TMA026/MMA430
 Exercises and solutions

Per Ljung
perlj@chalmers.se

May 1, 2020

Exercise session 4: 6.1, 6.3.

ExERCISE 6.1

Consider the problem

$$
\begin{aligned}
-\left(a \varphi^{\prime}\right)^{\prime}+c \varphi & =\lambda \varphi, \quad \text { in } \Omega=(0,1), \\
\varphi(0)=\varphi(1) & =0,
\end{aligned}
$$

where $a(x)$ and $c(x)$ are smooth functions with bounds $a(x) \geq a_{0}>0$ and $c(x) \geq 0$.
(a) Show that if the functions $a(x)$ and $c(x)$ are increased, then all the corresponding eigenvalues increase.
(b) Find the eigenvalues when $a(x)$ and $c(x)$ are constant on Ω.
(c) Show that for given $a(x)$ and $c(x)$ there are constants k_{1} and k_{2} such that

$$
0<k_{1} n^{2} \leq \lambda_{n} \leq k_{2} n^{2}
$$

Solution: (a) We multiply the equation by φ and integrate over the domain Ω to get

$$
\int_{0}^{1}-\left(a \varphi^{\prime}\right)^{\prime} \varphi \mathrm{d} x+\int_{0}^{1} c \varphi^{2} \mathrm{~d} x=\lambda \int_{0}^{1} \varphi^{2} \mathrm{~d} x
$$

We can apply integration by parts on the first integral in combination with the homogeneous Dirichlet boundary condition to get

$$
\int_{0}^{1}-\left(a \varphi^{\prime}\right)^{\prime} \varphi \mathrm{d} x=-\underbrace{\left[a \varphi^{\prime} \varphi\right]_{0}^{1}}_{=0}+\int_{0}^{1} a\left(\varphi^{\prime}\right)^{2} \mathrm{~d} x
$$

Replacing this in the first equation now gives

$$
\underbrace{\int_{0}^{1} a\left(\varphi^{\prime}\right)^{2} \mathrm{~d} x}_{=\left\|a^{1 / 2} \varphi^{\prime}\right\|^{2}}+\underbrace{\int_{0}^{1} c \varphi^{2} \mathrm{~d} x}_{=\left\|c^{1 / 2} \varphi\right\|^{2}}=\lambda \underbrace{\int_{0}^{1} \varphi^{2} \mathrm{~d} x}_{\|\varphi\|^{2}}
$$

We can thus write λ as

$$
\lambda=\frac{\left\|a^{1 / 2} \varphi^{\prime}\right\|^{2}+\left\|c^{1 / 2} \varphi\right\|^{2}}{\|\varphi\|^{2}} .
$$

Here we see that if a or c increases, then λ increases as well.
(b) With a and c constant, the problem reduces to a standard ODE which we can solve by standard ODE solving methods. We can rewrite the ODE as

$$
a \varphi^{\prime \prime}+(c-\lambda) \varphi=0 .
$$

The characteristic polynomial is

$$
a r^{2}+(c-\lambda)=0 \Longrightarrow r_{1,2}= \pm \sqrt{\frac{c-\lambda}{a}}
$$

To see how the solution becomes, we need to know whether $c-\lambda$ is positive or negative. From task (a), we have that (with a and c constant)

$$
\begin{aligned}
\|\varphi\|^{2} \lambda=a\left\|\varphi^{\prime}\right\|^{2}+c\|\varphi\|^{2} & \Longrightarrow a\left\|\varphi^{\prime}\right\|^{2}+(c-\lambda)\|\varphi\|^{2}=0 \\
& \Longrightarrow(c-\lambda)\|\varphi\|^{2} \leq 0 \\
& \Longrightarrow c-\lambda \leq 0
\end{aligned}
$$

Here, the second implication followed since $a\left\|\varphi^{\prime}\right\|^{2} \geq 0$, and the last implication from the fact that $\|\varphi\|^{2} \geq 0$. The solutions to the characteristic polynomial is thus of the form

$$
r_{1,2}=0+i \sqrt{\frac{\lambda-c}{a}},
$$

which in turn yields the solution

$$
\varphi(x)=A e^{0 x} \sin \left(\sqrt{\frac{\lambda-c}{a}} x\right)+B e^{0 x} \cos \left(\sqrt{\frac{\lambda-c}{a}} x\right)
$$

The first boundary condition $\varphi(0)=0$ gives

$$
\varphi(0)=B=0
$$

The second condition $\varphi(1)=0$ gives that

$$
\sin \left(\sqrt{\frac{\lambda-c}{a}}\right)=0 \Longrightarrow \sqrt{\frac{\lambda-c}{a}}=n \pi
$$

Hence, solving this for λ, we find that for constant a and c each eigenvalue is given by the formula

$$
\lambda_{n}=a n^{2} \pi^{2}+c
$$

(c) For the lower bound, we use the formula found for λ in task (a), and insert the lower bounds on $a(x)$ and $c(x)$, i.e.

$$
\lambda=\frac{\left\|a^{1 / 2} \varphi^{\prime}\right\|^{2}+\left\|c^{1 / 2} \varphi\right\|^{2}}{\|\varphi\|^{2}} \geq a_{0} \frac{\left\|\varphi^{\prime}\right\|^{2}}{\|\varphi\|^{2}}
$$

The lower bound is thus the eigenvalue corresponding to the eigenvalue problem with constant coefficients $a=a_{0}$ and $c=0$. From task (b), we know that this is $=a_{0} \pi^{2} n^{2}$, so we let $k_{1}=a_{0} \pi^{2}$, which gives

$$
\lambda_{n} \geq k_{1} n^{2}
$$

For the upper bound, we use same expression but bound it by the max-norm of the coefficient functions, i.e.

$$
\begin{aligned}
\lambda & =\frac{\left\|a^{1 / 2} \varphi^{\prime}\right\|^{2}+\left\|c^{1 / 2} \varphi\right\|^{2}}{\|\varphi\|^{2}} \leq \frac{\|a\|_{\infty}\left\|\varphi^{\prime}\right\|^{2}+\|c\|_{\infty}\|\varphi\|^{2}}{\|\varphi\|^{2}} \\
& \leq \frac{\|a\|_{\infty}\left\|\varphi^{\prime}\right\|^{2}+\|c\|_{\infty} C_{p}\left\|\varphi^{\prime}\right\|^{2}}{\|\varphi\|^{2}} \leq \frac{\left(\|a\|_{\infty}+C_{p}\|c\|_{\infty}\right)\left\|\varphi^{\prime}\right\|^{2}}{\|\varphi\|^{2}} .
\end{aligned}
$$

Here we also applied Poincaré's inequality, which is alright since $\varphi \in H_{0}^{1}$. We know from earlier that $\left\|\varphi^{\prime}\right\|^{2} /\|\varphi\|^{2}$ is the eigenvalue to corresponding problem with $a=1$ and $c=0$, so from (b) we know this is $\pi^{2} n^{2}$. Hence the bound can be written as

$$
\lambda \leq\left(\|a\|_{\infty}+C_{p}\|c\|_{\infty}\right) \pi^{2} n^{2}=k_{2} n^{2}
$$

where the upper bound coefficient here is $k_{2}=\left(\|a\|_{\infty}+C_{p}\|c\|_{\infty}\right) \pi^{2}$. Thus we have shown that

$$
0<k_{1} n^{2} \leq \lambda_{n} \leq k_{2} n^{2}
$$

Exercise 6.3

(a) Use an argument similar to that of Theorem 6.4 to show that

$$
v \in H^{2} \cap H_{0}^{1} \text { if and only if } \sum_{i=1}^{\infty} \lambda_{i}^{2}\left(v, \varphi_{i}\right)^{2}<\infty .
$$

(b) Show that
(i) $-\Delta v=\sum_{i=1}^{\infty} \lambda_{i}\left(v, \varphi_{i}\right) \varphi_{i}$,
(ii) $\|\Delta v\|^{2}=\sum_{i=1}^{\infty} \lambda_{i}^{2}\left(v, \varphi_{i}\right)^{2}$,
for $v \in H^{2} \cap H_{0}^{1}$.
Solution: We are looking at the model problem

$$
\begin{aligned}
-\Delta \varphi_{i} & =\lambda_{i} \varphi_{i} & & \text { in } \Omega, \\
\varphi_{i} & =0, & & \text { on } \Gamma .
\end{aligned}
$$

The eigenfunctions to this problem forms an ON-basis for $L_{2}(\Omega)$, and we can write a function $w \in L_{2}(\Omega)$ as

$$
\begin{equation*}
w=\sum_{i=1}^{\infty}\left(w, \varphi_{i}\right) \varphi_{i} \tag{1}
\end{equation*}
$$

We begin by solving task (b), and use the results to solve task (a).
(b) Since $v \in H^{2}$, we know that $-\Delta v \in L_{2}(\Omega)$. Hence, we can see that

$$
-\Delta v=\sum_{i=1}^{\infty}\left(-\Delta v, \varphi_{i}\right) \varphi_{i}=\sum_{i=1}^{\infty}\left(\nabla v, \nabla \varphi_{i}\right) \varphi_{i}=\sum_{i=1}^{\infty} \lambda_{i}\left(v, \varphi_{i}\right) \varphi_{i}
$$

Here, we first wrote $-\Delta v$ using (1) and then used Green's formula (the boundary term vanish since $v \in H_{0}^{1}$). The final step follows from the weak form of the model problem. This shows (i). The ($i i$)-part follows by using the result (i) and the orthonormality of the eigenfunctions, i.e.

$$
\begin{aligned}
\|\Delta v\|^{2} & =(-\Delta v,-\Delta v) \\
& =\left(\sum_{i=1}^{\infty} \lambda_{i}\left(v, \varphi_{i}\right) \varphi_{i}, \sum_{j=1}^{\infty} \lambda_{j}\left(v, \varphi_{j}\right) \varphi_{j}\right) \\
& =\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \lambda_{i}\left(v, \varphi_{i}\right) \lambda_{j}\left(v, \varphi_{j}\right) \underbrace{\left(\varphi_{i}, \varphi_{j}\right)}_{=\delta_{i j}} \\
& =\sum_{i=1}^{\infty} \lambda_{i}^{2}\left(v, \varphi_{i}\right)^{2} .
\end{aligned}
$$

(a) Assume $v \in H^{2} \cap H_{0}^{1}$. From task (b) we know that

$$
\sum_{i=1}^{\infty} \lambda_{i}^{2}\left(v, \varphi_{i}\right)^{2}=\|\Delta v\|^{2}<\infty
$$

since $v \in H^{2}$. This shows the first part of the task. Now we assume that

$$
\sum_{i=1}^{\infty} \lambda_{i}^{2}\left(v, \varphi_{i}\right)^{2}<\infty
$$

and want to show that $v \in H^{2} \cap H_{0}^{1}$. The assumption shows that $\lambda_{i}^{2}\left(v, \varphi_{i}\right)^{2} \rightarrow 0$ as $i \rightarrow \infty$ as this is necessary for the sum to converge. Consider $v \in L_{2}(\Omega)$ and define

$$
v_{N}=\sum_{i=1}^{N}\left(v, \varphi_{i}\right) \varphi_{i}
$$

It holds that $v_{N} \rightarrow v$ in $L_{2}(\Omega)$. Moreover, note that $v_{N} \in H^{2} \cap H_{0}^{1}$ since $\varphi \in H^{2} \cap H_{0}^{1}$ and the space is closed under scalar multiplication. Moreover, we claim that $\left\{v_{N}\right\}$ is a Cauchy-sequence in H^{2}. This is seen by

$$
\begin{array}{rlrl}
\left\|v_{N}-v_{M}\right\|_{2}^{2} & \leq C\left\|\Delta\left(v_{N}-v_{M}\right)\right\|^{2} & & \text { (Elliptic regularity) } \\
& =C\left\|\Delta \sum_{j=M+1}^{N}\left(v, \varphi_{j}\right) \varphi_{j}\right\|^{2} & & \left(\text { Insert } v_{N, M}\right) \\
& =C\left\|\sum_{j=M+1}^{N}\left(v, \varphi_{j}\right) \Delta \varphi_{j}\right\|^{2} & & (\Delta \text { linear }) \\
& =C\left(\sum_{j=M+1}^{N} \lambda_{j}\left(v, \varphi_{j}\right) \varphi_{j}, \sum_{i=M+1}^{N} \lambda_{i}\left(v, \varphi_{i}\right) \varphi_{i}\right) & \left(-\Delta \varphi_{i}=\lambda_{i} \varphi_{i}\right) \\
& =\sum_{j=M+1}^{N} \sum_{i=M+1}^{N} \lambda_{j}\left(v, \varphi_{j}\right) \lambda_{i}\left(v, \varphi_{i}\right) \underbrace{\left(\varphi_{j}, \varphi_{i}\right)}_{=\delta_{i j}} & & ((\cdot, \cdot) \text { linear) } \\
& =C \sum_{i=M+1}^{N} \lambda_{i}^{2}\left(v, \varphi_{i}\right)^{2} & & \left(\left\{\varphi_{i}\right\}_{i}\right. \text { orthonormal) }
\end{array}
$$

and as seen in the beginning of the task, this expression $\rightarrow 0$ as $N, M \rightarrow \infty$. Since $\left\{v_{N}\right\}$ is a Cauchy-sequence in H^{2} (which is complete), it holds that $v_{N} \rightarrow$ $w \in H^{2} \subset L_{2}$. But since $v_{N} \rightarrow v \in L_{2}$, it must hold that $w=v \in H^{2}$, so we have shown that $v \in H^{2}$. It remains to show that $v \in H_{0}^{1}$, which follows if the trace is zero. This follows since

$$
\|\gamma v\|_{L_{2}(\Gamma)}=\left\|\gamma v-\gamma v_{N}\right\|_{L_{2}(\Gamma)} \leq C\left\|v-v_{N}\right\|_{1} \leq C\left\|v-v_{N}\right\|_{2} \rightarrow 0
$$

as $N \rightarrow 0$. Here we first used the fact that $v_{N} \in H_{0}^{1}$ so we could simply add the trace as $\gamma v_{N}=0$. Then we used the trace inequality and moreover the fact that $\|\cdot\|_{1} \leq\|\cdot\|_{2}$ followed by the fact that $v_{N} \rightarrow v$ in H^{2}. Hence $\gamma v=0$ and moreover $v \in H_{0}^{1}$. We have thus shown that $v \in H^{2} \cap H_{0}^{1}$ and we are done.

