they are transfered.

The main program filters algorithm events from the input and transfers them to
the animator by the use of function SendAlgoEvt also provided by class Animator.
The events will cause the animator to compute the respective animation frames. The
program will terminate if the user clicks the quit button provided inside the graphical
interface.

invokation

termination

invokation, animation

sending events
invokation,

controlling

main program

graphical interface controlling

basic view (net)

process step view (procinf)

process occupation view (procload)

communication view (messinf)

causality view (causal)

(anim)
animator

input

views:

Figure 7.3: This figure shows the flow of information among the described components.

The flow of information during the execution of the program can be seen in figure
7.3. The algorithmic events of the animation differ a lot. In the following the algorithm
events of each animation are introduced. Hereby the events are structured in the order:
input event implies an animator event which causes an event function of the animator
to be called.

	
�
�
a The Broadcast with Acknowledgement Algorithm

The animation of the broadcast with acknowledgement algorithm recognizes following
events and adds to the class MyAnimator following event functions:

START i j � Start i j
� int MyAnimator::Start(int id � i, int start tm � j)

Process with identifier id initiates the broadcast with acknowledgement algorithm.

7.2. ANIMATION USING POLKA 85

SEND BROADCAST i j k � SendBrdcast i j k
� int MyAnimator::Send Brdcast(int id � i, int adj � j,

int start tm � k)

Process with identifier id sends a broadcast message to process identified by adj at
send tm.

REC BROADCAST i j k � RecBrdcast i j k
� int MyAnimator::Rec Brdcast(int id � i, int from � j,

int start tm � k)

Process with identifier id receives from process with identifier j a broadcasted message
at start tm.

SEND ACKNLDGEMNT i j k � SendAcknldgemnt i j k
� int MyAnimator::Send Acknldgement(int id � i, int to � j,

int start tm � k)

Process with identifier id acknowledges to process with identifier to that a broadcasted
message was received. The acknowledgement is sent at start tm.

REC ACKNLDGEMNT i j k � RecAcknldgemnt i j k
� int MyAnimator::Rec Acknldgement(int id � i, int from � j,

int start tm � k)

Process with identifier id receives an acknowledgement from process with identifier
from at start tm.

END WORK i j � EndWork i j
� int MyAnimator::End Work(int id � i, int start tm � j)

Process with identifier id received all expected acknowledgements at send tm.

END BROADCAST i � EndBrdcast i
� int MyAnimator::End Brdcast(int start tm � i)

At start tm the end of the animation will be animated.

	
�
�
b The GHS Spanning Tree Algorithm

The animation of GHS-MST algorithm recognizes following events and adds to the
class MyAnimator following event functions:

Wake up i j � WakeUp i j
� int MyAnimator::Wake Up(int id � i, int start tm � j)

Process with identifier id wakes up at start tm.

86 CHAPTER 7. IMPLEMENTATION

Send Mess Name i j k � SendMess Name i j k
� int MyAnimator::Send Mess Name(int id � i, int adj � j,

int start tm � k)

Mess Name denotes the name of a message chosen � fInitiate, Test, Connect, Re-
port, Change-Root, Accept, Rejectg. This message is sent from process identified by
id to process identified by adj at start tm.

Rec Mess Name i j k � RecMess Name i j k
� int MyAnimator::Rec Mess Name(int id � i, int from � j,

int start tm � k)

Mess Name denotes the name of a message chosen � fInitiate, Test, Connect, Re-
port, Change-Root, Accept, Rejectg. This message is received from process identified
by id from process identified by from at start tm.

Next Level i j � NextLevel i j
� int MyAnimator::Next Level(int id=i, int start tm=j)

Process with identifier id starts the next level as a leader of a component at start tm.

END i j � End i j
� int MyAnimator::End Anim(int id � i, int start tm � j)

Process with identifier id concluded from its convergecast information at start tm
that there exist no further outgoing edges. Thus it is the leader of the whole MST. The
end of the animation will be animated.

	
�
�
c The Ricart and Agrawala Algorithm

The animation of the algorithm by Ricart and Agrawala recognizes following events
and adds to the class MyAnimator following event functions:

TRYING i j � Trying i j
� int MyAnimator::Trying(int id � i, int start tm � j)

Process with identifier id becomes interested in its resources at start tm.

SEND REQ i j k � SendReq i j k
� int MyAnimator::Send Req(int id � i, int adj � j, int start tm � k)

Process with identifier id sends a message to process with identifier adj at send tm in
order to request access to a shared resource.

REC REQ i j k � RecReq i j k
� int MyAnimator::Rec Req(int id � i,int from � j,int start tm � k)

Process with identifier id receives a request message from process with identifier
from at start tm.

7.2. ANIMATION USING POLKA 87

SEND ACK i j k � SendAck i j k
� int MyAnimator::Send Ack(int id, int to, int start tm)

Process with identifier id acknowledges process with identifier to access to a shared
resource at send tm.

REC ACK i j k � RecAck i j k
� int MyAnimator::Rec Ack(int id � i,int from � j,int start tm � k)

Process with identifier id receives an acknowledgement from process with identifier
from at send tm.

USE i j � Use i j
� int MyAnimator::Use(int id � i, int start tm � j)

Process with identifier id enters the critical section at start tm.

EXIT CS i j � ExitCS i j
� int MyAnimator::ExitCS(int id � i, int start tm � j)

Process with identifier id exits the critical section at start tm.

SLEEPING i j � Sleeping i j
� int MyAnimator::Sleeping(int id � i, int start tm � j)

Process with identifier id changes its state to sleeping at start tm.

END i � EndAnim i
� int MyAnimator::End Anim(int start tm � i)

The animation ends at start tm.

	
�
�
d The Chandy and Mistra Algorithm

The animation of the algorithm by Chandy and Mistra recognizes following events and
adds to the class MyAnimator following event functions:

START COL i j � StartCol i j
� int MyAnimator::Start Col(int id � i, int start tm � j)

Process with identifier id starts with the colouring algorithm at start tm.

DEC COL i j � DecCol i j
� int MyAnimator::Dec Col(int id � i, int start tm � j)

Process with identifier id decided for a colour at start tm.

TAKE FORK i j k � TakeFork i j k
� int MyAnimator::Take Fork(int id � i,int adj � j,int start tm � k)

At start tm process with identifier id takes the fork which is shared with process

88 CHAPTER 7. IMPLEMENTATION

identified by adj.

HUNGRY i j � Hungry i j
� int MyAnimator::Trying(int id � i, int start tm � j)

Process with identifier id gets interested in its resources at start tm.

SEND REQ i j k � SendReq i j k
� int MyAnimator::Send Req(int id � i,int adj � j,int start tm � k)

At start tm process with identifier id sends a request message to process with identi-
fier adj.

REC REQ i j k � RecReq i j k
� int MyAnimator::Rec Req(int id � i,int from � j,int start tm � k)

At start tm process with identifier id receives a request message from process with
identifier adj.

SEND FORK i j k � SendFork i j k
� int MyAnimator::Send Req(int id � i,int adj � j,int start tm � k)

At start tm process with identifier id sends a message fork to process with identifier
adj. The message signals the receiver that it can access a shared resource.

REC FORK i j k � RecFork i j k
� int MyAnimator::Rec Fork(int id � i,int from � j,int start tm � k)

At start tm process with identifier id receives a message fork from process with iden-
tifier adj.

USE i j � Use i j
� int MyAnimator::Use(int id � i, int start tm � j)

Process with identifier id enters its critical section at start tm.

EXIT CS i j � ExitCS i j
� int MyAnimator::ExitCS(int id � i, int start tm � j)

Process with identifier id exits its critical section at start tm.

SLEEPING i j � Sleeping i j
� int MyAnimator::Trying(int id � i, int start tm � j)

Process with identifier id changes its state to sleeping at start tm.

END i � EndAnim i
� int MyAnimator::End Anim(int start tm � i)

At start tm the end of the animation will be animated.

7.2. ANIMATION USING POLKA 89

	
�
�
e The Choy and Singh Alg
 with Failure Locality �

This animation uses a further view called the state window of the basic view (see also
chapter 5.8). This view will be introduced first before proceeding to the events and
event functions recognized by the main program and added to class MyAnimator. The
following structure was applied to class BasicView:

class BasicView:public View
f
public:

BasicView();
void Init(int, int, double, double);
void Wait1(int, int, int);
void Wait2(int, int, int);
void Collect(int, int, int);
void Use CS(int, int, int);
void Sleeping(int, int, int);

private:
� � �

g;

void BasicView::Init(int send tm, int max proc, double ixrad,
double iyrad)

The state window of the basic view will appear on screen at send tm. Hereby param-
eter max proc denotes the maximum umber of processes which will be used. The size
of the circles representing a process is given by parameters ixrad and iyrad.

void BasicView::Wait1(int send tm, int id, int frametime)

A process with identifier id will appear at send tm. It will continuously be cycling in
the area which indicates that this process is in state wait1. Parameter frametime is
used to delete old actions and animation objects.

void BasicView::Wait2(int send tm, int id, int frametime)

At send tm the process with identifier id will move to the area which indicates that
this process is in state wait2.

void BasicView::Collect(int send tm, int id, int frametime)

At send tm the process with identifier id will move to the area which indicates that
this process is in state collect.

void BasicView::Use CS(int send tm, int id, int frametime)

At send tm the process with identifier id will move to the area which indicates that
this process is inside its critical section.

90 CHAPTER 7. IMPLEMENTATION

void BasicView::Sleeping(int send tm, int id, int frametime)

Process with identifier id will vanish at send tm.

events� The animation recognizes the following events and adds to the class MyAn-
imator the following event functions:

START COL i j � StartCol i j
� int MyAnimator::Start Col(int id � i, int start tm � j)

Process with identifier id starts with the colouring algorithm at start tm.

DEC COL i j � DecCol i j
� int MyAnimator::Dec Col(int id � i, int start tm � j)

Process with identifier id decided for a colour at start tm.

TAKE FORK i j k � TakeFork i j k
� int MyAnimator::Take Fork(int id � i,int adj � j,int start tm � k)

At start tm process with identifier id takes the fork which is shared with process
identified by adj.

WAIT1 i j � Wait1 i j
� int MyAnimator::Wait1(int id � i, int start tm � j)

At start tm process with identifier id got interested in its resources and tries to enter
the asynchronous doorway.

WAIT2 i j � Wait2 i j
� int MyAnimator::Wait2(int id � i, int start tm � j)

At start tm process with identifier id passed the asynchronous doorway and tries to
enter the synchronous doorway.

COLLECT i j � Collect i j
� int MyAnimator::Collect(int id � i, int start tm � j)

At start tm process with identifier id exited the asynchronous doorway and tries to
collect all forks.

SEND FORK i j k � SendFork i j k
� int MyAnimator::Send Fork(int id � i,int adj � j,int start tm � k)

At start tm process with identifier id sends a message fork to process with identifier
adj. The message signals the receiver that it can access a shared resource.

REC FORK i j k � RecFork i j k
� int MyAnimator::Rec Fork(int id � i,int from � j,int start tm � k)

At start tm process with identifier id receives a message fork from process with iden-

7.2. ANIMATION USING POLKA 91

tifier from.

SEND BRDCAST i j k l � SendBrdcast i j k l
� int MyAnimator::Send Brdcast(int id � i, int adj � j,

intm num � k, int start tm � l)

At start tm process with identifier id broadcasts message mm num to process with
identifier adj.

REC BRDCAST i j k l � RecBrdcast i j k l
� int MyAnimator::Rec Brdcast(int id � i, int from � j,

int m num � l, int start tm � k)

At start tm process with identifier id receives message mm num from process with
identifier from.

USE i j � Use i j
� int MyAnimator::Use(int id � i, int start tm � j)

Process with identifier id enters its critical section at start tm.

EXIT CS i j � ExitCS i j
� int MyAnimator::ExitCS(int id � i, int start tm � j)

Process with identifier id exits its critical section at start tm.

SLEEPING i j � Sleeping i j
� int MyAnimator::Trying(int id � i, int start tm � j)

Process with identifier id changes its state to sleeping at start tm.

END i � EndAnim i
� int MyAnimator::End Anim(int start tm � i)

At start tm the end of the animation will be animated.

	
�
�
f The Choy and Singh Alg
 with Failure Locality �

The animation uses also the state view of the basic view and algorithm events described
for the animation of Choy and Singh’s algorithm with failure locality �. The following
events and event functions were added to the main program and class MyAnimator.

RELEASE i j � Release i j
� int MyAnimator::Release(int id � i, int start tm � j)

Process with identifier id releases its higher coloured forks at start tm.

GOT L FORKS i j � GotLForks i j
� int MyAnimator::Got L Forks(int id � i, int start tm � j)

Process with identifier id collected all its higher coloured forks at start tm.

92 CHAPTER 7. IMPLEMENTATION

SEND REQUEST i j k � SendReq i j k
� int MyAnimator::Send Req(int id � i,int adj � j,int start tm � k)

At start tm process with identifier id sends a request message to process with identi-
fier adj.

REC REQUEST i j k � RecReq i j k
� int MyAnimator::Rec Req(int id � i,int from � j,int start tm � k)

At start tm process with identifier id receives a request message from process with
identifier from.

	
�
�
g The Periodic Counting Network

There exist two different animations for the periodic counting network. The first an-
imation reads algorithmic events from a trace-file, while the other interacts with the
user by associating with inputs and processes of the counting network call-back rou-
tines. However, the interactive animation uses the same event functions as the trace-file
animation, so only a single description for both animations will follow.

Besides the basic view the animations of counting networks show two further views
for input and output of the counting network, both are implemented in two further
classes (see also chapter 6.5). These classes are introduced before proceeding to de-
scribe events added to class MyAnimator.

class Input : public View
f
public:

int Init(int, int);
int Appear(int, int);

g;

int Input::Init(int frametime, int n)

At frametime the input window for a counting network of width n will be created.

int Input::Appear(int channel, int frametime)

At frametime for input chanel the displayed number of tokens is increased by one.
An arrow marks the channel were the input token appears.

class Output : public View
f
public:

int Init(int, int, double);
int Vanish1(int);
int Vanish2(int, int, int);

g;

7.3. ALGORITHM IMPLEMENTATIONS USING DIAS 93

int Output::Init(int frametime, int n, double rad)

At frametime the output window for a counting network of width n will be created.
Tokens will be displayed with radius rad.

int Output::Vanish1(int frametime)

If at every output node a token is shown then at frametime for every output a token
will disappear.

int Output::Vanish2(int frametime, int chanel, int number)

At frametime a token with identifier number will appear on the output indicated by
parameter chanel.

events� The animation recognizes the following events and adds to the class MyAn-
imator the following event functions:

APPEAR i � Appear i
� int MyAnimator::Appear(int chanel � i)

A token appears at input chanel of the counting network.

RECEIVE i j k l � Receive i j k l
� int MyAnimator::Receive(int block � i, int depth � j,

int number � k, int position � l)

The process identified by parameters block, depth and number receives a token from
the input channel defined by parameter position.

SEND i j k l � Send i j k l
� int MyAnimator::Send(int block � i, int depth � j, int number � k)

The process identified by parameters block, depth and number sends a token to its
next output channel.

VANISH i � Vanish i
� int MyAnimator::Vanish(int chanel � i)

A token disappears at output chanel of the counting network.

��� Algorithm Implementations Using DIAS

The algorithms were implemented for the simulator of LYDIAN. For each algorithm
states and messages will be listed. Further transitions and the invoked functions will
be described.

94 CHAPTER 7. IMPLEMENTATION

����� The Broadcast with Acknowledgement Algorithm

Below states, messages and transitions of the broadcast with acknowledgement algo-
rithm are listed. Figure 7.4 shows the state diagram of the algorithm.

states: sleeping, waiting
messages: BROADCAST, ACKNOW

waitingsleeping

RECMES(BROADCAST) RECMES(BROADCAST),

RECMES(BROADCAST)

RECMES(ACKNOW)

RECMES(ACKNOW)

INITPROTOCOL,

Figure 7.4: State diagram of the protocol

transitions:
sleeping � RECMES(BROADCAST) � forward1
sleeping � RECMES(ACKNOW) � error
sleeping � INITPROTOCOL � start
waiting � RECMES(BROADCAST) � forward
waiting � RECMES(ACKNOW) � forward
waiting � INITPROTOCOL � error

start()

The process which calls this function is initiator of the broadcast algorithm. If there
exist any neighbours it will send broadcast messages and changes its state to waiting.
Otherwise it terminates.

forward()

The process which calls this function is assumed to be in state waiting and it has re-
ceived either message broadcast or an acknowledgement. A broadcast message will
be responded with sending an acknowledgement. If the process received all acknowl-
edgements it sends an acknowledgement to its parent process (the process which sent
the first broadcast message) and terminates.

forward1()

The process which calls this function is in state sleeping. It has received a broadcast
message from another process which will be remembered as the parent process. If
there exist any other adjacent processes it will change to state waiting and send these
processes broadcast messages. Otherwise it will answer the parent process with an
acknowledgement and will terminate.

7.3. ALGORITHM IMPLEMENTATIONS USING DIAS 95

����� The GHS Spanning Tree Algorithm

Below states, messages and transitions of the GHS spanning tree algorithm are listed.
Figure 7.5 shows the state diagram of the algorithm.

states: sleeping, find, found
messages: CONNECT, INITIATE, TEST, ACCEPT,

REJECT, REPORT, CHANGEROOT

RECMES(REPORT),

RECMES(ACCEPT),

RECMES(REJECT)

sleeping

findfound

INITPROTOCOL,

RECMES(TEST),

RECMES(CHANGEROOT)

RECMES(CONNECT)

RECMES(TEST),

RECMES(REJECT),

RECMES(ACCEPT),

RECMES(REPORT),

INITPROTOCOL,

RECMES(CONNECT),

RECMES(CONNECT)

RECMES(TEST),

INITPROTOCOL,

RECMES(CHANGEROOT)

RECMES(CONNECT),

RECMES(INITIATE),

RECMES(CONNECT)

Figure 7.5: State diagram of the protocol

transitions:
sleeping � RECMES(CONNECT) � wake up 0();

resp connect()
sleeping � RECMES(INITIATE) � error
sleeping � RECMES(TEST) � wake up 0();

resp test()
sleeping � RECMES(ACCEPT) � error
sleeping � RECMES(REJECT) � error
sleeping � RECMES(REPORT) � error
sleeping � RECMES(CHANGEROOT) � error
sleeping � INITPROTOCOL � wake up 0()
find � RECMES(CONNECT) � resp connect()
find � RECMES(INITIATE) � resp initiate()
find � RECMES(TEST) � resp test()
find � RECMES(ACCEPT) � resp accept()
find � RECMES(REJECT) � resp reject()
find � RECMES(REPORT) � resp report()

96 CHAPTER 7. IMPLEMENTATION

find � RECMES(CHANGEROOT) � resp change root()
find � INITPROTOCOL � no call
found � RECMES(CONNECT) � resp connect()
found � RECMES(INITIATE) � resp initiate()
found � RECMES(TEST) � resp test()
found � RECMES(ACCEPT) � resp accept()
found � RECMES(REJECT) � resp reject()
found � RECMES(REPORT) � resp report()
found � RECMES(CHANGEROOT) � resp change root()
found � INITPROTOCOL � no call

wake up 0()

The process which calls this function is the leader of a level � component. It tries
to connect with its local MWOE. If there does not exist any neighbours the process
finished the computation of the MWOE and hence it will terminate.

resp connect()

The process which calls this function received a connect message. Depending on the
level of the sender’s component and the state of the link where the message was re-
ceived the process will absorb the component, delay its decision or start as the leader
of the merged components.

resp initiate()

The process which calls this function received an initiate message. It updates its values
for UID, level and best weight. Further it remembers the sender as parent process.
Delayed components which sent a connect message before will be marked as tree
edges. Then, the process sends initiate messages to tree edges with exception of the
parent process. Moreover it tests its minimum non tree edge by also taking into account
possible delayed test messages.. If the process has already determined its local MWOE
it will change its state to found and report the result to its parent. Otherwise the state
of the process will be find and the process expects the reports of its tree edges and the
result of the tested edge.

resp test()

A test message was received. Depending on level and UID of the sender the mes-
sage will be delayed or the message will be replied with accept (processes belong to
different components) or reject (processes belong to the same component).

resp accept()

An accept message was received. The process can conclude that the sender belongs to
another component and thus can update its best edge. If all expected report messages
are received the process will change its state to found. In case it is not the component’s
leader it reports its parent node the weight of its best edge. Otherwise it will search for
a new leader if a MWOE of the component exists. If there is not any MWOE the MST

7.3. ALGORITHM IMPLEMENTATIONS USING DIAS 97

is computed and the process terminates.

resp reject()

A reject message was received. The process must determine a new minimum non
tree edge to be tested. If such an edge does not exist it follows the same scenario as
described in function resp accept() which results in either reporting to the parent or
searching for a new leader or terminating the algorithm.

resp report()

The process received message report. It updates the value of the best edge and fol-
lows the scenario described in function resp accept() if all other expected reports have
arrived and a non tree edge was tested. Then the process either reports to the parent
process or determines a new leader or terminates the algorithm.

resp change root()

The process received a message change-root. If its best edge is a tree edge it will send
message change root along the respective link, otherwise it will try to combine with
the other component. If this process has received a connect message before and its
id is larger than the id of the adjacent process it will start as the leader of the merged
component and will send initiate messages along its tree edges. In the other case it
will send message connect.

����� The Ricart and Agrawala Algorithm

The implemented algorithm algorithm allows the user to specify the number of entries
to the critical section and to define limits for accessing a resource and remaining in
state sleeping. The timing limits are used together with a timeout event in order to
simulate the period of time in which a process remains in either of these states. Below
states, messages and transitions of the resource allocation algorithm by Ricart and
Agrawala are listed. Figure 7.6 shows the state diagram of the algorithm.

states: sleeping, trying, use
messages: REQUEST, ACKNOW

transitions:
sleeping � RECMES(REQUEST) � receiped()
sleeping � RECMES(ACKNOW) � error
sleeping � INITPROTOCOL � start()
sleeping � TIMEOUT 1 � request()
sleeping � TIMEOUT 2 � error
trying � RECMES(REQUEST) � receiped()
trying � RECMES(ACKNOW) � receiped()
trying � INITPROTOCOL � error
trying � TIMEOUT 1 � error
trying � TIMEOUT 2 � error
use � RECMES(REQUEST) � receiped()

98 CHAPTER 7. IMPLEMENTATION

sleeping

tryinguse RECMES(ACKNOW)

RECMES(REQUEST),

RECMES(ACKNOW)

RECMES(REQUEST)

TIMEOUT_1TIMEOUT_2

RECMES(REQUEST)

Figure 7.6: State diagram of the protocol

use � RECMES(ACKNOW) � error
use � INITPROTOCOL � error
use � TIMEOUT 1 � error
use � TIMEOUT 2 � exit CS()

start()

The process was waken up. It initializes a randomized time for starting a timer. The
values are chosen within the limits specified by the user. When the process receives a
timeout event it will try to access its critical section.

receiped()

� case �: The process received a request message. Depending on its state and
local clock it will either acknowledge the sender to access the common resource
or it will delay the sender.

� case �: The process received an acknowledgement. If this acknowledgement is
the last expected acknowledgement it will access its critical section. The process
will change its state to use and initialize a randomized time for starting a timer.
The limits will be chosen within the limits specified by the user. The timeout
event will mark the exit of the critical section.

request()

The process became interested in its resources. Hence it sends request messages with

7.3. ALGORITHM IMPLEMENTATIONS USING DIAS 99

a stamp of its local clock to all adjacent processes. The new state of the process is
trying.

exit CS()

The process exits its critical section, so it changes its state to sleeping and sends ac-
knowledgements to all processes which requested resources. Further it initializes a
randomized time for starting a timer. The value is chosen within the user specified
limits. The timeout event will cause the process to become interested in its resources
again later.

����� � � � Colouring by Luby

This algorithm was implemented such that it can invoke another algorithm. A process
which finished with the colouring algorithm will call a function start alg(). Below
states, messages and transitions of the � � � colouring algorithm by Luby are listed.
Figure 7.7 shows the state diagram of the algorithm.

states: sleeping, waiting
messages: COLOR, CONFIRM

waitingsleeping

RECMES(COLOR),

INITPROTOCOL,

RECMES(CONFIRM)

RECMES(CONFIRM)

RECMES(CONFIRM)

RECMES(CONFIRM)

Figure 7.7: State diagram of the protocol

transitions:
sleeping � RECMES(COLOR) � col receipe()
sleeping � RECMES(CONFIRM) � col receipe()
sleeping � INITPROTOCOL � col start()
waiting � RECMES(COLOR) � error
waiting � RECMES(CONFIRM) � col receipe()
waiting � INITPROTOCOL � error

col start()

If a temporary colour is not chosen the process will choose an available value. The
process sends a colour message including the value of the temporary colour to all ad-
jacent processes which have not decided for a colour. If from all expected neighbours
a colour message is received the process will create a confirm message. This message
will be sent to all adjacent processes if the final colour value is � �. Otherwise the

100 CHAPTER 7. IMPLEMENTATION

message will only be sent to those processes which participated searching a new colour
in this phase.

col receipe()

� case process received a colour message: If a colour is not chosen the process
will choose an available value. It compares the value of the sender with its own
value. If they are equal the final colour of the process will be set to zero. If this
message is the last expected colour message, confirm messages will be sent as
described for function col start().

� case process received a confirm message in state waiting: The process has de-
cided for its colour but still expects colours from its neighbours. It updates the
colour value for the sender of the message. In case the message is the last ex-
pected confirm message the process will change its state to sleeping and start
with the next algorithm.

� case process received a confirm message in state sleeping: If the sender’s colour
is greater than zero the value will be removed from process’s palette of available
colours. If all expected confirm messages were sent the process will either finish
the algorithm (case all processes decided for a colour with value greater than
zero), it will change to state waiting (case its final colour is greater zero) or it
will start with the next phase of the algorithm by calling function col start().

����� The Chandy and Mistra Algorithm

The implementation of the algorithm by Chandy and Mistra first starts the ��� colour-
ing by Luby in order to initialize the precedence graph. Analogous to the algorithm
by Ricart and Agrawala the user is able to specify the number of entries to the critical
section and to define limits for accessing a resource and remaining in state sleeping.
The timing limits are used together with a timeout event in order to simulate the period
of time in which a process remains in either of these states. Below states, messages
and transitions of the resource allocation algorithm by Chandy and Mistra are listed.
Hereby the states of the colouring phase are omitted. Figure 7.8 shows the state dia-
gram of the algorithm.

states: sleeping, hungry, eating
messages: FORK, REQUEST

transitions:
sleeping � RECMES(FORK) � error
sleeping � RECMES(REQUEST) � receiped()
sleeping � INITPROTOCOL � colouring
sleeping � TIMEOUT 1 � wake up()
sleeping � TIMEOUT 2 � error
hungry � RECMES(FORK) � receiped()
hungry � RECMES(REQUEST) � receiped()
hungry � INITPROTOCOL � error
hungry � TIMEOUT 1 � error

7.3. ALGORITHM IMPLEMENTATIONS USING DIAS 101

sleeping

hungryeating RECMES(FORK)

RECMES(REQUEST),

RECMES(FORK)

TIMEOUT_1TIMEOUT_2

RECMES(REQUEST)

RECMES(REQUEST)

colouring

INITPROTOCOL

Figure 7.8: State diagram of the protocol

hungry � TIMEOUT 2 � error
eating � RECMES(FORK) � error
eating � RECMES(REQUEST) � receiped()
eating � INITPROTOCOL � error
eating � TIMEOUT 1 � error
eating � TIMEOUT 2 � exit CS()

wake up()

The process became interested in its resources due to a timeout event. If the process
owns all forks it will switch to state hungry and access its resources. The time that the
process will spent inside its critical section is given by a timer which will be randomly
chosen within the user specified timing assumptions. Otherwise (in case the process
does not own its resources) the process will sent request messages to its neighbours.

receiped()

� case received request: If the process holds a dirty fork and is not inside its
critical section, it will reply by sending message fork. Otherwise it will delay
the response until it could exit its critical section.

� case received fork: If all expected forks are received the process will switch its
state to hungry and access its resources. The process initializes a timer according
to the user specified timing assumptions. This defines the period a process will
stay inside its critical section.

102 CHAPTER 7. IMPLEMENTATION

exit CS()

The process exits its critical section due to a timeout event. It changes its state to
sleeping and releases all requested forks. Further it initializes a timer according to the
user specified timing assumptions. This defines the period a process will remain not
being interested in its resources.

����
 The Choy and Singh Algorithm with Failure Locality �

Like the implementation of the algorithm by Chandy Mistra the implementation starts
the ��� colouring by Luby in order to initialize the precedence graph. Also the user is
able to specify the number of entries to the critical section and the limits for accessing
a resource and remaining in state sleeping. The timing limits are used together with
a timeout event in order to simulate the period of time in which a process remains in
either of these states. Below states, messages and transitions of the � fault tolerant
resource allocation algorithm by Choy and Singh are listed. Hereby the states of the
colouring phase are omitted. Figure 7.9 shows the state diagram of the algorithm.

states: sleeping, wait1, wait2, collect, eating
messages: FORK, BROADCAST

sleeping

wait1

colouring

INITPROTOCOL

wait1

TIMEOUT_1TIMEOUT_2

RECMES(BROADCAST)collecting

RECMES(FORK) RECMES(BROADCAST)

RECMES(FORK)

RECMES(BROADCAST), RECMES(BROADCAST)

eating

RECMES(BROADCAST) RECMES(BROADCAST)

RECMES(BROADCAST)

Figure 7.9: State diagram of the protocol

7.3. ALGORITHM IMPLEMENTATIONS USING DIAS 103

transitions:
sleeping � RECMES(FORK) � error
sleeping � RECMES(BROADCAST) � receiped()
sleeping � INITPROTOCOL � colouring
sleeping � TIMEOUT 1 � wake up()
sleeping � TIMEOUT 2 � error
wait1 � RECMES(FORK) � error
wait1 � RECMES(BROADCAST) � receiped()
wait1 � INITPROTOCOL � error
wait1 � TIMEOUT 1 � error
wait1 � TIMEOUT 2 � error
wait2 � RECMES(FORK) � error
wait2 � RECMES(BROADCAST) � receiped()
wait2 � INITPROTOCOL � error
wait2 � TIMEOUT 1 � error
wait2 � TIMEOUT 2 � error

collect � RECMES(FORK) � receiped()
collect � RECMES(BROADCAST) � receiped()
collect � INITPROTOCOL � error
collect � TIMEOUT 1 � error
collect � TIMEOUT 2 � error
eating � RECMES(FORK) � error
eating � RECMES(BROADCAST) � receiped()
eating � INITPROTOCOL � error
eating � TIMEOUT 1 � error
eating � TIMEOUT 2 � exit CS

pass 1st door()

A process calls this function when it was allowed to pass the asynchronous doorway.
It changes its state to wait2 and checks for also passing the synchronous doorway. If it
may pass the synchronous doorway as well it will broadcast m� to all neighbours and
it will call function pass 2nd door().

pass 2nd door()

The process calls this function when it was allowed to pass the synchronous doorway.
It changes its state to wait2 and checks for forks. If all forks are collected it will
broadcast m
 to lower coloured neighbours and will call function eat().

eat()

The process changes its state to eating and initializes a timer according to the limits
specified by the user. The timer defines the duration of the process accessing its critical
section.

104 CHAPTER 7. IMPLEMENTATION

wake up()

The process became interested in its resources due to a timeout event and checks for
entering the asynchronous doorway. If the process may enter the asynchronous door-
way it will broadcast m� to all higher coloured neighbours. Afterwards it calls function
pass �st door��.

receiped()

� case process received a broadcast message: The process updates the status of
its doorways according to the broadcasted value � m��m��m
. If the process
wishes to pass a doorway and the new evaluated state allows passing this door-
way, the process will execute the doorway entry code and call the accordant
function pass 1st dooray() or pass 2nd dooray(). If value m� is broadcasted
then the sender also requests the common fork. It will reply with sending a fork
in states sleeping, wait1, wait2. In state collect a fork will only be sent if the
sender has a lower colour value, while in state eating never forks will be sent.

� case process received a fork message: If the process received all expected fork
messages it will broadcast m
 to all lower coloured neighbours and call function
eat().

exit CS()

The process exits its critical section due to a timeout event. It changes its state to
sleeping and releases all requested forks. Further it initializes a timer according to the
user specified timing assumptions. This defines the period a process will remain not
being interested in its resources.

����� The Choy and Singh Algorithm with Failure Locality �

Only some functions differ from previous implementation in section 7.3.6, but the
function names stay the same. Therefore only new transitions and changes of functions
will be described in the following.

states: sleeping, wait1, wait2, collect, eating
messages: FORK, BROADCAST, REQUEST

transitions:
sleeping � RECMES(REQUEST) � receiped()
wait1 � RECMES(REQUEST) � receiped()
wait2 � RECMES(REQUEST) � receiped()

collect � RECMES(REQUEST) � receiped()
eating � RECMES(REQUEST) � receiped()

pass 2nd door()

The process changes its state to collect and distinguishes between the following cases:

� case process collected all forks: The process broadcasts m
 to all lower coloured
neighbours and calls function eat().

7.3. ALGORITHM IMPLEMENTATIONS USING DIAS 105

sleeping

wait1

colouring

wait1

TIMEOUT_1TIMEOUT_2

RECMES(BROADCAST)collecting

RECMES(FORK) RECMES(BROADCAST)

RECMES(FORK),

RECMES(BROADCAST), RECMES(BROADCAST),

eating

RECMES(BROADCAST),

RECMES(REQUEST)

RECMES(BROADCAST),

RECMES(REQUEST)

RECMES(REQUEST)

RECMES(REQUEST)

RECMES(BROADCAST),

RECMES(REQUEST)

INITPROTOCOL

Figure 7.10: State diagram of the protocol

� case process received all forks from lower coloured neighbours: Process sends
request messages to higher coloured processes.

� case process did not receive all forks from lower coloured neighbours: Process
sends first request messages to lower coloured processes

receiped()

� case process received a broadcast message: The only difference in this case is
caused by not interpreting m� as a request message.

� case process received a request message: In states sleeping, wait1, wait2 the
process replies with sending message fork. In state collect it will send a fork
only if the sender has lower colour or it has not collected all lower coloured
forks. When a process in state collect sends a fork message to a process with
lower colour, a value will be included signaling the receiver that the fork is
also desired by the sender. If the process has collected all lower coloured forks
until releasing one it will also have to release all collected higher coloured forks
which were requested before. In state eating the process will never release a
fork. If forks are not released they will be marked as being requested.

106 CHAPTER 7. IMPLEMENTATION

� case process received a fork message: If the fork is the process’s last expected
fork it will broadcast m
 to all lower coloured neighbours and call function
eat(). If the fork is only the process’s last expected lower coloured fork it will
request its higher coloured forks. In case the received fork is also desired by its
sender, but the process has not collected all lower coloured forks it will reply
with sending message fork (important case since after sending a request another
party might request a lower coloured fork).

����
 The Periodic Counting Network

The following algorithm simulates the behaviour of a counting network. The user can
specify limits for the number of tokens which are produced at each input of the count-
ing network. The algorithm assumes that inside the communication graph processes
are connected in the way balancers are connected in the description of the periodic
counting network (see chapter 6.3). Below states, messages and transitions of this
algorithm are listed.

states: sleeping, produce, wait, consume
messages: PACKAGE, END

RECMESSleeping

TIMEOUT_1

RECMES

TIMEOUT_1 Terminate

Produce

Wait

Consume

IN
IT

PROTOCOL

INITPROTOCOL

INITPROTOCOL

Figure 7.11: State diagram of the protocol

transitions:
sleeping � RECMES(PACKAGE) � awake()
sleeping � RECMES(END) � error
sleeping � INITPROTOCOL � start()
sleeping � TIMEOUT 1 � error
produce � RECMES(PACKAGE) � error
produce � RECMES(END) � error

7.3. ALGORITHM IMPLEMENTATIONS USING DIAS 107

produce � INITPROTOCOL � error
produce � TIMEOUT 1 � produce()
wait � RECMES(PACKAGE) � wait()
wait � RECMES(END) � wait()
wait � INITPROTOCOL � start()
wait � TIMEOUT 1 � wait2()

consume � RECMES(PACKAGE) � consume()
consume � RECMES(END) � consume()
consume � INITPROTOCOL � start()
consume � TIMEOUT 1 � terminate()

start()

The process is waken up. Depending whether the process is an input node of the
network, a balancer or an output node of the network it changes its state to produce,
wait or consume. If the process is in state produce it will initialize a timer. This defines
the time this process must wait until it produces a token.

produce()

If the process has already produced all tokens it will send message end to its adjacent
balancer in order to signal the topmost output process to terminate the program.

Otherwise the process produces a token and sends message package to its adjacent
balancer. Further it initializes a timer in order to define the time this process must wait
until it may produce the next token.

wait()

The process is in state wait and received either message end or message package. It
buffers the message and initializes a timer. This defines the time this process must wait
until it passes this message to the next balancer or output node.

wait2()

The process in state wait reads the next message from its buffer. A end message will
be sent to the upper output channel such that it will finally reach the topmost output of
the network, while a package message will be sent to the output channel to which the
respective counting network would send the next token in the same situation.

consume()

The process is in state consume receives either a message package or a message end.
If the process has received as many end messages as the width of the network then the
process initializes a timer. This timer defines the time until the protocol terminates.

awake()

A sleeping process received a message. The process determines whether it is a bal-
ancer or an output node of the counting network and calls depending on its state either

108 CHAPTER 7. IMPLEMENTATION

function wait() or consume().

terminate()

The process terminates the protocol.

��� Creation of Network Description Files

Network description files define the structure of how processes are interconnected.
They define for each process p of the network adjacent processes which are directly
connected with a link to p and also the quality of the link i.e how fast is a message
expected to traverse this link. Further it can be specified when processes wake up
and the time a process needs to execute a computation. The simulator will execute
protocols according to the applied network description file. For the animations also the
network description files are of importance since they allow users to design themselves
a graph’s layout.

The implementation uses an instance of LEDA’s graphwin for creation of network
description files. Hereby to the graphwin menus a topic timing was added. This allows
to apply a time distribution to the created graph by keeping the whole functionality
of graphwin e.g. showing the graph in different layouts. For writing the network
description to a file the submenus “Save Distribution” and “Save Graph Structure”
were added to the file menu of graphwin. The first one creates a network description
file for the simulator, while the other is created for animation purposes.

The menu timing contains submenus which allow either the modification of the
used distribution or gain information. Following submenus were implemented:

� asynchronous timing: The user is allowed to apply a timing distribution to pro-
cesses and links which results in an asynchronous execution. The user can select
among the following distributions:

� uniform distribution: The value is chosen between an upper and a lower
limit. Hereby each value is selected with same probability.

� geometric distribution: The user specifies a lower and upper bound within
a value is chosen. Hereby a third value called mean is the most likely value.

� normal distribution: The user defines the upper/lower limit and the vari-
ance of the distribution.

� deterministic distribution: The user selects one value which specifies the
exact time.

� synchronous timing: The user is allowed to apply a timing distribution for syn-
chronous executions. The user can select among the following distributions:

� ABD

� absolute synchronous: Each process is working at the same computation
step at the same time.

� information: This submenu informs about the selected timing.

7.4. CREATION OF NETWORK DESCRIPTION FILES 109

For each distribution the user has to specify values for process step delay, link delay
and initialization time of processes. With a menu button called options the user can
specify values which are only valid for user selected processes or links.

main program

invokation

(graphwin)

graphical interface

save timing specification

view timing specification

edit timing specification

Figure 7.12: The flow of information of the interface for creating network description files

The user can change interactively some values which specify the timing. For this
reason an object called time type was created. A global variable time spec of type
time type contains the latest timing information and provides functions for the output
of data. Clicking submenus which change the timing information will call functions
allowing the modification of time spec. The flow of information can be seen in figure
7.12. Hereby the following functions support the interaction between the user and the
graphical interface:

void select edge param(GraphWin& gw,
time type& new time spec)

A menu will be created which allows the user to change the timing specification given
by parameter new time spec for selected links of graphwin object gw.

void select some(GraphWin& gw, time type& new time spec)

A menu will be created which asks the user to specify the initialization times for se-
lected processes of graphwin object gw. Parameter new time spec containing timing
information for gw will be updated.

void save graph str(GraphWin& gw)

This function saves the graph structure of graphwin object gw to a file which can be
read by an animator.

void save distr(GraphWin& gw)

This function saves the timing information of global variable time spec and graphwin
object gw to a file which can be read by the simulator.

110 CHAPTER 7. IMPLEMENTATION

void show init node(GraphWin& gw)

For the graphwin object gw the initialization times of processes are shown.

void show com edge(GraphWin& gw)

For a selected link of graphwin object gw the communication times are displayed.

void inform timing(GraphWin& gw)

The user will be informed about the timing specifications for graphwin object gw.

void timing(GraphWin& gw, int dist)

A menu appears which allows to modify the timing specifications of graphwin object
gw according to the in parameter dist chosen distribution.

main()

The main program creates a graphwin object called gw. It creates the respective menus
for gw and initializes the appearance of gw. By calling for gw function edit() of the
graphwin object the interaction with the user starts.

Chapter 	

Basic Findings and Future Work

This work offered a set of basic distributed algorithms and animations which are ac-
cessible inside LYDIAN. They can be tested with different communication graphs and
timing assumptions selected by the user. All animations use the structure of anima-
tions which is introduced in chapter 2. The animations always show the basic view
and offers the user to choose among a set of four further views each showing a specific
aspect of the algorithm. The implementation of these four views can be used for any
animation of a distributed algorithm using message passing. Therefore it will be easier
to develop new animation for this class of algorithms since further developments need
only to concentrate on the main idea of the algorithm.

The motivation of creating animations was to help an user understanding a particu-
lar algorithm. However, an animation cannot substitute studying also the theory of an
algorithm. For this reason each introduced algorithm of this work was explained and
analyzed.

The educational benefit of these animations needs to be examined in the future.
This will be done for example in the course on distributed algorithms by Marina Pap-
atriantafilou and Philippas Tsigas.

Besides the extension of algorithms and animations available for LYDIAN future
work will be about building tools which allow users to create animations themselves.
It might also be interesting to allow users to interact in an animation which reads
events from a trace-file. The user might explore for a state of the system different
scenarios which could convince the user from the correctness of the algorithm. Due
to the interaction the following events of the trace-file might not lead to a consistent
execution anymore. Hence, the problem of keeping the trace-file consistent needs a
fast and efficient solution in order to guarantee a smooth animation.

Bibliography

[1] J. Aspnes, M. Herlihy, N. Shavit, Counting Networks, 1993.

[2] K.M. Chandy and J. Mistra. The Drinking Philosophers Problem. ACM Transac-
tions on Programming Languages and Systems,633-646, 1984.

[3] M. Choy and A.K. Singh. Resource Allocation. ACM Transactions on Program-
ming Languages and Systems, 535-559, May 1995.

[4] T.H. Corman, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms, page 505,
MIT Press, Cambridge, Massachusetts.

[5] R.G. Gallager, P.A. Humblet, and P.M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on Programming Lan-
guages and Systems, 5(1):66-77, January 1983.

[6] D. Heller. Motif Programming Manual for OSF/Motif Version 1.1, O’Reilly &
Associates, Sebastopol, CA, 1991.

[7] J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7:48-50,
1956.

[8] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

[9] M. Luby. Removing Randomness in Parallel Computation Without a Processor
Penalty. 9th Annual Symposium on Foundations of Computer Science, 5:166-
170, 1988.

[10] K. Mehlhorn, S. Näher. The LEDA Platform of Combinatorial and Geometric
Computing, to appear with Cambridge University Press, 1999.

[11] N.A. Lynch. Distributed Algorithms, pages 63-70, 509-524, Morgan Kaufmann
Publishers, Inc. San Francisco, California.

[12] M. Papatriantafilou P. Tsigas. Towards a Library of Distributed Algorithms and
Animations. Proceedings of the 4th International Conference on Computer Aided
Learning and Instruction in Science and Engineering (CALISCE ’98), pages 407-
410, 1998.

BIBLIOGRAPHY 113

[13] G. Ricart, A. K. Agrawala Optimal Algorithm for Mutual Exclusion in Computer
Networks, Communications of the ACM, January 1981, Volume 24, Number 1,
pp. 9-17.

[14] John Stasko. POLKA Animation Designer’s Package, Technical Report, Georgia
Institute of Technology, 1995.

[15] G. Tel Introduction to Distributed Algorithms Cambridge University Press, 1994.

[16] J.L. Welch, L. Lamport, N.A. Lynch. A lattice-structured proof technique applied
to a minimum spanning tree algorithm. In Proceedings of the Seventh Annual
ACM Symposium on Principles of Distributed Computing, page 28-43, Toronto,
Ontario, Canada, August 1988.

