TMA026/MMA430
 Exercises and solutions

Per Ljung
perlj@chalmers.se

May 8, 2020

Exercise session 5: 8.6, 8.10, 8.16.

Exercise 8.6

Let u be the solution of

$$
\left(u_{t}, \varphi\right)+a(u, \varphi)=(f, \varphi), \quad \forall \varphi \in H_{0}^{1}, t \in \mathbb{R}_{+}
$$

with $u(\cdot, 0)=0$. Show that

$$
\int_{0}^{t}\left(\left\|u_{t}(s)\right\|^{2}+\|\Delta u(s)\|^{2}\right) \mathrm{d} s \leq C \int_{0}^{t}\|f(s)\|^{2} \mathrm{~d} s
$$

for $t \geq 0$.
Solution: We assume sufficient regularity on u. Let $\varphi=u_{t} \in H_{0}^{1}$ in the weak form and we get

$$
\left\|u_{t}\right\|^{2}+a\left(u, u_{t}\right)=\left(f, u_{t}\right) \leq\|f\|\left\|u_{t}\right\| \leq \frac{1}{2}\|f\|^{2}+\frac{1}{2}\left\|u_{t}\right\|^{2}
$$

where we first applied Cauchy-Schwarz followed by the inequality $a b \leq\left(a^{2}+\right.$ $\left.b^{2}\right) / 2$. Move the last term to the left hand side and we have that

$$
\frac{1}{2}\left\|u_{t}\right\|^{2}+a\left(u, u_{t}\right) \leq \frac{1}{2}\|f\|^{2} .
$$

For the a-bilinear form we note that

$$
a\left(u, u_{t}\right)=\int_{\Omega} \nabla u \cdot \nabla u_{t} \mathrm{~d} x=\int_{\Omega} \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|\nabla u|^{2}\right) \mathrm{d} x=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u|_{1}^{2} .
$$

We insert this and integrate from 0 to t to get

$$
\int_{0}^{t} \frac{1}{2}\left\|u_{t}(s)\right\|^{2} \mathrm{~d} s+\int_{0}^{t} \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|u|_{1}^{2}\right) \mathrm{d} s \leq \int_{0}^{t} \frac{1}{2}\|f(s)\|^{2} \mathrm{~d} s
$$

Cancel the $1 / 2$ and evaluate the second integral in the left hand side and we arrive at

$$
\int_{0}^{t}\left\|u_{t}(s)\right\|^{2} \mathrm{~d} s+\underbrace{|u(t)|_{1}^{2}}_{\geq 0} \leq \underbrace{|u(0)|_{1}^{2}}_{=0}+\int_{0}^{t}\|f(s)\|^{2} \mathrm{~d} s
$$

This simplifies to

$$
\begin{equation*}
\int_{0}^{t}\left\|u_{t}(s)\right\|^{2} \mathrm{~d} s \leq \int_{0}^{t}\|f(s)\|^{2} \mathrm{~d} s \tag{1}
\end{equation*}
$$

Now take $\varphi=-\Delta u \in H_{0}^{1}$. This gives

$$
\underbrace{\left(u_{t},-\Delta u\right)}_{(I)}+\underbrace{a(u,-\Delta u)}_{(I I)}=(f,-\Delta u) \leq \frac{1}{2}\|f\|^{2}+\frac{1}{2}\|\Delta u\|^{2} .
$$

We apply integration by parts on the first term to get

$$
(I)=\int_{\Omega}-(\nabla \cdot \nabla u) u_{t} \mathrm{~d} x=\int_{\Omega} \nabla u \cdot \nabla u_{t} \mathrm{~d} x+\underbrace{\int_{\Gamma} n \cdot \nabla u u_{t} \mathrm{~d} s}_{=0}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u|_{1}^{2}
$$

where the boundary term vanishes since $u_{t} \in H_{0}^{1}$. Applying integration by parts on the second term gives

$$
(I I)=\int_{\Omega} \nabla u \cdot \nabla(-\Delta u) \mathrm{d} x=\int_{\Omega}(-\Delta u)^{2} \mathrm{~d} x+\int_{\Gamma} n \nabla u(\underbrace{-\Delta u}_{\in H_{0}^{1}}) \mathrm{d} s=\|\Delta u\|^{2} .
$$

Insert the expressions for (I) and (II) and integrate from 0 to t to get

$$
\int_{0}^{t} \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u(s)|_{1}^{2} \mathrm{~d} s+\int_{0}^{t} \frac{1}{2}\|\Delta u(s)\|^{2} \mathrm{~d} s \leq \int_{0}^{t} \frac{1}{2}\|f(s)\|^{2} \mathrm{~d} s
$$

Moreover, for the first integral we note that

$$
\int_{0}^{t} \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u(s)|_{1}^{2} \mathrm{~d} s=\underbrace{|u(t)|_{1}^{2}}_{\geq 0}-\underbrace{|u(0)|_{1}^{2}}_{=0} \geq 0
$$

so we can simply remove it from the above inequality and hence end up with

$$
\begin{equation*}
\int_{0}^{t}\|\Delta u(s)\|^{2} \mathrm{~d} s \leq \int_{0}^{t}\|f(s)\|^{2} \mathrm{~d} s \tag{2}
\end{equation*}
$$

We can now combine the results (1) and (2) and get the desired result with constant $C=2$.

ExERCISE 8.10

Show that if u satisfies

$$
\begin{aligned}
& u_{t}-\Delta u=0, \\
& \text { in } \Omega \times \mathbb{R}_{+}, \\
& u=0, \\
& \text { on } \Gamma \times \mathbb{R}_{+}, \\
& u(\cdot, 0)=v,
\end{aligned} \text { in } \Omega,
$$

then there is a constant C such that

$$
\|u(t)\|_{2}^{2}+\int_{0}^{t}\left|u_{t}(s)\right|_{1}^{2} \mathrm{~d} s \leq C\|v\|_{2}^{2}, \quad \forall v \in H^{2} \cap H_{0}^{1}, t \geq 0
$$

Solution: Assume that u has sufficient regularity and compact support. We take the gradient of the original equation to get

$$
\nabla u_{t}-\nabla(\Delta u)=0
$$

Multiply this by ∇u_{t} and integrate over Ω to get

$$
\begin{equation*}
\underbrace{\int_{\Omega}\left|\nabla u_{t}\right|^{2} \mathrm{~d} x}_{=\left|u_{t}\right|_{1}^{2}} \underbrace{-\int_{\Omega} \nabla(\Delta u) \cdot \nabla u_{t} \mathrm{~d} x}_{(I)}=0 \tag{3}
\end{equation*}
$$

For the (I)-integral we apply integration by parts and find that

$$
(I)=\int_{\Omega} \Delta u \Delta u_{t} \mathrm{~d} x-\underbrace{\int_{\Gamma} n \cdot \nabla u_{t} \Delta u}_{=0}=\int_{\Omega} \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|\Delta u|^{2} \mathrm{~d} x=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\Delta u(s)\|^{2},
$$

where the boundary integral vanishes due to compact support. Insert this into (3) and integrate from 0 to t to get

$$
\int_{0}^{t}\left|u_{t}(s)\right|_{1}^{2} \mathrm{~d} s+\frac{1}{2} \int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\Delta u(s)\|^{2} \mathrm{~d} s=0
$$

Evaluate the second integral and recall that $u(\cdot, 0)=v(\cdot)$, and we have that

$$
\int_{0}^{t}\left|u_{t}(s)\right|_{1}^{2} \mathrm{~d} s+\frac{1}{2}\|\Delta u\|^{2}=\frac{1}{2}\|\Delta v\|^{2} \leq \frac{1}{2}\|v\|_{2}^{2}
$$

The last inequality holds since

$$
\|\Delta v\|^{2}=\left\|\sum_{i=1}^{d} \frac{\partial^{2} v}{\partial x_{i}^{2}}\right\|^{2} \leq \sum_{i=1}^{d}\left\|\frac{\partial^{2} v}{\partial x_{i}^{2}}\right\|^{2} \leq\|v\|_{2}^{2}
$$

Moreover, since $u \in H^{2} \cap H_{0}^{1}$, we have the elliptic regularity estimate

$$
\|u(t)\|_{2}^{2} \leq C_{\mathrm{ER}}\|\Delta u(t)\|^{2}
$$

In total, we thus have

$$
\frac{1}{2 C_{\mathrm{ER}}}\|u(t)\|_{2}^{2}+\int_{0}^{t}\left|u_{t}(s)\right|_{1}^{2} \mathrm{~d} s \leq \frac{1}{2}\|v\|_{2}^{2}
$$

The desired result now follows as

$$
\|u(t)\|_{2}^{2}+\int_{0}^{t}\left|u_{t}(s)\right|_{1}^{2} \mathrm{~d} s \leq C\|v\|_{2}^{2}
$$

where the constant is given by

$$
C=\frac{1}{2 \min \left\{\frac{1}{2 C_{\mathrm{ER}}}, 1\right\}}
$$

ExERCISE 8.16

Let $u(x, t)=(E(t) v)(x)$ be the solution of

$$
\begin{aligned}
& u_{t}-\Delta u=0, \text { in } \Omega \times \mathbb{R}_{+}, \\
& u=0, \\
& \text { on } \Gamma \times \mathbb{R}_{+}, \\
& u(\cdot, 0)=v, \\
& \text { in } \Omega,
\end{aligned}
$$

and let $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ and $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ be the eigenvalues and normalized eigenfunctions of

$$
\begin{aligned}
-\Delta \varphi_{i} & =\lambda_{i} \varphi_{i}, & & \text { in } \Omega \\
\varphi_{i} & =0, & & \text { on } \Gamma .
\end{aligned}
$$

Show that

$$
u(x, t)=(E(t) v)(x)=\int_{\Omega} G(x, y, t) v(y) \mathrm{d} y
$$

where the Green's function is

$$
G(x, y, t)=\sum_{j=1}^{\infty} e^{-\lambda_{j} t} \varphi_{j}(x) \varphi_{j}(y)
$$

Solution: We first show that

$$
u(x, t)=\sum_{j=1}^{\infty} \hat{v}_{j} e^{-\lambda_{j} t} \varphi_{j}
$$

and continue by showing that the integral of the Green's function evaluates to this as well. Since $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ form an ON-basis for L_{2}, we have

$$
u(x, t)=\sum_{j=1}^{\infty} \underbrace{\left(u(\cdot, t), \varphi_{j}\right)}_{=\hat{u}_{j}(t)} \varphi_{j}(x)=\sum_{j=1}^{\infty} \hat{u}_{j}(t) \varphi_{j}(x) .
$$

For the derivatives, this expression becomes

$$
\begin{aligned}
u_{t} & =\sum_{j=1}^{\infty} \hat{u}_{j}^{\prime}(t) \varphi_{j}(x) \\
-\Delta u & =\sum_{j=1}^{\infty} \hat{u}_{j}(t)\left(-\Delta \varphi_{j}(x)\right)=\sum_{j=1}^{\infty} \lambda_{j} \hat{u}_{j}(t) \varphi_{j}(x),
\end{aligned}
$$

where we applied the eigenvalue problem formulation in the last step. Insert these into the heat equation above and we get

$$
\sum_{j=1}^{\infty}\left[\hat{u}_{j}^{\prime}(t)+\lambda_{j} \hat{u}_{j}(t)\right] \varphi_{j}(x)=0
$$

and since $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ is an ON-basis it hence holds that

$$
\hat{u}_{j}^{\prime}(t)+\lambda_{j} \hat{u}_{j}(t)=0 .
$$

This a standard ODE to which the solution is

$$
\hat{u}_{j}(t)=\hat{u}_{j}(0) e^{-\lambda_{j} t}=\hat{v}_{j} e^{-\lambda_{j} t}
$$

where the last inequality holds since $u(x, 0)=v(x)$, so

$$
\sum_{j=1}^{\infty} \hat{u}_{j}(0) \varphi_{j}(x)=\sum_{j=1}^{\infty} \hat{v}_{j} \varphi_{j}(x) \Longrightarrow \hat{u}_{j}(0)=\hat{v}_{j}
$$

for all j, once again since $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ is an ON-basis. Consequently

$$
u(x, t)=\sum_{j=1}^{\infty} \hat{v}_{j} e^{-\lambda_{j} t} \varphi_{j}
$$

The fact that this equals the integral of the Green's function now follows since

$$
\begin{aligned}
\int_{\Omega} G(x, y, t) v(y) \mathrm{d} y & =(G(x, \cdot, t), v(\cdot)) \\
& =\left(\sum_{j=1}^{\infty} e^{-\lambda_{j} t} \varphi_{j}(x) \varphi_{j}(\cdot), \sum_{i=1}^{\infty} \hat{v}_{i} \varphi_{i}(\cdot)\right) \\
& =\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} e^{-\lambda_{j} t} \varphi_{j}(x) \hat{v}_{i} \underbrace{\left(\varphi_{j}, \varphi_{i}\right)}_{=\delta_{i j}} \\
& =\sum_{j=1}^{\infty} \hat{v}_{j} e^{-\lambda_{j} t} \varphi_{j}(x)=u(x, t) .
\end{aligned}
$$

