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Exercise 6.1

Consider the problem

−(aϕ′)′ + cϕ = λϕ, in Ω = (0, 1),

ϕ(0) = ϕ(1) = 0,

where a(x) and c(x) are smooth functions with bounds a(x) ≥ a0 > 0 and
c(x) ≥ 0.

(a) Show that if the functions a(x) and c(x) are increased, then all the corre-
sponding eigenvalues increase.

(b) Find the eigenvalues when a(x) and c(x) are constant on Ω.

(c) Show that for given a(x) and c(x) there are constants k1 and k2 such that

0 < k1n
2 ≤ λn ≤ k2n

2.

Solution: (a) We multiply the equation by ϕ and integrate over the domain Ω
to get ∫ 1

0

−(aϕ′)′ϕdx+

∫ 1

0

cϕ2 dx = λ

∫ 1

0

ϕ2 dx.

We can apply integration by parts on the first integral in combination with the
homogeneous Dirichlet boundary condition to get∫ 1

0

−(aϕ′)′ϕdx = −
[
aϕ′ϕ

]1
0︸ ︷︷ ︸

=0

+

∫ 1

0

a(ϕ′)2 dx.

Replacing this in the first equation now gives∫ 1

0

a(ϕ′)2 dx︸ ︷︷ ︸
=‖a1/2ϕ′‖2

+

∫ 1

0

cϕ2 dx︸ ︷︷ ︸
=‖c1/2ϕ‖2

= λ

∫ 1

0

ϕ2 dx︸ ︷︷ ︸
‖ϕ‖2

.

We can thus write λ as

λ =
‖a1/2ϕ′‖2 + ‖c1/2ϕ‖2

‖ϕ‖2
.

Here we see that if a or c increases, then λ increases as well.

(b) With a and c constant, the problem reduces to a standard ODE which we
can solve by standard ODE solving methods. We can rewrite the ODE as

aϕ′′ + (c− λ)ϕ = 0.

The characteristic polynomial is

ar2 + (c− λ) = 0 =⇒ r1,2 = ±
√
c− λ
a

.
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To see how the solution becomes, we need to know whether c− λ is positive or
negative. From task (a), we have that (with a and c constant)

‖ϕ‖2λ = a‖ϕ′‖2 + c‖ϕ‖2 =⇒ a‖ϕ′‖2 + (c− λ)‖ϕ‖2 = 0

=⇒ (c− λ)‖ϕ‖2 ≤ 0

=⇒ c− λ ≤ 0.

Here, the second implication followed since a‖ϕ′‖2 ≥ 0, and the last implication
from the fact that ‖ϕ‖2 ≥ 0. The solutions to the characteristic polynomial is
thus of the form

r1,2 = 0 + i

√
λ− c
a

,

which in turn yields the solution

ϕ(x) = Ae0x sin
(√λ− c

a
x
)

+Be0x cos
(√λ− c

a
x
)
.

The first boundary condition ϕ(0) = 0 gives

ϕ(0) = B = 0.

The second condition ϕ(1) = 0 gives that

sin
(√λ− c

a

)
= 0 =⇒

√
λ− c
a

= nπ.

Hence, solving this for λ, we find that for constant a and c each eigenvalue is
given by the formula

λn = an2π2 + c.

(c) For the lower bound, we use the formula found for λ in task (a), and insert
the lower bounds on a(x) and c(x), i.e.

λ =
‖a1/2ϕ′‖2 + ‖c1/2ϕ‖2

‖ϕ‖2
≥ a0

‖ϕ′‖2

‖ϕ‖2
.

The lower bound is thus the eigenvalue corresponding to the eigenvalue problem
with constant coefficients a = a0 and c = 0. From task (b), we know that this
is = a0π

2n2, so we let k1 = a0π
2, which gives

λn ≥ k1n
2.

For the upper bound, we use same expression but bound it by the max-norm of
the coefficient functions, i.e.

λ =
‖a1/2ϕ′‖2 + ‖c1/2ϕ‖2

‖ϕ‖2
≤ ‖a‖∞‖ϕ

′‖2 + ‖c‖∞‖ϕ‖2

‖ϕ‖2

≤ ‖a‖∞‖ϕ
′‖2 + ‖c‖∞Cp‖ϕ′‖2

‖ϕ‖2
≤ (‖a‖∞ + Cp‖c‖∞)‖ϕ′‖2

‖ϕ‖2
.
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Here we also applied Poincaré’s inequality, which is alright since ϕ ∈ H1
0 . We

know from earlier that ‖ϕ′‖2/‖ϕ‖2 is the eigenvalue to corresponding problem
with a = 1 and c = 0, so from (b) we know this is π2n2. Hence the bound can
be written as

λ ≤ (‖a‖∞ + Cp‖c‖∞)π2n2 = k2n
2,

where the upper bound coefficient here is k2 = (‖a‖∞ + Cp‖c‖∞)π2. Thus we
have shown that

0 < k1n
2 ≤ λn ≤ k2n

2.
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Exercise 6.3

(a) Use an argument similar to that of Theorem 6.4 to show that

v ∈ H2 ∩H1
0 if and only if

∞∑
i=1

λ2
i (v, ϕi)

2 <∞.

(b) Show that

(i) −∆v =

∞∑
i=1

λi(v, ϕi)ϕi,

(ii) ‖∆v‖2 =

∞∑
i=1

λ2
i (v, ϕi)

2,

for v ∈ H2 ∩H1
0 .

Solution: We are looking at the model problem

−∆ϕi = λiϕi, in Ω,

ϕi = 0, on Γ.

The eigenfunctions to this problem forms an ON-basis for L2(Ω), and we can
write a function w ∈ L2(Ω) as

w =

∞∑
i=1

(w,ϕi)ϕi. (1)

We begin by solving task (b), and use the results to solve task (a).

(b) Since v ∈ H2, we know that −∆v ∈ L2(Ω). Hence, we can see that

−∆v =

∞∑
i=1

(−∆v, ϕi)ϕi =

∞∑
i=1

(∇v,∇ϕi)ϕi =

∞∑
i=1

λi(v, ϕi)ϕi.

Here, we first wrote −∆v using (1) and then used Green’s formula (the boundary
term vanish since v ∈ H1

0 ). The final step follows from the weak form of the
model problem. This shows (i). The (ii)-part follows by using the result (i) and
the orthonormality of the eigenfunctions, i.e.

‖∆v‖2 = (−∆v,−∆v)

=
( ∞∑
i=1

λi(v, ϕi)ϕi,

∞∑
j=1

λj(v, ϕj)ϕj

)
=

∞∑
i=1

∞∑
j=1

λi(v, ϕi)λj(v, ϕj) (ϕi, ϕj)︸ ︷︷ ︸
=δij

=

∞∑
i=1

λ2
i (v, ϕi)

2.
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(a) Assume v ∈ H2 ∩H1
0 . From task (b) we know that

∞∑
i=1

λ2
i (v, ϕi)

2 = ‖∆v‖2 <∞,

since v ∈ H2. This shows the first part of the task. Now we assume that

∞∑
i=1

λ2
i (v, ϕi)

2 <∞,

and want to show that v ∈ H2∩H1
0 . The assumption shows that λ2

i (v, ϕi)
2 → 0

as i→∞ as this is necessary for the sum to converge. Consider v ∈ L2(Ω) and
define

vN =

N∑
i=1

(v, ϕi)ϕi.

It holds that vN → v in L2(Ω). Moreover, note that vN ∈ H2 ∩ H1
0 since

ϕ ∈ H2 ∩H1
0 and the space is closed under scalar multiplication. Moreover, we

claim that {vN} is a Cauchy-sequence in H2. This is seen by

‖vN − vM‖22 ≤ C‖∆(vN − vM )‖2 (Elliptic regularity)

= C
∥∥∥∆

N∑
j=M+1

(v, ϕj)ϕj

∥∥∥2

(Insert vN,M )

= C
∥∥∥ N∑
j=M+1

(v, ϕj)∆ϕj

∥∥∥2

(∆ linear)

= C
( N∑
j=M+1

λj(v, ϕj)ϕj ,

N∑
i=M+1

λi(v, ϕi)ϕi

)
(−∆ϕi = λiϕi)

=

N∑
j=M+1

N∑
i=M+1

λj(v, ϕj)λi(v, ϕi) (ϕj , ϕi)︸ ︷︷ ︸
=δij

((·, ·) linear)

= C

N∑
i=M+1

λ2
i (v, ϕi)

2 ({ϕi}i orthonormal)

and as seen in the beginning of the task, this expression → 0 as N,M → ∞.
Since {vN} is a Cauchy-sequence in H2 (which is complete), it holds that vN →
w ∈ H2 ⊂ L2. But since vN → v ∈ L2, it must hold that w = v ∈ H2, so we
have shown that v ∈ H2. It remains to show that v ∈ H1

0 , which follows if the
trace is zero. This follows since

‖γv‖L2(Γ) = ‖γv − γvN‖L2(Γ) ≤ C‖v − vN‖1 ≤ C‖v − vN‖2 → 0,

as N → 0. Here we first used the fact that vN ∈ H1
0 so we could simply add

the trace as γvN = 0. Then we used the trace inequality and moreover the fact
that ‖ · ‖1 ≤ ‖ · ‖2 followed by the fact that vN → v in H2. Hence γv = 0 and
moreover v ∈ H1

0 . We have thus shown that v ∈ H2 ∩H1
0 and we are done.
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