TMA026/MMA430
 Exercises and solutions

Per Ljung
perlj@chalmers.se

May 15, 2020

Exercise session 6: 10.1, 10.3, 10.4.

Exercise 10.1

Consider the problem

$$
\begin{aligned}
u_{t}-\Delta u=f, & \text { in } \Omega \times \mathbb{R}_{+}, \\
u=0, & \text { on } \Omega \times \mathbb{R}_{+}, \\
u(\cdot, 0)=v, & \text { in } \Omega,
\end{aligned}
$$

in the one-dimensional case $\Omega=(0,1)$. For the numerical solution, we use the piecewise linear functions based on the partition

$$
0<x_{1}<x_{2}<\cdots<x_{M}<1, \quad x_{j}=j h, \quad h=\frac{1}{M+1} .
$$

Determine the mass matrix B and the stiffness matrix A and write down the semi-discrete problem, the backward Euler equations, and the Crank-Nicholson equations.
Solution: In a standard way, we find the mass matrix elements as $B=\left(B_{i j}\right)$ for $1 \leq i, j \leq M$, with

$$
B_{i j}=\left(\varphi_{j}, \varphi_{i}\right)
$$

where $\left\{\varphi_{i}\right\}_{i=1}^{M}$ are the hat functions of the partition, i.e. the basis functions for S_{h}. Since the hat functions fulfill the property

$$
\operatorname{supp}\left(\varphi_{i}\right) \cap \operatorname{supp}\left(\varphi_{j}\right) \neq \emptyset
$$

only for $j \in\{i-1, i, i+1\}$, these are the only indices that will give some contribution to the matrix. Hence, B is tri-diagonal. The matrix consists of two types of elements, namely $\left(\varphi_{i}, \varphi_{i}\right)$ as well as $\left(\varphi_{i-1}, \varphi_{i}\right)=\left(\varphi_{i+1}, \varphi_{i}\right)$, due to the symmetry of the L_{2}-product. In the one-dimensional case, a hat function is defined by

$$
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{h}, & \text { if } x \in\left[x_{i-1}, x_{i}\right] \\ \frac{x_{i+1}-x}{h}, & \text { if } x \in\left[x_{i}, x_{i+1}\right]\end{cases}
$$

and 0 otherwise. The first type of element is thus computed as

$$
\begin{aligned}
\left(\varphi_{i}, \varphi_{i}\right) & =\int_{0}^{1} \varphi_{i}(x)^{2} \mathrm{~d} x=\int_{x_{i-1}}^{x_{i}}\left(\frac{x-x_{i-1}}{h}\right)^{2} \mathrm{~d} x+\int_{x_{i}}^{x_{i+1}}\left(\frac{x_{i+1}-x}{h}\right)^{2} \mathrm{~d} x \\
& =2 \int_{x_{i-1}}^{x_{i}}\left(\frac{x-x_{i-1}}{h}\right)^{2} \mathrm{~d} x=\frac{2}{h^{2}} \int_{x_{i-1}}^{x_{i}}\left(x-x_{i-1}\right)^{2} \mathrm{~d} x \\
& =\frac{2}{h^{2}}\left[\frac{1}{3}\left(x-x_{i-1}\right)^{3}\right]_{x_{i-1}}^{x_{i}}=\frac{2}{3 h^{2}}\left(x_{i}-x_{i-1}\right)^{3}=\frac{2 h}{3}
\end{aligned}
$$

The second type of element is evaluated as

$$
\begin{aligned}
\left(\varphi_{i-1}, \varphi_{i}\right) & =\int_{0}^{1} \varphi_{i-1}(x) \varphi_{i}(x) \mathrm{d} x=\int_{x_{i-1}}^{x_{i}}\left(\frac{x_{i}-x}{h}\right)\left(\frac{x-x_{i-1}}{h}\right) \mathrm{d} x \\
& =\frac{1}{h^{2}}\left[\left(x_{i}-x\right) \frac{\left(x-x_{i-1}\right)^{2}}{2}\right]_{x_{i-1}}^{x_{i}}+\frac{1}{h^{2}} \int_{x_{i-1}}^{x_{i}} \frac{\left(x-x_{i-1}\right)^{2}}{2} \mathrm{~d} x \\
& =\frac{1}{2 h^{2}}\left[\frac{1}{3}\left(x-x_{i-1}\right)^{3}\right]_{x_{i-1}}^{x_{i}}=\frac{1}{6 h^{2}} h^{3}=\frac{h}{6}
\end{aligned}
$$

The mass matrix thus becomes as

$$
B=\frac{h}{6}\left[\begin{array}{cccccc}
4 & 1 & 0 & \cdot & \cdot & 0 \\
1 & 4 & 1 & \cdot & \cdot & 0 \\
0 & 1 & 4 & \cdot & \cdot & 0 \\
\cdot & & & \cdot & & \cdot \\
\cdot & & & & 4 & 1 \\
0 & 0 & 0 & \cdot & 1 & 4
\end{array}\right]
$$

The stiffness matrix is found in a similar way, but as

$$
A=\left(A_{i j}\right), 1 \leq i, j \leq M, \quad \text { with } A_{i j}=\left(\varphi_{j}^{\prime}, \varphi_{i}^{\prime}\right)
$$

By same reason as for the mass matrix, only $j \in\{i-1, i, i+1\}$ will contribute, and hence there are two types of elements for this matrix as well (since in our case $a(\cdot, \cdot)$ is symmetric). Note that

$$
\varphi_{i}^{\prime}(x)= \begin{cases}\frac{1}{h}, & \text { if } x \in\left[x_{i-1}, x_{i}\right] \\ -\frac{1}{h}, & \text { if } x \in\left[x_{i}, x_{i+1}\right]\end{cases}
$$

and 0 otherwise. Hence, the first type of element becomes as

$$
\begin{aligned}
a\left(\varphi_{i}, \varphi_{i}\right) & =\int_{0}^{1} \varphi_{i}^{\prime}(x)^{2} \mathrm{~d} x=\int_{x_{i-1}}^{x_{i}} \frac{1}{h} \cdot \frac{1}{h} \mathrm{~d} x+\int_{x_{i}}^{x_{i+1}}\left(-\frac{1}{h}\right) \cdot\left(-\frac{1}{h}\right) \mathrm{d} x \\
& =\frac{1}{h^{2}} \int_{x_{i-1}}^{x_{i+1}} \mathrm{~d} x=\frac{2 h}{h^{2}}=\frac{2}{h}
\end{aligned}
$$

The second type evaluates as

$$
a\left(\varphi_{i-1}, \varphi_{i}\right)=\int_{x_{i-1}}^{x_{i}}-\frac{1}{h} \cdot \frac{1}{h} \mathrm{~d} x=-\frac{1}{h^{2}} \int_{x_{i-1}}^{x_{i}} \mathrm{~d} x=-\frac{1}{h}
$$

Hence, the stiffness matrix becomes as

$$
A=\frac{1}{h}\left[\begin{array}{cccccc}
2 & -1 & 0 & \cdot & \cdot & 0 \\
-1 & 2 & -1 & \cdot & \cdot & 0 \\
0 & -1 & 2 & \cdot & \cdot & 0 \\
\cdot & & & \cdot & & \cdot \\
\cdot & & & & 2 & -1 \\
0 & 0 & 0 & \cdot & -1 & 2
\end{array}\right]
$$

The semi-discrete problem is given as: Find $u_{h} \in S_{h}$ such that

$$
\begin{aligned}
\left(u_{h, t}, \chi\right)+a\left(u_{h}, \chi\right) & =(f, \chi), \quad \forall \chi \in S_{h}, t>0 \\
u_{h}(0) & =v_{h}
\end{aligned}
$$

where the bilinear form is defined as $a(\cdot, \cdot)=\left((\cdot)^{\prime},(\cdot)^{\prime}\right)$. For the remaining tasks, we begin by writing

$$
u_{h}(x, t)=\sum_{j=1}^{M} \alpha_{j}(t) \varphi_{j}(x)
$$

since $u_{h} \in S_{h}=\operatorname{span}\left(\left\{\varphi_{j}\right\}_{j=1}^{M}\right)$. Take $\chi=\varphi_{i}(x)$ in the semi-discrete problem to arrive at

$$
\sum_{j=1}^{M} \alpha_{j}^{\prime}(t) \underbrace{\left(\varphi_{j}, \varphi_{i}\right)}_{=B_{i j}}+\sum_{j=1}^{M} \alpha_{j}(t) \underbrace{a\left(\varphi_{j}, \varphi_{i}\right)}_{=A_{i j}}=\left(f, \varphi_{i}\right)
$$

for $i=1, \ldots, M$. We thus arrive at the $M \times M$ matrix system

$$
B \dot{\alpha}(t)+A \alpha(t)=b
$$

where $\alpha(t)=\left[\alpha_{1}(t) \cdot \quad \cdot \quad \alpha_{M}(t)\right]^{T}$. For a standard ODE $\dot{u}(t)=f(u, t)$, we define the θ-scheme as

$$
\frac{u^{n}-u^{n-1}}{k_{n}}=\theta f^{n}+(1-\theta) f^{n-1}
$$

so that

$$
\begin{aligned}
\theta=0 & \Longrightarrow \text { Forward Euler, } \\
\theta=\frac{1}{2} & \Longrightarrow \text { Crank-Nicholson, } \\
\theta=1 & \Longrightarrow \text { Backward Euler. }
\end{aligned}
$$

The θ-scheme for our matrix system thus becomes

$$
B\left(\frac{\alpha^{n}-\alpha^{n-1}}{k_{n}}\right)+A\left(\theta \alpha^{n}+(1-\theta) \alpha^{n-1}\right)=\theta b^{n}+(1-\theta) b^{n-1}
$$

which after rearranging the terms is written as

$$
\left(B+\theta k_{n} A\right) \alpha^{n}=\left(B-(1-\theta) k_{n} A\right) \alpha^{n-1}+k_{n}\left(\theta b^{n}+(1-\theta) b^{n-1}\right)
$$

The backward Euler-Galerkin is given by $\theta=1$, i.e.

$$
\left(B+k_{n} A\right) \alpha^{n}=B \alpha^{n-1}+k_{n} b^{n}
$$

and the Crank-Nicholson by $\theta=\frac{1}{2}$, i.e.

$$
\left(B+\frac{1}{2} k_{n} A\right) \alpha^{n}=\left(B-\frac{1}{2} k_{n} A\right) \alpha^{n-1}+\frac{1}{2} k_{n}\left(b^{n}+b^{n-1}\right)
$$

Exercise 10.3

(a) Show that the operator $-\Delta_{h}: S_{h} \rightarrow S_{h}$ defined by

$$
\left(-\Delta_{h} \psi, \chi\right)=a(\psi, \chi), \quad \forall \chi \in S_{h}
$$

is self-adjoint positive definite with respect to (\cdot, \cdot).
(b) Show that (with the notation of Theorem 6.7)

$$
-\Delta_{h} v_{h}=\sum_{i=1}^{M_{h}} \lambda_{i, h}\left(v_{h}, \varphi_{i, h}\right) \varphi_{i, h}
$$

and $\left\|\Delta_{h}\right\|=\lambda_{M_{h}, h}$.
(c) Assume that the family of finite element spaces $\left\{S_{h}\right\}$ satisfies the inverse inequality

$$
\|\nabla \chi\| \leq C h^{-1}\|\chi\|, \quad \chi \in S_{h} .
$$

Show that

$$
\left\|\Delta_{h}\right\| \leq C h^{-2}
$$

Solution: (a) For the self-adjointness of the discrete Laplacian, we find by using the definition och $-\Delta_{h}$ as well as the symmetry of $a(\cdot, \cdot)$ and (\cdot, \cdot) that

$$
\left(-\Delta_{h} \psi, \chi\right)=a(\psi, \chi)=a(\chi, \psi)=\left(-\Delta_{h} \chi, \psi\right)=\left(\psi,-\Delta_{h} \chi\right) .
$$

For the positive definiteness, we recall that an operator A on a Hilbert space H is positive definite if

$$
\inf _{0 \neq x \in H} \frac{(A x, x)}{(x, x)}>0 .
$$

We see this straight away by applying the definition, as

$$
\left(-\Delta_{h} \psi, \psi\right)=a(\psi, \psi)=|\psi|_{1}^{2} \geq 0
$$

where equality holds if and only if $\psi=0$, and hence $-\Delta_{h}$ is positive definite with respect to (\cdot, \cdot).
(b) We know that the set of discrete eigenfunctions $\left\{\varphi_{i, h}\right\}_{i=1}^{M_{h}}$ forms an ONbasis for S_{h}. By the definition of the discrete Laplacian, as well as the discrete eigenvalue problem, we also have

$$
\left(-\Delta_{h} v_{h}, \varphi_{i, h}\right)=a\left(v_{h}, \varphi_{i, h}\right)=\lambda_{i, h}\left(v_{h}, \varphi_{i, h}\right) .
$$

Thus, if we expand $-\Delta_{h} v_{h} \in S_{h}$ in the basis $\left\{\varphi_{i, h}\right\}_{i=1}^{M_{h}}$ we see that

$$
-\Delta_{h} v_{h}=\sum_{i=1}^{M_{h}}\left(-\Delta_{h} v_{h}, \varphi_{i, h}\right) \varphi_{i, h}=\sum_{i=1}^{M_{h}} \lambda_{i, h}\left(v_{h}, \varphi_{i, h}\right) \varphi_{i, h} .
$$

To show that $\left\|\Delta_{h}\right\|=\lambda_{M_{h}, h}$, we need to show that

$$
\left\|\Delta_{h} v_{h}\right\| \leq \lambda_{M_{h}, h}\left\|v_{h}\right\|, \quad \forall v_{h} \in S_{h},
$$

with equality for some $v_{h} \in S_{h}$. To show the inequality, consider

$$
\begin{aligned}
\left\|\Delta_{h} v_{h}\right\|^{2} & =\left(-\Delta_{h} v_{h},-\Delta_{h} v_{h}\right) \\
& =\left(\sum_{i=1}^{M_{h}} \lambda_{i, h}\left(v_{h}, \varphi_{i, h}\right) \varphi_{i, h}, \sum_{j=1}^{M_{h}} \lambda_{j, h}\left(v_{h}, \varphi_{j, h}\right) \varphi_{j, h}\right) \\
& =\sum_{i=1}^{M_{h}} \sum_{j=1}^{M_{h}} \lambda_{i, h} \lambda_{j, h}\left(v_{h}, \varphi_{i, h}\right)\left(v_{h}, \varphi_{j, h}\right)\left(\varphi_{i, h}, \varphi_{j, h}\right) \\
& =\sum_{i=1}^{M_{h}} \lambda_{i, h}^{2}\left(v_{h}, \varphi_{i, h}\right)^{2} \\
& \leq \max _{1 \leq i \leq M_{h}} \lambda_{i, h}^{2} \sum_{i=1}^{M_{h}}\left(v_{h}, \varphi_{i, h}\right)^{2} \\
& =\lambda_{M_{h}, h}^{2} \sum_{i=1}^{M_{h}} \sum_{j=1}^{M_{h}}\left(v_{h}, \varphi_{i, h}\right)\left(v_{h}, \varphi_{j, h}\right)\left(\varphi_{i, h}, \varphi_{j, h}\right) \\
& =\lambda_{M_{h}, h}^{2}\left(\sum_{i=1}^{M_{h}}\left(v_{h}, \varphi_{i, h}\right) \varphi_{i, h}, \sum_{j=1}^{M_{h}}\left(v_{h}, \varphi_{j, h}\right) \varphi_{j, h}\right) \\
& =\lambda_{M_{h}, h}^{2}\left\|v_{h}\right\|^{2} .
\end{aligned}
$$

Remains to find a function in S_{h} such that equality holds. Consider $-\Delta_{h} \varphi_{i, h} \in$ S_{h}. For this function we can apply the definition of the discrete Laplacian and the discrete eigenvalue problem to find that

$$
\left(-\Delta_{h} \varphi_{i, h}, \chi\right)=a\left(\varphi_{i, h}, \chi\right)=\lambda_{i, h}\left(\varphi_{i, h}, \chi\right) .
$$

Rearranging the terms and using linearity of L_{2}-product we thus have that

$$
\left(-\Delta_{h} \varphi_{i, h}-\lambda_{i, h} \varphi_{i, h}, \chi\right)=0, \quad \forall \chi \in S_{h} .
$$

Take $\chi=-\Delta_{h} \varphi_{i, h}-\lambda_{i, h} \varphi_{i, h} \in S_{h}$ and insert this to get

$$
\left\|-\Delta_{h} \varphi_{i, h}-\lambda_{i, h} \varphi_{i, h}\right\|^{2}=0 \Longrightarrow-\Delta_{h} \varphi_{i, h}=\lambda_{i, h} \varphi_{i, h} .
$$

For $\varphi_{M_{h}, h} \in S_{h}$ we thus see that

$$
\left\|\Delta_{h} \varphi_{M_{h}, h}\right\|=\left\|\lambda_{M_{h}, h} \varphi_{M_{h}, h}\right\|=\lambda_{M_{h}, h}\left\|\varphi_{M_{h}, h}\right\|,
$$

which shows the equality, and hence $\left\|\Delta_{h}\right\|=\lambda_{M_{h}, h}$.
(c) Take $\chi \in S_{h}$ and note that since $-\Delta_{h} \chi \in S_{h}$

$$
\begin{aligned}
\left\|\Delta_{h} \chi\right\|^{2} & =\left(-\Delta_{h} \chi,-\Delta_{h} \chi\right)=a\left(\chi,-\Delta_{h} \chi\right)=\left(\nabla \chi, \nabla\left(-\Delta_{h} \chi\right)\right) \\
& \leq\|\nabla \chi\|\left\|\nabla\left(-\Delta_{h} \chi\right)\right\| \leq C h^{-1}\|\chi\| C h^{-1}\left\|\Delta_{h} \chi\right\| .
\end{aligned}
$$

Cancel one factor on each side to end up with the inequality

$$
\left\|\Delta_{h} \chi\right\| \leq C h^{-2}\|\chi\|, \quad \forall \chi \in S_{h}
$$

which by the definition of the operator-norm gives

$$
\left\|\Delta_{h}\right\| \leq C h^{-2}
$$

ExERCISE 10.4

Let u and u_{h} be the solutions of

$$
\begin{aligned}
& u_{t}-\Delta u=0, \\
& \text { in } \Omega \times \mathbb{R}_{+}, \\
& u=0, \\
& \text { on } \Gamma \times \mathbb{R}_{+}, \\
& u(\cdot, 0)=v, \\
& \text { in } \Omega,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(u_{h, t}, \chi\right)+a\left(u_{h}, \chi\right) & =(f, \chi), \quad \forall \chi \in S_{h}, t>0 \\
u_{h}(0) & =v_{h}
\end{aligned}
$$

respectively, with $v_{h}=P_{h} v$.
(a) Assume that $v \in H^{2} \cap H_{0}^{1}$. Show that

$$
\left\|u_{h}(t)-u(t)\right\| \leq C h^{2}\|v\|_{2}, \text { for } t \geq 0
$$

(b) Assume that $v \in L_{2}$. Show that

$$
\left\|u_{h}(t)-u(t)\right\| \leq C h^{2} t^{-1}\|v\|, \text { for } t>0
$$

Solution: (a) Decompose the error by using the Ritz-projection, i.e.

$$
e(t)=u_{h}(t)-u(t)=\underbrace{u_{h}(t)-R_{h} u(t)}_{=: \theta(t)}+\underbrace{R_{h} u(t)-u(t)}_{=: \rho(t)},
$$

so that the error can be bounded as

$$
\|e\| \leq\|\theta\|+\|\rho\| .
$$

We begin with the error from the elliptic projection ρ, and recall the error estimates

$$
\left\|R_{h} v-v\right\|+h\left|R_{h} v-v\right|_{1} \leq C h^{s}\|v\|_{s}, \text { for } s=1,2,
$$

from Theorem 5.5. Hence, we can bound ρ as

$$
\|\rho\| \leq C h^{2}\|u(t)\|_{2} \leq C h^{2}\|v\|_{2}
$$

where the last inequality follows from Problem 8.10. For θ we make the same calculation as in (10.14) in the course literature and get

$$
\left(\theta_{t}, \chi\right)+\underbrace{a(\theta, \chi)}_{\left(-\Delta_{h} \theta, \chi\right)}=-\underbrace{\left(\rho_{t}, \chi\right)}_{\left(P_{h} \rho_{t}, \chi\right)}
$$

which in turn yields

$$
\left(\theta_{t}-\Delta_{h} \theta+P_{h} \rho_{t}, \chi\right)=0, \quad \forall \chi \in S_{h} .
$$

Take $\chi=\theta_{t}-\Delta_{h} \theta+P_{h} \rho_{t} \in S_{h}$ and insert this to get

$$
\theta_{t}-\Delta_{h} \theta=-P_{h} \rho_{t}
$$

With θ satisfying this equation, we can apply the discrete version of Duhamel's principle ((10.8) in the course literature) to get

$$
\theta(t)=E_{h}(t) \theta(0)-\int_{0}^{t} E_{h}(t-s) P_{h} \rho_{s}(s) \mathrm{d} s
$$

We now follow the hint given in the problem formulation (as stated in the course literature) and split the integral as

$$
\int_{0}^{t} \ldots \mathrm{~d} s=\int_{0}^{t / 2} \ldots \mathrm{~d} s+\int_{t / 2}^{t} \ldots \mathrm{~d} s
$$

and apply integration by parts on the first integral to get

$$
\begin{aligned}
-\int_{0}^{t / 2} E_{h} & (t-s) D_{s}\left(P_{h} \rho\right)(s) \mathrm{d} s \\
& =-\left[E_{h}(t-s) P_{h} \rho(s)\right]_{0}^{t / 2}+\int_{0}^{t / 2} D_{s} E_{h}(t-s) P_{h} \rho(s) \mathrm{d} s \\
& =-E_{h}(t / 2) P_{h} \rho(t / 2)+E_{h}(t) \rho(0)+\int_{0}^{t / 2} D_{s} E_{h}(t-s) P_{h} \rho(s) \mathrm{d} s
\end{aligned}
$$

Note here that we wrote $P_{h} \rho_{s}(s)=D_{s}\left(P_{h} \rho\right)(s)$, which works since D_{s} commutes with P_{h}. Consequently, we can write θ as

$$
\begin{aligned}
& \theta(t)=\overbrace{E_{h}(t) \theta(0)+E_{h}(t) P_{h} \rho(0)}^{(I)}-\overbrace{E_{h}(t / 2) P_{h} \rho(t / 2)}^{(I I)} \\
& +\underbrace{\int_{0}^{t / 2} D_{s} E_{h}(t-s) P_{h} \rho(s) \mathrm{d} s}_{(I I I)}-\underbrace{\int_{t / 2}^{t} E_{h}(t-s) P_{h} \rho_{s}(s) \mathrm{d} s}_{(I V)},
\end{aligned}
$$

so that we furthermore can bound it as

$$
\|\theta\| \leq\|(I)\|+\|(I I)\|+\|(I I I)\|+\|(I V)\|
$$

For the first one we find that

$$
\begin{aligned}
(I) & =E_{h}(t)\left(\theta(0)+P_{h} \rho(0)\right) \\
& =E_{h}(t) P_{h}(\theta(0)+\rho(0)) \\
& =E_{h}(t)\left(P_{h} u_{h}(0)-P_{h} u(0)\right) \\
& =E_{h}(t)\left(v_{h}-v_{h}\right)=0 .
\end{aligned}
$$

Here we used the fact that $\theta(0) \in S_{h}$ so that $\theta(0)=P_{h} \theta(0)$ in the second equality, and the rest follows from the projection property of P_{h}. For the second one we get, since $\left\|P_{h}\right\|=1$,

$$
\|(I I)\|=\left\|E_{h}(t / 2) P_{h} \rho(t / 2)\right\|=\left\|P_{h} \rho(t / 2)\right\| \leq\|\rho(t / 2)\| \leq C h^{2}\|v\|_{2},
$$

where the last inequality follows from the ρ-part. A similar bound is found for the third one by

$$
\begin{aligned}
\|(I I I)\| & =\left\|\int_{0}^{t / 2} D_{s} E_{h}(t-s) P_{h} \rho(s) \mathrm{d} s\right\| \\
& \leq \int_{0}^{t / 2}\left\|D_{s} E_{h}(t-s) P_{h} \rho(s)\right\| \mathrm{d} s \\
& \leq C \int_{0}^{t / 2}(t-s)^{-1}\left\|P_{h} \rho(s)\right\| \mathrm{d} s \\
& \leq C h^{2}\|v\|_{2} \int_{0}^{t / 2} \frac{1}{t-s} \mathrm{~d} s \\
& =C h^{2}\|v\|_{2}[-\log (t-s)]_{0}^{t / 2} \\
& =C h^{2}\|v\|_{2}(\log (t)-\log (t / 2)) \\
& =C \log (2) h^{2}\|v\|_{2}=C h^{2}\|v\|_{2}
\end{aligned}
$$

Here we applied inequality (10.18) from the course literature in the third line, followed by the previously found bound for $P_{h} \rho$ in the subsequent step. Remains to show similar bound for $(I V)$. At first we note that

$$
\left\|E_{h}(t-s) P_{h} \rho_{s}(s)\right\| \leq\left\|\rho_{s}(s)\right\|=\left\|R_{h} u_{s}(s)-u_{s}(s)\right\| \leq C h^{2}\left\|u_{s}(s)\right\|_{2}
$$

since $\left\|E_{h}(t-s)\right\| \leq 1$ and $\left\|P_{h}\right\|=1$. Thus, we find that

$$
\begin{aligned}
\|(I V)\| & \leq \int_{t / 2}^{t}\left\|E_{h}(t-s) P_{h} \rho_{s}(s)\right\| \mathrm{d} s \\
& \leq C h^{2} \int_{t / 2}^{t}\left\|u_{s}(s)\right\|_{2} \mathrm{~d} s \\
& =C h^{2} \int_{t / 2}^{t}\left\|D_{s} E(s) v\right\|_{2} \mathrm{~d} s \\
& \leq C h^{2} \int_{t / 2}^{t} C s^{-1-2 / 2}\|v\| \mathrm{d} s \\
& =C h^{2}\|v\| \int_{t / 2}^{t} s^{-2} \mathrm{~d} s \\
& \leq C h^{2}\|v\|_{2}\left[-s^{-1}\right]_{t / 2}^{t} \\
& =\frac{C}{t} h^{2}\|v\|_{2} \leq C h^{2}\|v\|_{2} .
\end{aligned}
$$

In these calculations, we used the fact that $u(s)=E(s) v$ in the third step, followed by the property (8.18) from the course literature. Moreover, the last step assumes that $t>0$. In the case $t=0$ it holds that $(I V)=0$, so the estimate holds regardless. Summing these results now gives the bound

$$
\|\theta(t)\| \leq C h^{2}\|v\|_{2}
$$

which in turn yields the desired estimate.
(b) Assume $t>0$. We decompose the error in the same $\rho-\theta$ way as in (a). For the elliptic projection we have

$$
\|\rho(t)\|=\left\|R_{h} u(t)-u(t)\right\| \leq C h^{2}\|u(t)\|_{2}=C h^{2}\|E(t) v\|_{2} \leq C h^{2} t^{-1}\|v\|
$$

Here, the first inequality followed from the error estimate results for the Ritzprojection, and the last inequality from the identity (8.18) in the course literature. For the θ-part, we follow the hint given in the course literature and write

$$
\tilde{\rho}(t)=\int_{0}^{t} \rho(s) \mathrm{d} s
$$

so that $D_{t} \tilde{\rho}(t)=\rho(t)$. The results given in the hint follows since

$$
\|\tilde{\rho}(t)\|=\left\|R_{h} \tilde{u}(t)-\tilde{u}(s)\right\| \leq C h^{2}\|\tilde{u}\|_{2}
$$

and by elliptic regularity $\|\tilde{u}\|_{2} \leq C\|\Delta \tilde{u}\|$. Moreover, by the heat equation, it follows that

$$
\Delta \tilde{u}=\int_{0}^{t} u_{s} \mathrm{~d} s=u(t)-v
$$

so we end up with the estimate

$$
\|\tilde{\rho}\| \leq C h^{2}\|u(t)-v\|=C h^{2}\|(E(t)-I) v\| \leq C h^{2}\|E(t)-I\|\|v\| \leq C h^{2}\|v\|
$$

For the estimate of θ, we will decompose the error in a similar way as in task (a), but this time we apply integration by parts once more on (III), so that

$$
\begin{aligned}
(I I I) & =\int_{0}^{t / 2} D_{s} E_{h}(t-s) P_{h} \rho(s) \mathrm{d} s \\
& =\int_{0}^{t / 2} D_{s} E_{h}(t-s) P_{h} D_{s} \tilde{\rho}(s) \mathrm{d} s \\
& =\left[D_{s} E_{h}(t-s) P_{h} \tilde{\rho}(s)\right]_{0}^{t / 2}-\int_{0}^{t / 2} D_{s}^{2} E_{h}(t-s) P_{h} \tilde{\rho}(s) \mathrm{d} s \\
& =D_{t} E_{h}(t / 2) P_{h} \tilde{\rho}(t / 2)-0-\int_{0}^{t / 2} D_{s}^{2} E_{h}(t-s) P_{h} \tilde{\rho}(s) \mathrm{d} s
\end{aligned}
$$

where the second boundary term vanishes since $\tilde{\rho}(0)=0$. Moreover, recall that $(I)=0$ in (a), so we can neglect that term this time. The decomposition
becomes

$$
\begin{aligned}
& \theta(t)=-\overbrace{E_{h}(t / 2) P_{h} \rho(t / 2)}^{(i)}+\overbrace{D_{t} E_{h}(t / 2) P_{h} \tilde{\rho}(t / 2)}^{(i i)} \\
& -\underbrace{\int_{0}^{t / 2} D_{s}^{2} E_{h}(t-s) P_{h} \tilde{\rho}(s) \mathrm{d} s}_{(i i i)}-\underbrace{\int_{t / 2}^{t} E_{h}(t-s) P_{h} \rho_{s}(s) \mathrm{d} s}_{(i v)}
\end{aligned}
$$

so that we bound the θ-error as

$$
\|\theta\| \leq\|(i)\|+\|(i i)\|+\|(i i i)\|+\|(i v)\| .
$$

For the first term, it suffices to bound the operators by their corresponding norms and then apply the results for ρ, i.e.

$$
\|(i)\|=\left\|E_{h}(t / 2) P_{h} \rho(t / 2)\right\| \leq\|\rho(t / 2)\| \leq 2 C h^{2} t^{-1}\|v\| .
$$

For the second term, which includes a derivative on the discrete solution operator, we can once again apply the identity (10.18) from the course literature along with the previously derived results for $\tilde{\rho}$ to get

$$
\begin{aligned}
\|(i i)\| & =\left\|D_{t} E_{h}(t / 2) P_{h} \tilde{\rho}(t / 2)\right\| \\
& \leq C t^{-1}\left\|P_{h} \tilde{\rho}(t / 2)\right\| \\
& \leq C t^{-1}\|\tilde{\rho}(t / 2)\| \\
& \leq C h^{2} t^{-1}\|v\|
\end{aligned}
$$

For the third term, we once again apply (10.18) for the derivative on the discrete solution operator and the results for $\tilde{\rho}$ to get

$$
\begin{aligned}
\|(i i i)\| & \leq \int_{0}^{t / 2}\left\|D_{s}^{2} E_{h}(t-s) P_{h} \tilde{\rho}(s)\right\| \mathrm{d} s \\
& \leq \int_{0}^{t / 2} C(t-s)^{-2}\left\|P_{h} \tilde{\rho}(s)\right\| \mathrm{d} s \\
& \leq C h^{2}\|v\| \int_{0}^{t / 2}(t-s)^{-2} \mathrm{~d} s \\
& =C h^{2} t^{-1}\|v\| .
\end{aligned}
$$

For $(i v)$, we repeat the calculations from ($I V$) in (a), but skip the part where we bound $\|v\|$ by $\|v\|_{2}$ and just leave it as it is, which gives the bound

$$
\|(i v)\| \leq C h^{2} t^{-1}\|v\|
$$

In total, we thus get

$$
\|\theta\| \leq C h^{2} t^{-1}\|v\|
$$

which yields the desired estimate.

