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Exercise 5.3

Use the basis {Φi}Mh
i=1 to show that

(Phv − v, χ) = 0, ∀χ ∈ Sh, v ∈ L2

can be written in matrix form as BV = b, where the matrix B (the so-called
mass matrix) is symmetric, positive definite, and sparse if Mh is large.

Solution: Since Phv ∈ Sh = span({Φi}), we can write it as the linear combina-
tion

Phv =

Mh∑
j=1

αjΦj .

Then

(Phv, χ) = (v, χ) =⇒
Mh∑
i=j

αj(Φj , χ) = (v, χ).

This equality should hold for all test functions χ ∈ Sh, so we test against all
basis functions χ = Φi for i = 1, 2, ...,Mh. For each i it must hold that

Mh∑
j=1

αj(Φj ,Φi) = (v,Φi).

This corresponds to the i’th row in a Mh ×Mh matrix system written as
(Φ1,Φ1) (Φ2,Φ1) · · · (ΦMh

,Φ1)
· · · · · ·
· · · · · ·

(Φ1,ΦMh
) (Φ2,ΦMh

) · · · (ΦMh
,ΦMh

)


︸ ︷︷ ︸

=:B


α1

·
·

αMh


︸ ︷︷ ︸

=:V

=


(v,Φ1)
·
·

(v,ΦMh
)


︸ ︷︷ ︸

=:b

,

and so we have our matrix system BV = b. Now we want to show the stated
properties of B. Obviously B is symmetric since the product (·, ·) is symmetric.
To show the positive definiteness, we recall that a matrix B is positive definite
if it holds that

vTBv > 0, ∀v 6= 0.

Let v =
[
v1 · · · vMh

]T
be a non-zero column vector. Then

vTBv =
[
v1 · · · vMh

] 
∑
j vj(Φj ,Φ1)

·
·∑

j vj(Φj ,ΦMh
)

 =
∑
i

vi
∑
j

vj(Φj ,Φi)

=

(∑
j

vjΦj ,
∑
i

viΦi

)
=
∥∥∥∑

j

vjΦj

∥∥∥2

> 0.
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It remains to show that B is sparse for large Mh. This follows since the basis
functions fulfill the property that

supp(Φi) ∩ supp(Φj) = ∅

if the nodes i and j are not neighbors. Consequently, for all such i and j we
have that

(Φj ,Φi) = 0.

Hence, if Mh is large, there will be a large amount of nodes not neighboring one
another, and consequently there will be many zero elements in the matrix, so
B is sparse.
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Exercise 5.6

Let a(·, ·) and L(·) satisfy the assumptions of the Lax-Milgram lemma, i.e.,

|a(v, w)| ≤ C1‖v‖V ‖w‖V , ∀v, w ∈ V,
a(v, v) ≥ C2‖v‖2V , ∀v ∈ V,
|L(v)| ≤ C3‖v‖V , ∀v ∈ V.

Let u ∈ V be the solution of

a(u, v) = L(v), ∀v ∈ V. (1)

Let Ṽ ⊂ V be the finite-dimensional subspace and let ũ ∈ Ṽ be determined by
Galerkin’s method:

a(ũ, v) = L(v), ∀v ∈ Ṽ . (2)

Prove that (note that a(·, ·) may be non-symmetric)

‖ũ− u‖V ≤
C1

C2
min
χ∈Ṽ
‖χ− u‖V . (3)

Prove that, if a(·, ·) is symmetric and ‖v‖a = a(v, v)1/2, then

‖ũ− u‖a = min
χ∈Ṽ
‖χ− u‖a,

‖ũ− u‖V ≤
√
C1

C2
min
χ∈Ṽ
‖χ− u‖V .

Solution: At first we recall that (1) and (2) gives the Galerkin orthogonality

a(ũ− u, ṽ) = 0, ∀ṽ ∈ Ṽ .

We first show (3) by

‖ũ− u‖2V ≤
1

C2
a(ũ− u, ũ− u)

=
1

C2

[
a(ũ− u, ũ− ṽ) + a(ũ− u, ṽ − u)

]
=

1

C2
a(ũ− u, ṽ − u)

≤ C1

C2
‖ũ− u‖V ‖ṽ − u‖V .

Here we first used the coercivity assumption on a(·, ·). After this we added and
subtracted an arbitrary Ṽ -function so that we could apply the Galerkin orthog-
onality on one of the terms. The final step then followed from the boundedness
assumption on a(·, ·). We can now cancel one factor of ‖ũ − u‖V on each side
to obtain

‖ũ− u‖V ≤
C1

C2
min
χ∈Ṽ
‖χ− u‖V ,
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since the Ṽ -function was chosen arbitrarily.
Now we assume that the bilinear form a(·, ·) is symmetric. We make the same

trick of adding and subtracting a function Ṽ to apply Galerkin orthogonality,
but continue by applying this once more. We get

‖ũ− u‖2a = a(ũ− u, ũ− u) (definition)

= a(ũ− u, ũ− ṽ) + a(ũ− u, ṽ − u) (±ṽ in right)

= a(ũ− u, ṽ − u) (G.O.)

= a(ũ− ṽ, ṽ − u) + a(ṽ − u, ṽ − u) (±ṽ in left)

= a(ũ− ṽ, ṽ − u) + ‖ṽ − u‖2a (definition)

= a(ũ− ṽ, ṽ − ũ) + a(ũ− ṽ, ũ− u) + ‖ṽ − u‖2a (±ũ in right)

= −a(ũ− ṽ, ũ− ṽ) + a(ũ− u, ũ− ṽ) + ‖ṽ − u‖2a (a symmetric)

= −‖ũ− ṽ‖2a + 0 + ‖ṽ − u‖2a (G.O.)

≤ ‖ṽ − u‖2a. (‖ · ‖ ≥ 0)

This shows that
‖ũ− u‖a ≤ min

χ∈Ṽ
‖χ− u‖a, (4)

as we chose ṽ ∈ Ṽ arbitrarily. However, since ũ ∈ Ṽ , it follows that

‖ũ− u‖a = min
χ∈Ṽ
‖χ− u‖a.

To show the last inequality, we begin by noting that for arbitrary ṽ ∈ Ṽ

‖ũ− u‖2V ≤
1

C2
a(ũ− u, ũ− u) (Coercivity)

=
1

C2
‖ũ− u‖2a (Definition)

≤ 1

C2
‖ṽ − u‖2a (Inequality (4))

=
1

C2
a(ṽ − u, ṽ − u) (Definition)

≤ C1

C2
‖ṽ − u‖V ‖ṽ − u‖V . (Boundedness)

Take square root on each side and we find that, since ṽ ∈ Ṽ was arbitrarily
chosen,

‖ũ− u‖V ≤
√
C1

C2
min
χ∈Ṽ
‖χ− u‖V .
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Exercise 5.11

Formulate a finite element problem corresponding to the Robin problem in Prob-
lem 3.6, i.e.

−∆u = f, in Ω,

∂u

∂n
+ u = g, on Γ.

Prove error estimates.

Solution: By standard procedure, we multiply by test function v ∈ H1(Ω) and
integrate over the domain to get∫

Ω

−∆uv dx =

∫
Ω

fv dx.

Next, we apply Green’s formula on the left hand side and use the Robin bound-
ary condition to find

−
∫

Ω

∆uv dx =

∫
Ω

∇u · ∇v dx−
∫

Γ

∂u

∂n
v ds

=

∫
Ω

∇u · ∇v dx+

∫
Γ

uv ds−
∫

Γ

gv ds.

We find the variational formulation by passing everything that does not depend
on the solution to the right hand side, i.e., we seek u ∈ H1(Ω) such that∫

Ω

∇u · ∇v dx+

∫
Γ

uv ds︸ ︷︷ ︸
=:a(u,v)

=

∫
Ω

fv dx+

∫
Γ

gv ds︸ ︷︷ ︸
=:L(v)

, ∀v ∈ H1(Ω).

Denote the finite element space consisting of continuous piecewise linear func-
tions by Sh. Then the finite element problem is to find uh ∈ Sh such that

a(uh, v) = L(v), ∀v ∈ Sh.

Now, since Problem 3.6 consists of showing there is a unique weak solution
to this problem, I will assume from here on that a(·, ·) and L(·) fulfills the
assumption for the Lax-Milgram lemma, i.e.

|a(v, w)| ≤ C1‖v‖H1‖w‖H1 , ∀v, w ∈ H1(Ω),

a(v, v) ≥ C2‖v‖2H1 , ∀v ∈ H1(Ω),

|L(v)| ≤ C3‖v‖H1 , ∀v ∈ H1(Ω).

We prove a priori error estimates in L2(Ω)-norm and H1(Ω)-norm respectively.
The estimates are proven using the Lagrange nodal interpolant Ih and known
estimates for it. Moreover, we make the regularity assumption

‖u‖2 ≤ C‖f‖,
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so that the error estimates will be stated in terms of given data. For the H1(Ω)-
error we note that

‖u− uh‖2H1 ≤
1

C2
a(u− uh, u− uh) (Coercivity)

=
1

C2

[
a(u− uh, u− Ihu) + a(u− uh, Ihu− uh)

]
(±Ihu in right)

=
1

C2
a(u− uh, u− Ihu) (G.O.)

≤ C1

C2
‖u− uh‖H1‖u− Ihu‖H1 (Boundedness)

≤ C1

C2
‖u− uh‖H1Ch‖u‖2. (Ih-estimate)

Here we used the fact that Ihu − u ∈ Vh (where Vh denotes the finite element
space) so that the Galerkin orthogonality could be applied. Canceling one factor
on each side now yields

‖u− uh‖H1 ≤ C ′h‖u‖2 ≤ Ch‖f‖, (5)

where we applied the regularity assumption to get the error estimate in terms
of given data. For the L2(Ω)-error, we introduce an auxiliary problem. Denote
e = u− uh, and define our problem as

−∆φ = e, in Ω,

∂φ

∂n
+ φ = g, on Γ.

Corresponding variational formulation is to find φ ∈ H1(Ω) such that

a(w, φ) = (w, e), ∀w ∈ H1(Ω).

Note that our bilinear form is symmetric, so defining it with the test functions
in the left lane is not necessary, but we use this convention as it is necessary in
the non-symmetric case. We get

‖e‖2 = (e, e) (Definition)

= a(e, φ) (Weak form)

= a(e, φ− Ihφ) (a(e, Ihφ) = 0)

≤ C1‖e‖H1‖φ− Ihφ‖H1 (Boundedness)

≤ C1C2h‖e‖H1‖φ‖2 (Ih-estimate)

≤ C1C2C3h
2‖u‖2‖φ‖2 (Estimate (5))

≤ Ch2‖f‖‖e‖ (Assumption).

Now cancel one ‖e‖ on each side and we have shown that

‖u− uh‖ ≤ Ch2‖f‖.

In conclusion, we have found that the finite element method yields quadratic
convergence in L2-norm and linear convergence in H1-norm.
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