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Exercise 10.1

Consider the problem

ut −∆u = f, in Ω× R+,

u = 0, on Ω× R+,

u(·, 0) = v, in Ω,

in the one-dimensional case Ω = (0, 1). For the numerical solution, we use the
piecewise linear functions based on the partition

0 < x1 < x2 < · · · < xM < 1, xj = jh, h =
1

M + 1
.

Determine the mass matrix B and the stiffness matrix A and write down the
semi-discrete problem, the backward Euler equations, and the Crank–Nicholson
equations.

Solution: In a standard way, we find the mass matrix elements as B = (Bij) for
1 ≤ i, j ≤M , with

Bij = (ϕj , ϕi),

where {ϕi}Mi=1 are the hat functions of the partition, i.e. the basis functions for
Sh. Since the hat functions fulfill the property

supp(ϕi) ∩ supp(ϕj) 6= ∅

only for j ∈ {i − 1, i, i + 1}, these are the only indices that will give some
contribution to the matrix. Hence, B is tri-diagonal. The matrix consists of
two types of elements, namely (ϕi, ϕi) as well as (ϕi−1, ϕi) = (ϕi+1, ϕi), due to
the symmetry of the L2-product. In the one-dimensional case, a hat function is
defined by

ϕi(x) =

{
x−xi−1

h , if x ∈ [xi−1, xi],
xi+1−x

h , if x ∈ [xi, xi+1],

and 0 otherwise. The first type of element is thus computed as

(ϕi, ϕi) =

∫ 1

0

ϕi(x)2 dx =

∫ xi

xi−1

(x− xi−1

h

)2

dx+

∫ xi+1

xi

(xi+1 − x
h

)2

dx

= 2

∫ xi

xi−1

(x− xi−1

h

)2

dx =
2

h2

∫ xi

xi−1

(x− xi−1)2 dx

=
2

h2

[1

3
(x− xi−1)3

]xi

xi−1

=
2

3h2
(xi − xi−1)3 =

2h

3
.
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The second type of element is evaluated as

(ϕi−1, ϕi) =

∫ 1

0

ϕi−1(x)ϕi(x) dx =

∫ xi

xi−1

(xi − x
h

)(x− xi−1

h

)
dx

=
1

h2

[
(xi − x)

(x− xi−1)2

2

]xi

xi−1

+
1

h2

∫ xi

xi−1

(x− xi−1)2

2
dx

=
1

2h2

[1

3
(x− xi−1)3

]xi

xi−1

=
1

6h2
h3 =

h

6
.

The mass matrix thus becomes as

B =
h

6


4 1 0 · · 0
1 4 1 · · 0
0 1 4 · · 0
· · ·
· 4 1
0 0 0 · 1 4

 .

The stiffness matrix is found in a similar way, but as

A = (Aij), 1 ≤ i, j ≤M, with Aij = (ϕ′j , ϕ
′
i).

By same reason as for the mass matrix, only j ∈ {i− 1, i, i+ 1} will contribute,
and hence there are two types of elements for this matrix as well (since in our
case a(·, ·) is symmetric). Note that

ϕ′i(x) =

{
1
h , if x ∈ [xi−1, xi],

− 1
h , if x ∈ [xi, xi+1],

and 0 otherwise. Hence, the first type of element becomes as

a(ϕi, ϕi) =

∫ 1

0

ϕ′i(x)2 dx =

∫ xi

xi−1

1

h
· 1

h
dx+

∫ xi+1

xi

(
− 1

h

)
·
(
− 1

h

)
dx

=
1

h2

∫ xi+1

xi−1

dx =
2h

h2
=

2

h
.

The second type evaluates as

a(ϕi−1, ϕi) =

∫ xi

xi−1

− 1

h
· 1

h
dx = − 1

h2

∫ xi

xi−1

dx = − 1

h
.

Hence, the stiffness matrix becomes as

A =
1

h


2 −1 0 · · 0
−1 2 −1 · · 0
0 −1 2 · · 0
· · ·
· 2 −1
0 0 0 · −1 2

 .
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The semi-discrete problem is given as: Find uh ∈ Sh such that

(uh,t, χ) + a(uh, χ) = (f, χ), ∀χ ∈ Sh, t > 0,

uh(0) = vh,

where the bilinear form is defined as a(·, ·) = ((·)′, (·)′). For the remaining tasks,
we begin by writing

uh(x, t) =

M∑
j=1

αj(t)ϕj(x),

since uh ∈ Sh = span({ϕj}Mj=1). Take χ = ϕi(x) in the semi-discrete problem
to arrive at

M∑
j=1

α′j(t) (ϕj , ϕi)︸ ︷︷ ︸
=Bij

+

M∑
j=1

αj(t) a(ϕj , ϕi)︸ ︷︷ ︸
=Aij

= (f, ϕi),

for i = 1, ...,M . We thus arrive at the M ×M matrix system

Bα̇(t) +Aα(t) = b,

where α(t) =
[
α1(t) · · · αM (t)

]T
. For a standard ODE u̇(t) = f(u, t),

we define the θ-scheme as

un − un−1

kn
= θfn + (1− θ)fn−1,

so that

θ = 0 =⇒ Forward Euler,

θ =
1

2
=⇒ Crank–Nicholson,

θ = 1 =⇒ Backward Euler.

The θ-scheme for our matrix system thus becomes

B
(αn − αn−1

kn

)
+A

(
θαn + (1− θ)αn−1

)
= θbn + (1− θ)bn−1,

which after rearranging the terms is written as

(B + θknA)αn = (B − (1− θ)knA)αn−1 + kn(θbn + (1− θ)bn−1).

The backward Euler–Galerkin is given by θ = 1, i.e.

(B + knA)αn = Bαn−1 + knb
n,

and the Crank–Nicholson by θ = 1
2 , i.e.(

B +
1

2
knA

)
αn =

(
B − 1

2
knA

)
αn−1 +

1

2
kn(bn + bn−1).
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Exercise 10.3

(a) Show that the operator −∆h : Sh → Sh defined by

(−∆hψ, χ) = a(ψ, χ), ∀χ ∈ Sh

is self-adjoint positive definite with respect to (·, ·).

(b) Show that (with the notation of Theorem 6.7)

−∆hvh =

Mh∑
i=1

λi,h(vh, ϕi,h)ϕi,h

and ‖∆h‖ = λMh,h.

(c) Assume that the family of finite element spaces {Sh} satisfies the inverse
inequality

‖∇χ‖ ≤ Ch−1‖χ‖, χ ∈ Sh.

Show that
‖∆h‖ ≤ Ch−2.

Solution: (a) For the self-adjointness of the discrete Laplacian, we find by using
the definition och −∆h as well as the symmetry of a(·, ·) and (·, ·) that

(−∆hψ, χ) = a(ψ, χ) = a(χ, ψ) = (−∆hχ, ψ) = (ψ,−∆hχ).

For the positive definiteness, we recall that an operator A on a Hilbert space H
is positive definite if

inf
06=x∈H

(Ax, x)

(x, x)
> 0.

We see this straight away by applying the definition, as

(−∆hψ,ψ) = a(ψ,ψ) = |ψ|21 ≥ 0,

where equality holds if and only if ψ = 0, and hence −∆h is positive definite
with respect to (·, ·).

(b) We know that the set of discrete eigenfunctions {ϕi,h}Mh
i=1 forms an ON-

basis for Sh. By the definition of the discrete Laplacian, as well as the discrete
eigenvalue problem, we also have

(−∆hvh, ϕi,h) = a(vh, ϕi,h) = λi,h(vh, ϕi,h).

Thus, if we expand −∆hvh ∈ Sh in the basis {ϕi,h}Mh
i=1 we see that

−∆hvh =

Mh∑
i=1

(−∆hvh, ϕi,h)ϕi,h =

Mh∑
i=1

λi,h(vh, ϕi,h)ϕi,h.
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To show that ‖∆h‖ = λMh,h, we need to show that

‖∆hvh‖ ≤ λMh,h‖vh‖, ∀vh ∈ Sh,

with equality for some vh ∈ Sh. To show the inequality, consider

‖∆hvh‖2 = (−∆hvh,−∆hvh)

=
( Mh∑
i=1

λi,h(vh, ϕi,h)ϕi,h,

Mh∑
j=1

λj,h(vh, ϕj,h)ϕj,h

)

=

Mh∑
i=1

Mh∑
j=1

λi,hλj,h(vh, ϕi,h)(vh, ϕj,h)(ϕi,h, ϕj,h)

=

Mh∑
i=1

λ2
i,h(vh, ϕi,h)2

≤ max
1≤i≤Mh

λ2
i,h

Mh∑
i=1

(vh, ϕi,h)2

= λ2
Mh,h

Mh∑
i=1

Mh∑
j=1

(vh, ϕi,h)(vh, ϕj,h)(ϕi,h, ϕj,h)

= λ2
Mh,h

( Mh∑
i=1

(vh, ϕi,h)ϕi,h,

Mh∑
j=1

(vh, ϕj,h)ϕj,h

)
= λ2

Mh,h
‖vh‖2.

Remains to find a function in Sh such that equality holds. Consider −∆hϕi,h ∈
Sh. For this function we can apply the definition of the discrete Laplacian and
the discrete eigenvalue problem to find that

(−∆hϕi,h, χ) = a(ϕi,h, χ) = λi,h(ϕi,h, χ).

Rearranging the terms and using linearity of L2-product we thus have that

(−∆hϕi,h − λi,hϕi,h, χ) = 0, ∀χ ∈ Sh.

Take χ = −∆hϕi,h − λi,hϕi,h ∈ Sh and insert this to get

‖ −∆hϕi,h − λi,hϕi,h‖2 = 0 =⇒ −∆hϕi,h = λi,hϕi,h.

For ϕMh,h ∈ Sh we thus see that

‖∆hϕMh,h‖ = ‖λMh,hϕMh,h‖ = λMh,h‖ϕMh,h‖,

which shows the equality, and hence ‖∆h‖ = λMh,h.

(c) Take χ ∈ Sh and note that since −∆hχ ∈ Sh

‖∆hχ‖2 = (−∆hχ,−∆hχ) = a(χ,−∆hχ) = (∇χ,∇(−∆hχ))

≤ ‖∇χ‖‖∇(−∆hχ)‖ ≤ Ch−1‖χ‖Ch−1‖∆hχ‖.
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Cancel one factor on each side to end up with the inequality

‖∆hχ‖ ≤ Ch−2‖χ‖, ∀χ ∈ Sh,

which by the definition of the operator-norm gives

‖∆h‖ ≤ Ch−2.
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Exercise 10.4

Let u and uh be the solutions of

ut −∆u = 0, in Ω× R+,

u = 0, on Γ× R+,

u(·, 0) = v, in Ω,

and

(uh,t, χ) + a(uh, χ) = (f, χ), ∀χ ∈ Sh, t > 0,

uh(0) = vh,

respectively, with vh = Phv.

(a) Assume that v ∈ H2 ∩H1
0 . Show that

‖uh(t)− u(t)‖ ≤ Ch2‖v‖2, for t ≥ 0.

(b) Assume that v ∈ L2. Show that

‖uh(t)− u(t)‖ ≤ Ch2t−1‖v‖, for t > 0.

Solution: (a) Decompose the error by using the Ritz-projection, i.e.

e(t) = uh(t)− u(t) = uh(t)−Rhu(t)︸ ︷︷ ︸
=:θ(t)

+Rhu(t)− u(t)︸ ︷︷ ︸
=:ρ(t)

,

so that the error can be bounded as

‖e‖ ≤ ‖θ‖+ ‖ρ‖.

We begin with the error from the elliptic projection ρ, and recall the error
estimates

‖Rhv − v‖+ h|Rhv − v|1 ≤ Chs‖v‖s, for s = 1, 2,

from Theorem 5.5. Hence, we can bound ρ as

‖ρ‖ ≤ Ch2‖u(t)‖2 ≤ Ch2‖v‖2,

where the last inequality follows from Problem 8.10. For θ we make the same
calculation as in (10.14) in the course literature and get

(θt, χ) + a(θ, χ)︸ ︷︷ ︸
(−∆hθ,χ)

= − (ρt, χ)︸ ︷︷ ︸
(Phρt,χ)

,

which in turn yields

(θt −∆hθ + Phρt, χ) = 0, ∀χ ∈ Sh.
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Take χ = θt −∆hθ + Phρt ∈ Sh and insert this to get

θt −∆hθ = −Phρt.

With θ satisfying this equation, we can apply the discrete version of Duhamel’s
principle ((10.8) in the course literature) to get

θ(t) = Eh(t)θ(0)−
∫ t

0

Eh(t− s)Phρs(s) ds.

We now follow the hint given in the problem formulation (as stated in the course
literature) and split the integral as∫ t

0

...ds =

∫ t/2

0

...ds+

∫ t

t/2

...ds

and apply integration by parts on the first integral to get

−
∫ t/2

0

Eh(t− s)Ds(Phρ)(s) ds

= −
[
Eh(t− s)Phρ(s)

]t/2
0

+

∫ t/2

0

DsEh(t− s)Phρ(s) ds

= −Eh(t/2)Phρ(t/2) + Eh(t)ρ(0) +

∫ t/2

0

DsEh(t− s)Phρ(s) ds.

Note here that we wrote Phρs(s) = Ds(Phρ)(s), which works since Ds commutes
with Ph. Consequently, we can write θ as

θ(t) =

(I)︷ ︸︸ ︷
Eh(t)θ(0) + Eh(t)Phρ(0)−

(II)︷ ︸︸ ︷
Eh(t/2)Phρ(t/2)

+

∫ t/2

0

DsEh(t− s)Phρ(s) ds︸ ︷︷ ︸
(III)

−
∫ t

t/2

Eh(t− s)Phρs(s) ds︸ ︷︷ ︸
(IV )

,

so that we furthermore can bound it as

‖θ‖ ≤ ‖(I)‖+ ‖(II)‖+ ‖(III)‖+ ‖(IV )‖.

For the first one we find that

(I) = Eh(t)(θ(0) + Phρ(0))

= Eh(t)Ph(θ(0) + ρ(0))

= Eh(t)(Phuh(0)− Phu(0))

= Eh(t)(vh − vh) = 0.
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Here we used the fact that θ(0) ∈ Sh so that θ(0) = Phθ(0) in the second
equality, and the rest follows from the projection property of Ph. For the second
one we get, since ‖Ph‖ = 1,

‖(II)‖ = ‖Eh(t/2)Phρ(t/2)‖ = ‖Phρ(t/2)‖ ≤ ‖ρ(t/2)‖ ≤ Ch2‖v‖2,

where the last inequality follows from the ρ-part. A similar bound is found for
the third one by

‖(III)‖ =
∥∥∥ ∫ t/2

0

DsEh(t− s)Phρ(s) ds
∥∥∥

≤
∫ t/2

0

‖DsEh(t− s)Phρ(s)‖ ds

≤ C
∫ t/2

0

(t− s)−1‖Phρ(s)‖ds

≤ Ch2‖v‖2
∫ t/2

0

1

t− s
ds

= Ch2‖v‖2
[
− log(t− s)

]t/2
0

= Ch2‖v‖2(log(t)− log(t/2))

= C log(2)h2‖v‖2 = Ch2‖v‖2.

Here we applied inequality (10.18) from the course literature in the third line,
followed by the previously found bound for Phρ in the subsequent step. Remains
to show similar bound for (IV ). At first we note that

‖Eh(t− s)Phρs(s)‖ ≤ ‖ρs(s)‖ = ‖Rhus(s)− us(s)‖ ≤ Ch2‖us(s)‖2,

since ‖Eh(t− s)‖ ≤ 1 and ‖Ph‖ = 1. Thus, we find that

‖(IV )‖ ≤
∫ t

t/2

‖Eh(t− s)Phρs(s)‖ ds

≤ Ch2

∫ t

t/2

‖us(s)‖2 ds

= Ch2

∫ t

t/2

‖DsE(s)v‖2 ds

≤ Ch2

∫ t

t/2

Cs−1−2/2‖v‖ ds

= Ch2‖v‖
∫ t

t/2

s−2 ds

≤ Ch2‖v‖2
[
− s−1

]t
t/2

=
C

t
h2‖v‖2 ≤ Ch2‖v‖2.

10



In these calculations, we used the fact that u(s) = E(s)v in the third step,
followed by the property (8.18) from the course literature. Moreover, the last
step assumes that t > 0. In the case t = 0 it holds that (IV ) = 0, so the
estimate holds regardless. Summing these results now gives the bound

‖θ(t)‖ ≤ Ch2‖v‖2,

which in turn yields the desired estimate.

(b) Assume t > 0. We decompose the error in the same ρ-θ way as in (a). For
the elliptic projection we have

‖ρ(t)‖ = ‖Rhu(t)− u(t)‖ ≤ Ch2‖u(t)‖2 = Ch2‖E(t)v‖2 ≤ Ch2t−1‖v‖.

Here, the first inequality followed from the error estimate results for the Ritz-
projection, and the last inequality from the identity (8.18) in the course lit-
erature. For the θ-part, we follow the hint given in the course literature and
write

ρ̃(t) =

∫ t

0

ρ(s) ds,

so that Dtρ̃(t) = ρ(t). The results given in the hint follows since

‖ρ̃(t)‖ = ‖Rhũ(t)− ũ(s)‖ ≤ Ch2‖ũ‖2,

and by elliptic regularity ‖ũ‖2 ≤ C‖∆ũ‖. Moreover, by the heat equation, it
follows that

∆ũ =

∫ t

0

us ds = u(t)− v,

so we end up with the estimate

‖ρ̃‖ ≤ Ch2‖u(t)− v‖ = Ch2‖(E(t)− I)v‖ ≤ Ch2‖E(t)− I‖‖v‖ ≤ Ch2‖v‖.

For the estimate of θ, we will decompose the error in a similar way as in task
(a), but this time we apply integration by parts once more on (III), so that

(III) =

∫ t/2

0

DsEh(t− s)Phρ(s) ds

=

∫ t/2

0

DsEh(t− s)PhDsρ̃(s) ds

=
[
DsEh(t− s)Phρ̃(s)

]t/2
0
−
∫ t/2

0

D2
sEh(t− s)Phρ̃(s) ds

= DtEh(t/2)Phρ̃(t/2)− 0−
∫ t/2

0

D2
sEh(t− s)Phρ̃(s) ds,

where the second boundary term vanishes since ρ̃(0) = 0. Moreover, recall
that (I) = 0 in (a), so we can neglect that term this time. The decomposition
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becomes

θ(t) = −

(i)︷ ︸︸ ︷
Eh(t/2)Phρ(t/2) +

(ii)︷ ︸︸ ︷
DtEh(t/2)Phρ̃(t/2)

−
∫ t/2

0

D2
sEh(t− s)Phρ̃(s) ds︸ ︷︷ ︸

(iii)

−
∫ t

t/2

Eh(t− s)Phρs(s) ds︸ ︷︷ ︸
(iv)

,

so that we bound the θ-error as

‖θ‖ ≤ ‖(i)‖+ ‖(ii)‖+ ‖(iii)‖+ ‖(iv)‖.

For the first term, it suffices to bound the operators by their corresponding
norms and then apply the results for ρ, i.e.

‖(i)‖ = ‖Eh(t/2)Phρ(t/2)‖ ≤ ‖ρ(t/2)‖ ≤ 2Ch2t−1‖v‖.

For the second term, which includes a derivative on the discrete solution op-
erator, we can once again apply the identity (10.18) from the course literature
along with the previously derived results for ρ̃ to get

‖(ii)‖ = ‖DtEh(t/2)Phρ̃(t/2)‖
≤ Ct−1‖Phρ̃(t/2)‖
≤ Ct−1‖ρ̃(t/2)‖
≤ Ch2t−1‖v‖.

For the third term, we once again apply (10.18) for the derivative on the discrete
solution operator and the results for ρ̃ to get

‖(iii)‖ ≤
∫ t/2

0

‖D2
sEh(t− s)Phρ̃(s)‖ ds

≤
∫ t/2

0

C(t− s)−2‖Phρ̃(s)‖ ds

≤ Ch2‖v‖
∫ t/2

0

(t− s)−2 ds

= Ch2t−1‖v‖.

For (iv), we repeat the calculations from (IV ) in (a), but skip the part where
we bound ‖v‖ by ‖v‖2 and just leave it as it is, which gives the bound

‖(iv)‖ ≤ Ch2t−1‖v‖.

In total, we thus get
‖θ‖ ≤ Ch2t−1‖v‖,

which yields the desired estimate.
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