TMA026/MMA430
 Exercises and solutions

Per Ljung
perlj@chalmers.se

March 27, 2020

Exercise session 1: A6, A11, A15.

Exercise A. 6

Let Ω be the unit ball in $\mathbb{R}^{d}, d=1,2,3$, i.e., $\Omega=\left\{x \in \mathbb{R}^{d}:|x|<1\right\}$. For which values of $\lambda \in \mathbb{R}$ does the function $v(x)=|x|^{\lambda}$ belong to $L_{2}(\Omega)$ respectively $H^{1}(\Omega)$?

Solution: It holds that $v \in L_{2}(\Omega)$ if the function is bounded in $L_{2}(\Omega)$-norm, i.e. we want to check for what values of $\lambda \in \mathbb{R}$ it holds that

$$
\|v\|_{L_{2}(\Omega)}:=\left(\int_{\Omega}|v(x)|^{2} \mathrm{~d} x\right)^{1 / 2}<\infty .
$$

For convenience, we look at the squared norm and note that by using spherical coordinates we have

$$
\|v\|_{L_{2}(\Omega)}^{2}=\int_{\Omega}|v(x)|^{2} \mathrm{~d} x=\int_{\Omega}|x|^{2 \lambda} \mathrm{~d} x=\int_{S_{1}^{d-1}(0)} \mathrm{d} \sigma \int_{0}^{1} r^{2 \lambda} r^{d-1} \mathrm{~d} r,
$$

where $S_{1}^{d-1}(0)$ denotes the surface of the unit ball in \mathbb{R}^{d}. The surface integral will be evaluated to a constant C depending on the dimension d. Hence it suffices to analyze for what values of $\lambda \in \mathbb{R}$ it holds that

$$
\int_{0}^{1} r^{2 \lambda} r^{d-1} \mathrm{~d} r<\infty .
$$

It is well known that this integral converges whenever the exponent is larger than -1 , hence we seek values of λ such that

$$
2 \lambda+d-1>-1 \Longrightarrow \lambda>-\frac{d}{2} .
$$

We may thus conclude that

$$
\begin{aligned}
& |x|^{\lambda} \in L_{2}(\Omega) \text { if } \lambda>-\frac{d}{2}, \\
& |x|^{\lambda} \notin L_{2}(\Omega) \text { if } \lambda \leq-\frac{d}{2} .
\end{aligned}
$$

To check when $v \in H^{1}(\Omega)$, we check when it holds that

$$
\|v\|_{H^{1}(\Omega)}:=\left(\|v\|_{L_{2}(\Omega)}^{2}+|v|_{1}^{2}\right)^{1 / 2}<\infty .
$$

Here, it suffices to look at the seminorm $|\cdot|_{1}$, since we already have the result for $\|v\|_{L_{2}(\Omega)}$. We check for what values of $\lambda \in \mathbb{R}$ it holds that

$$
|v|_{1}^{2}:=\int_{\Omega}|\nabla v|^{2} \mathrm{~d} x=\int_{\Omega}\left|\nabla\left(|x|^{\lambda}\right)\right|^{2} \mathrm{~d} x<\infty .
$$

At first, we note that for each partial derivative we have

$$
\partial_{x_{k}}\left(|x|^{\lambda}\right)=\partial_{x_{k}}\left(x_{1}^{2}+\ldots+x_{d}^{2}\right)^{\lambda / 2}=\frac{\lambda}{2}\left(x_{1}^{2}+\ldots+x_{d}^{2}\right)^{\lambda / 2-1} \cdot 2 x_{k}=\lambda|x|^{\lambda-2} x_{k} .
$$

Consequently, we get

$$
\left(\nabla\left(|x|^{\lambda}\right)\right)^{2}=\nabla\left(|x|^{\lambda}\right) \cdot \nabla\left(|x|^{\lambda}\right)=\left(\lambda|x|^{\lambda-2}\right)^{2} \underbrace{\left(x_{1}^{2}+\ldots+x_{d}^{2}\right)}_{=|x|^{2}}=\lambda^{2}|x|^{2 \lambda-2} .
$$

Hence, by once again applying spherical coordinates, we find for the integral

$$
|v|_{1}^{2}=\int_{\Omega} \lambda^{2}|x|^{2 \lambda-2} \mathrm{~d} x=\lambda^{2} \int_{S_{1}^{d-1}(0)} \mathrm{d} \sigma \int_{0}^{1} r^{2 \lambda-2} r^{d-1} \mathrm{~d} r
$$

Similarly as above, the surface integral equals a constant C dependent of the dimension d, and the integral over the radius converges whenever

$$
2 \lambda-2+d-1>-1 \Longrightarrow \lambda>\frac{2-d}{2} \Longrightarrow \lambda>1-\frac{d}{2}
$$

The conclusion is

$$
\begin{aligned}
& |x|^{\lambda} \in H^{1}(\Omega) \text { if } \lambda>1-\frac{d}{2} \\
& |x|^{\lambda} \notin H^{1}(\Omega) \text { if } \lambda \leq 1-\frac{d}{2}
\end{aligned}
$$

Exercise A. 11

Let $\Omega=(0,1)$ and $f(x)=1 / x$. Show that $f \notin L_{2}(\Omega)$. Show that $f \in H^{-1}(\Omega)$ by defining the linear functional $f(v)=(f, v)$, for all $v \in H_{0}^{1}(\Omega)$, and proving the inequality

$$
\begin{equation*}
|(f, v)| \leq C\left\|v^{\prime}\right\|, \quad \forall v \in H_{0}^{1}(\Omega) \tag{1}
\end{equation*}
$$

Conclude that $H^{-1}(\Omega) \not \subset L_{2}(\Omega)$.
Solution: The fact that $f \notin L_{2}(\Omega)$ follows from its unboundedness in $L_{2}(\Omega)$ norm, which is seen by

$$
\|f\|_{L_{2}(\Omega)}^{2}=\int_{\Omega}|f(x)|^{2} \mathrm{~d} x=\int_{0}^{1} \frac{1}{x^{2}} \mathrm{~d} x=-\left[\frac{1}{x}\right]_{0}^{1}=\infty .
$$

Next, we let f be the Riesz representative to the linear functional f, and want to show that this linear functional lies in $H^{-1}(\Omega)$. We note that it suffices to show the inequality (1), since this implies that

$$
\|f\|_{H^{-1}(\Omega)}=\sup _{v \in H_{0}^{1} \backslash\{0\}} \frac{|(f, v)|}{|v|_{1}} \leq C<\infty .
$$

To show this, we first apply integration by parts and the compact support of v on Ω to find

$$
(f, v)=\int_{0}^{1} \frac{1}{x} v(x) \mathrm{d} x=\underbrace{[\log (x) v(x)]_{0}^{1}}_{=0}-\int_{0}^{1} \log (x) v^{\prime}(x) \mathrm{d} x .
$$

Next, using Cauchy-Schwarz inequality we note that

$$
|(f, v)|=\left|\int_{0}^{1} \log (x) v^{\prime}(x) \mathrm{d} x\right| \leq \underbrace{\left(\int_{0}^{1}|\log (x)|^{2} \mathrm{~d} x\right)^{1 / 2}}_{=\|\log (\cdot)\|_{L_{2}(\Omega)}} \underbrace{\left(\int_{0}^{1}\left|v^{\prime}(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2}}_{=\left\|v^{\prime}\right\|_{L_{2}(\Omega)}}
$$

We are done if we can show that $\|\log (\cdot)\|_{L_{2}(\Omega)} \leq C$. This is seen by

$$
\begin{aligned}
\int_{\varepsilon}^{1} \log ^{2}(x) \mathrm{d} x & =\int_{\varepsilon}^{1} \log (x) \cdot \log (x) \mathrm{d} x \\
& =[\log (x)(x \log (x)-x)]_{\varepsilon}^{1}-\int_{\varepsilon}^{1} \log (x)-1 \mathrm{~d} x \\
& =\varepsilon \log (\varepsilon)-\varepsilon \log ^{2}(\varepsilon)-[x \log (x)-x-x]_{\varepsilon}^{1} \\
& =\varepsilon \log (\varepsilon)-\varepsilon \log ^{2}(\varepsilon)-(-2-\varepsilon \log (\varepsilon)+2 \varepsilon) \\
& =2 \varepsilon \log (\varepsilon)-\varepsilon \log ^{2}(\varepsilon)+2-2 \varepsilon
\end{aligned}
$$

The limit for this is found by applying l'Hôspital on the first two terms. For the first we note that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\log (\varepsilon)}{1 / \varepsilon}=-\lim _{\varepsilon \rightarrow 0^{+}} \frac{1 / \varepsilon}{1 / \varepsilon^{2}}=-\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon=0
$$

For the second, we can re-use the limit above and find

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\log ^{2}(\varepsilon)}{1 / \varepsilon}=-\lim _{\varepsilon \rightarrow 0^{+}} \frac{2 \log (\varepsilon) \frac{1}{\varepsilon}}{\frac{1}{\varepsilon^{2}}}=-2 \lim _{\varepsilon \rightarrow 0^{+}} \frac{\log (\varepsilon)}{1 / \varepsilon}=0
$$

Consequently, we get

$$
\begin{aligned}
\|\log (\cdot)\|_{L_{2}(\Omega)}^{2} & =\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1} \log ^{2}(x) \mathrm{d} x \\
& =\lim _{\varepsilon \rightarrow 0^{+}} 2 \varepsilon \log (\varepsilon)-\varepsilon \log ^{2}(\varepsilon)+2-2 \varepsilon \\
& =2=: C^{2}
\end{aligned}
$$

and thus we have shown that

$$
|(f, v)| \leq \sqrt{2}\left\|v^{\prime}\right\|_{L_{2}(\Omega)}
$$

Exercise A. 15

Let $\Omega=(0, L) \times(0, L)$ be a square of side L. Prove the scaled trace inequality

$$
\|v\|_{L_{2}(\Gamma)} \leq C\left(L^{-1}\|v\|_{L_{2}(\Omega)}^{2}+L\|\nabla v\|_{L_{2}(\Omega)}^{2}\right)^{1 / 2}, \quad \forall v \in \mathcal{C}^{1}(\bar{\Omega})
$$

Hint: Apply (A.26) with $\hat{\Omega}=(0,1) \times(0,1)$ and use the scaling identities in Problem A. 14.
Solution: We follow the given hint. Denote $\hat{\Omega}=(0,1) \times(0,1)$, and define for $v \in \mathcal{C}^{1}(\bar{\Omega})$ the function $\hat{v}: \hat{\Omega} \rightarrow \mathbb{R}$ by

$$
\hat{v}(\hat{x})=v(L \hat{x}), \quad \hat{x} \in \hat{\Omega}
$$

This transformation is the one done in the problem formulation of Problem A.14. It follows that $\hat{v} \in \mathcal{C}^{1}(\overline{\hat{\Omega}})$, and by Theorem A. 4 (the trace theorem), there is a $C>0$ such that

$$
\|\hat{v}\|_{L_{2}(\hat{\Gamma})} \leq C\|\hat{v}\|_{H^{1}(\hat{\Omega})}, \quad \forall \hat{v} \in \mathcal{C}^{1}(\overline{\hat{\Omega}})
$$

Moreover, by Problem A.14, we have the following identities (with $d=2$)

$$
\begin{aligned}
\|\hat{v}\|_{L_{2}(\hat{\Gamma})} & =L^{-1 / 2}\|v\|_{L_{2}(\Gamma)}, \\
\|\hat{v}\|_{L_{2}(\hat{\Omega})} & =L^{-1}\|v\|_{L_{2}(\Omega)}, \\
\|\hat{\nabla} \hat{v}\|_{L_{2}(\hat{\Omega})} & =\|\nabla v\|_{L_{2}(\Omega)} .
\end{aligned}
$$

Hence, we find that

$$
\begin{aligned}
L^{-1 / 2}\|v\|_{L_{2}(\Gamma)} & =\|\hat{v}\|_{L_{2}(\hat{\Gamma})} \\
& \leq C\|\hat{v}\|_{H^{1}(\hat{\Omega})} \\
& =C\left(\|\hat{v}\|_{L_{2}(\hat{\Omega})}^{2}+\|\hat{\nabla} \hat{v}\|_{L_{2}(\hat{\Omega})}^{2}\right)^{1 / 2} \\
& =C\left(L^{-2}\|v\|_{L_{2}(\Omega)}^{2}+\|\nabla v\|_{L_{2}(\Omega)}^{2}\right)^{1 / 2}
\end{aligned}
$$

and by passing $L^{-1 / 2}$ to the right hand side we conclude the inequality

$$
\begin{aligned}
\|v\|_{L_{2}(\Gamma)} & \leq C L^{1 / 2}\left(L^{-2}\|v\|_{L_{2}(\Omega)}^{2}+\|\nabla v\|_{L_{2}(\Omega)}^{2}\right)^{1 / 2} \\
& =C\left(L^{-1}\|v\|_{L_{2}(\Omega)}^{2}+L\|\nabla v\|_{L_{2}(\Omega)}^{2}\right)^{1 / 2}
\end{aligned}
$$

