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Exercise A.6

Let Ω be the unit ball in Rd, d = 1, 2, 3, i.e., Ω = {x ∈ Rd : |x| < 1}. For which
values of λ ∈ R does the function v(x) = |x|λ belong to L2(Ω) respectively
H1(Ω)?

Solution: It holds that v ∈ L2(Ω) if the function is bounded in L2(Ω)-norm, i.e.
we want to check for what values of λ ∈ R it holds that

‖v‖L2(Ω) :=

(∫
Ω

|v(x)|2 dx

)1/2

<∞.

For convenience, we look at the squared norm and note that by using spherical
coordinates we have

‖v‖2L2(Ω) =

∫
Ω

|v(x)|2 dx =

∫
Ω

|x|2λ dx =

∫
Sd−1

1 (0)

dσ

∫ 1

0

r2λrd−1 dr,

where Sd−1
1 (0) denotes the surface of the unit ball in Rd. The surface integral

will be evaluated to a constant C depending on the dimension d. Hence it
suffices to analyze for what values of λ ∈ R it holds that∫ 1

0

r2λrd−1 dr <∞.

It is well known that this integral converges whenever the exponent is larger
than -1, hence we seek values of λ such that

2λ+ d− 1 > −1 =⇒ λ > −d
2
.

We may thus conclude that

|x|λ ∈ L2(Ω) if λ > −d
2
,

|x|λ /∈ L2(Ω) if λ ≤ −d
2
.

To check when v ∈ H1(Ω), we check when it holds that

‖v‖H1(Ω) :=
(
‖v‖2L2(Ω) + |v|21

)1/2
<∞.

Here, it suffices to look at the seminorm | · |1, since we already have the result
for ‖v‖L2(Ω). We check for what values of λ ∈ R it holds that

|v|21 :=

∫
Ω

|∇v|2 dx =

∫
Ω

|∇(|x|λ)|2 dx <∞.

At first, we note that for each partial derivative we have

∂xk
(|x|λ) = ∂xk

(x2
1 + ...+ x2

d)
λ/2 =

λ

2
(x2

1 + ...+ x2
d)
λ/2−1 · 2xk = λ|x|λ−2xk.
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Consequently, we get

(∇(|x|λ))2 = ∇(|x|λ) · ∇(|x|λ) = (λ|x|λ−2)2 (x2
1 + ...+ x2

d)︸ ︷︷ ︸
=|x|2

= λ2|x|2λ−2.

Hence, by once again applying spherical coordinates, we find for the integral

|v|21 =

∫
Ω

λ2|x|2λ−2 dx = λ2

∫
Sd−1

1 (0)

dσ

∫ 1

0

r2λ−2rd−1 dr.

Similarly as above, the surface integral equals a constant C dependent of the
dimension d, and the integral over the radius converges whenever

2λ− 2 + d− 1 > −1 =⇒ λ >
2− d

2
=⇒ λ > 1− d

2
.

The conclusion is

|x|λ ∈ H1(Ω) if λ > 1− d

2
,

|x|λ /∈ H1(Ω) if λ ≤ 1− d

2
.
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Exercise A.11

Let Ω = (0, 1) and f(x) = 1/x. Show that f /∈ L2(Ω). Show that f ∈ H−1(Ω)
by defining the linear functional f(v) = (f, v), for all v ∈ H1

0 (Ω), and proving
the inequality

|(f, v)| ≤ C‖v′‖, ∀v ∈ H1
0 (Ω). (1)

Conclude that H−1(Ω) 6⊂ L2(Ω).

Solution: The fact that f /∈ L2(Ω) follows from its unboundedness in L2(Ω)-
norm, which is seen by

‖f‖2L2(Ω) =

∫
Ω

|f(x)|2 dx =

∫ 1

0

1

x2
dx = −

[
1

x

]1

0

=∞.

Next, we let f be the Riesz representative to the linear functional f , and want
to show that this linear functional lies in H−1(Ω). We note that it suffices to
show the inequality (1), since this implies that

‖f‖H−1(Ω) = sup
v∈H1

0\{0}

|(f, v)|
|v|1

≤ C <∞.

To show this, we first apply integration by parts and the compact support of v
on Ω to find

(f, v) =

∫ 1

0

1

x
v(x) dx =

[
log(x)v(x)

]1
0︸ ︷︷ ︸

=0

−
∫ 1

0

log(x)v′(x) dx.

Next, using Cauchy-Schwarz inequality we note that

|(f, v)| =
∣∣∣∣ ∫ 1

0

log(x)v′(x) dx

∣∣∣∣ ≤ (∫ 1

0

| log(x)|2 dx

)1/2

︸ ︷︷ ︸
=‖ log(·)‖L2(Ω)

(∫ 1

0

|v′(x)|2 dx

)1/2

︸ ︷︷ ︸
=‖v′‖L2(Ω)

.

We are done if we can show that ‖ log(·)‖L2(Ω) ≤ C. This is seen by∫ 1

ε

log2(x) dx =

∫ 1

ε

log(x) · log(x) dx

=
[

log(x)(x log(x)− x)
]1
ε
−
∫ 1

ε

log(x)− 1 dx

= ε log(ε)− ε log2(ε)−
[
x log(x)− x− x

]1
ε

= ε log(ε)− ε log2(ε)− (−2− ε log(ε) + 2ε)

= 2ε log(ε)− ε log2(ε) + 2− 2ε.

The limit for this is found by applying l’Hôspital on the first two terms. For
the first we note that

lim
ε→0+

log(ε)

1/ε
= − lim

ε→0+

1/ε

1/ε2
= − lim

ε→0+
ε = 0.
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For the second, we can re-use the limit above and find

lim
ε→0+

log2(ε)

1/ε
= − lim

ε→0+

2 log(ε) 1
ε

1
ε2

= −2 lim
ε→0+

log(ε)

1/ε
= 0.

Consequently, we get

‖ log(·)‖2L2(Ω) = lim
ε→0+

∫ 1

ε

log2(x) dx

= lim
ε→0+

2ε log(ε)− ε log2(ε) + 2− 2ε

= 2 =: C2,

and thus we have shown that

|(f, v)| ≤
√

2‖v′‖L2(Ω).
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Exercise A.15

Let Ω = (0, L)× (0, L) be a square of side L. Prove the scaled trace inequality

‖v‖L2(Γ) ≤ C
(
L−1‖v‖2L2(Ω) + L‖∇v‖2L2(Ω)

)1/2

, ∀v ∈ C1(Ω).

Hint: Apply (A.26) with Ω̂ = (0, 1) × (0, 1) and use the scaling identities in
Problem A.14.

Solution: We follow the given hint. Denote Ω̂ = (0, 1) × (0, 1), and define for
v ∈ C1(Ω) the function v̂ : Ω̂→ R by

v̂(x̂) = v(Lx̂), x̂ ∈ Ω̂.

This transformation is the one done in the problem formulation of Problem

A.14. It follows that v̂ ∈ C1(Ω̂), and by Theorem A.4 (the trace theorem), there
is a C > 0 such that

‖v̂‖L2(Γ̂) ≤ C‖v̂‖H1(Ω̂), ∀v̂ ∈ C1(Ω̂).

Moreover, by Problem A.14, we have the following identities (with d = 2)

‖v̂‖L2(Γ̂) = L−1/2‖v‖L2(Γ),

‖v̂‖L2(Ω̂) = L−1‖v‖L2(Ω),

‖∇̂v̂‖L2(Ω̂) = ‖∇v‖L2(Ω).

Hence, we find that

L−1/2‖v‖L2(Γ) = ‖v̂‖L2(Γ̂)

≤ C‖v̂‖H1(Ω̂)

= C
(
‖v̂‖2

L2(Ω̂)
+ ‖∇̂v̂‖2

L2(Ω̂)

)1/2
= C

(
L−2‖v‖2L2(Ω) + ‖∇v‖2L2(Ω)

)1/2
,

and by passing L−1/2 to the right hand side we conclude the inequality

‖v‖L2(Γ) ≤ CL1/2
(
L−2‖v‖2L2(Ω) + ‖∇v‖2L2(Ω)

)1/2
= C

(
L−1‖v‖2L2(Ω) + L‖∇v‖2L2(Ω)

)1/2
.
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