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Exercise 8.6

Let u be the solution of

(ut, ϕ) + a(u, ϕ) = (f, ϕ), ∀ϕ ∈ H1
0 , t ∈ R+

with u(·, 0) = 0. Show that∫ t

0

(‖ut(s)‖2 + ‖∆u(s)‖2) ds ≤ C
∫ t

0

‖f(s)‖2 ds

for t ≥ 0.

Solution: We assume sufficient regularity on u. Let ϕ = ut ∈ H1
0 in the weak

form and we get

‖ut‖2 + a(u, ut) = (f, ut) ≤ ‖f‖‖ut‖ ≤
1

2
‖f‖2 +

1

2
‖ut‖2,

where we first applied Cauchy-Schwarz followed by the inequality ab ≤ (a2 +
b2)/2. Move the last term to the left hand side and we have that

1

2
‖ut‖2 + a(u, ut) ≤

1

2
‖f‖2.

For the a-bilinear form we note that

a(u, ut) =

∫
Ω

∇u · ∇ut dx =

∫
Ω

1

2

d

dt
(|∇u|2) dx =

1

2

d

dt
|u|21.

We insert this and integrate from 0 to t to get∫ t

0

1

2
‖ut(s)‖2 ds+

∫ t

0

1

2

d

dt
(|u|21) ds ≤

∫ t

0

1

2
‖f(s)‖2 ds.

Cancel the 1/2 and evaluate the second integral in the left hand side and we
arrive at ∫ t

0

‖ut(s)‖2 ds+ |u(t)|21︸ ︷︷ ︸
≥0

≤ |u(0)|21︸ ︷︷ ︸
=0

+

∫ t

0

‖f(s)‖2 ds.

This simplifies to ∫ t

0

‖ut(s)‖2 ds ≤
∫ t

0

‖f(s)‖2 ds. (1)

Now take ϕ = −∆u ∈ H1
0 . This gives

(ut,−∆u)︸ ︷︷ ︸
(I)

+ a(u,−∆u)︸ ︷︷ ︸
(II)

= (f,−∆u) ≤ 1

2
‖f‖2 +

1

2
‖∆u‖2.
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We apply integration by parts on the first term to get

(I) =

∫
Ω

−(∇ · ∇u)ut dx =

∫
Ω

∇u · ∇ut dx+

∫
Γ

n · ∇uut ds︸ ︷︷ ︸
=0

=
1

2

d

dt
|u|21,

where the boundary term vanishes since ut ∈ H1
0 . Applying integration by parts

on the second term gives

(II) =

∫
Ω

∇u · ∇(−∆u) dx =

∫
Ω

(−∆u)2 dx+

∫
Γ

n∇u(−∆u︸ ︷︷ ︸
∈H1

0

) ds = ‖∆u‖2.

Insert the expressions for (I) and (II) and integrate from 0 to t to get∫ t

0

1

2

d

dt
|u(s)|21 ds+

∫ t

0

1

2
‖∆u(s)‖2 ds ≤

∫ t

0

1

2
‖f(s)‖2 ds.

Moreover, for the first integral we note that∫ t

0

1

2

d

dt
|u(s)|21 ds = |u(t)|21︸ ︷︷ ︸

≥0

− |u(0)|21︸ ︷︷ ︸
=0

≥ 0,

so we can simply remove it from the above inequality and hence end up with∫ t

0

‖∆u(s)‖2 ds ≤
∫ t

0

‖f(s)‖2 ds. (2)

We can now combine the results (1) and (2) and get the desired result with
constant C = 2.
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Exercise 8.10

Show that if u satisfies

ut −∆u = 0, in Ω× R+,

u = 0, on Γ× R+,

u(·, 0) = v, in Ω,

then there is a constant C such that

‖u(t)‖22 +

∫ t

0

|ut(s)|21 ds ≤ C‖v‖22, ∀v ∈ H2 ∩H1
0 , t ≥ 0.

Solution: Assume that u has sufficient regularity and compact support. We take
the gradient of the original equation to get

∇ut −∇(∆u) = 0.

Multiply this by ∇ut and integrate over Ω to get∫
Ω

|∇ut|2 dx︸ ︷︷ ︸
=|ut|21

−
∫

Ω

∇(∆u) · ∇ut dx︸ ︷︷ ︸
(I)

= 0. (3)

For the (I)-integral we apply integration by parts and find that

(I) =

∫
Ω

∆u∆ut dx−
∫

Γ

n · ∇ut∆u︸ ︷︷ ︸
=0

=

∫
Ω

1

2

d

dt
|∆u|2 dx =

1

2

d

dt
‖∆u(s)‖2,

where the boundary integral vanishes due to compact support. Insert this into
(3) and integrate from 0 to t to get∫ t

0

|ut(s)|21 ds+
1

2

∫ t

0

d

dt
‖∆u(s)‖2 ds = 0.

Evaluate the second integral and recall that u(·, 0) = v(·), and we have that∫ t

0

|ut(s)|21 ds+
1

2
‖∆u‖2 =

1

2
‖∆v‖2 ≤ 1

2
‖v‖22.

The last inequality holds since

‖∆v‖2 =
∥∥∥ d∑
i=1

∂2v

∂x2
i

∥∥∥2

≤
d∑
i=1

∥∥∥∂2v

∂x2
i

∥∥∥2

≤ ‖v‖22.

Moreover, since u ∈ H2 ∩H1
0 , we have the elliptic regularity estimate

‖u(t)‖22 ≤ CER‖∆u(t)‖2.
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In total, we thus have

1

2CER
‖u(t)‖22 +

∫ t

0

|ut(s)|21 ds ≤ 1

2
‖v‖22.

The desired result now follows as

‖u(t)‖22 +

∫ t

0

|ut(s)|21 ds ≤ C‖v‖22

where the constant is given by

C =
1

2 min{ 1
2CER

, 1}
.
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Exercise 8.16

Let u(x, t) = (E(t)v)(x) be the solution of

ut −∆u = 0, in Ω× R+,

u = 0, on Γ× R+,

u(·, 0) = v, in Ω,

and let {λj}∞j=1 and {ϕj}∞j=1 be the eigenvalues and normalized eigenfunctions
of

−∆ϕi = λiϕi, in Ω,

ϕi = 0, on Γ.

Show that

u(x, t) = (E(t)v)(x) =

∫
Ω

G(x, y, t)v(y) dy

where the Green’s function is

G(x, y, t) =

∞∑
j=1

e−λjtϕj(x)ϕj(y).

Solution: We first show that

u(x, t) =

∞∑
j=1

v̂je
−λjtϕj ,

and continue by showing that the integral of the Green’s function evaluates to
this as well. Since {ϕj}∞j=1 form an ON-basis for L2, we have

u(x, t) =

∞∑
j=1

(u(·, t), ϕj)︸ ︷︷ ︸
=ûj(t)

ϕj(x) =

∞∑
j=1

ûj(t)ϕj(x).

For the derivatives, this expression becomes

ut =

∞∑
j=1

û′j(t)ϕj(x),

−∆u =

∞∑
j=1

ûj(t)(−∆ϕj(x)) =

∞∑
j=1

λj ûj(t)ϕj(x),

where we applied the eigenvalue problem formulation in the last step. Insert
these into the heat equation above and we get

∞∑
j=1

[û′j(t) + λj ûj(t)]ϕj(x) = 0,
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and since {ϕj}∞j=1 is an ON-basis it hence holds that

û′j(t) + λj ûj(t) = 0.

This a standard ODE to which the solution is

ûj(t) = ûj(0)e−λjt = v̂je
−λjt,

where the last inequality holds since u(x, 0) = v(x), so

∞∑
j=1

ûj(0)ϕj(x) =

∞∑
j=1

v̂jϕj(x) =⇒ ûj(0) = v̂j

for all j, once again since {ϕj}∞j=1 is an ON-basis. Consequently

u(x, t) =

∞∑
j=1

v̂je
−λjtϕj .

The fact that this equals the integral of the Green’s function now follows since∫
Ω

G(x, y, t)v(y) dy = (G(x, ·, t), v(·))

=
( ∞∑
j=1

e−λjtϕj(x)ϕj(·),
∞∑
i=1

v̂iϕi(·)
)

=

∞∑
j=1

∞∑
i=1

e−λjtϕj(x)v̂i (ϕj , ϕi)︸ ︷︷ ︸
=δij

=

∞∑
j=1

v̂je
−λjtϕj(x) = u(x, t).
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