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EXERCISE 10.1

Consider the problem

ur — Au= f, in Q x Ry,
u=0, on 2 xRy,
u(-,0) =wv, in Q,

in the one-dimensional case = (0, 1). For the numerical solution, we use the
piecewise linear functions based on the partition

1
h = .
M+1

O<z <a2<---<zxy <1, z;=jh,

Determine the mass matrix B and the stiffness matrix A and write down the
semi-discrete problem, the backward Euler equations, and the Crank—Nicholson
equations.

Solution: In a standard way, we find the mass matrix elements as B = (B;;) for
1<i,j < M, with

Bij = (@5, ¢:),
where {p;}M, are the hat functions of the partition, i.e. the basis functions for
Sp,. Since the hat functions fulfill the property

supp(;) Nsupp(yp;) # 0

only for j € {i — 1,i,i + 1}, these are the only indices that will give some
contribution to the matrix. Hence, B is tri-diagonal. The matrix consists of
two types of elements, namely (¢;, p;) as well as (p;—1, ;) = (pitr1, i), due to
the symmetry of the Lo-product. In the one-dimensional case, a hat function is

defined by
oilz) = z_zT‘;, if x € [xi_1, 2],
%, ifz € [.Z‘i,.l‘i+1],

and 0 otherwise. The first type of element is thus computed as
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The second type of element is evaluated as

<soi1,soi>=/olso“< il >dx—/; (”‘x)(””‘}ff 1)dx

i

1 — &y ml W =d-1)
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_h
6

1 3% 1 4
=szlz@ = =gm

The mass matrix thus becomes as

410 0
14 1 0
s o1 4 0
6 .
: 401
000 - 14

The stiffness matrix is found in a similar way, but as
A= (Aij), 1<i,j <M, with Aj; = (¢, ¢;).

By same reason as for the mass matrix, only j € {i — 1,4,% + 1} will contribute,
and hence there are two types of elements for this matrix as well (since in our
case a(-, ) is symmetric). Note that

, . %, ifx e [xi_l,xi],
(pz(x) - 1 .
—5, ifx € [z, 2444,

and 0 otherwise. Hence, the first type of element becomes as

tsup = [l storto= [ Goqaes [ (-3) (e

1
h
REAY .
h? h? h’

i—

The second type evaluates as

i 1 1 1 Ti 1
a(%‘fh%):/ ——-fdx:——/ de = —=.
Ti—1 h h h2 Ti_1 h

i—

Hence, the stiffness matrix becomes as

2 -1 0 0
-1 2 -1 0

1 —
Ao Llo -1 o2 0
2 -1
0 0 0 - -1 2



The semi-discrete problem is given as: Find w, € Sy such that
(un,t: X) +a(un, x) = (f,x), VX € Sh, t>0,
Up (0) = Uhp,

where the bilinear form is defined as a(-,-) = ((+)’, (-)’). For the remaining tasks,

we begin by writing
M
t)=> a;(t)p;(z)
j=1

since up € S = span({p; }j 1). Take x = ¢;(z) in the semi-discrete problem
to arrive at

Za ) (o5 00) +Za] a(p;, i) = (f,¢:),
BZ, =A;

fori=1,..., M. We thus arrive at the M x M matrix system
Ba(t) + Aa(t) = b,

where a(t) = [a1(t) - - - aM(t)]T. For a standard ODE u(t) = f(u,t),
we define the #-scheme as
n n—1

—Uu
kn

u

=0f"+(1-0) "7,
so that
0 =0 = Forward Euler,
0= % = Crank—Nicholson,
0 =1 = Backward Euler.

The #-scheme for our matrix system thus becomes
a — O[nfl 1 L
B(T) + A" + (1 — 0)a" 1) = Ob" + (1 — 0)b" ",
which after rearranging the terms is written as
(B + 0k, A)a™ = (B — (1 = 0)k, A)a™ ! 4 E, (60" + (1 —0)p" ).
The backward Euler—Galerkin is given by 0 =1, i.e.
(B +k,A)a" = Ba" ' + k,b",

and the Crank—Nicholson by 6 = %, ie.

(B + %knA)a" - (B - %kznA)a”_l + %kn(b” o,



EXERCISE 10.3

(a) Show that the operator —Ay, : S, — S, defined by

(=AY, x) = alh,x), Vx € Sh

is self-adjoint positive definite with respect to (-, -).
(b) Show that (with the notation of Theorem 6.7)

My,

—Apvp = Z /\i,h(wu %’,h)%,h
i=1

and HAhH = )\]V[h,h'

(c) Assume that the family of finite element spaces {S}} satisfies the inverse
inequality
IVXIl < CR7H Xl x € Sh.

Show that
ALl < Ch™2.

Solution: (a) For the self-adjointness of the discrete Laplacian, we find by using
the definition och —Aj, as well as the symmetry of a(-,-) and (-,-) that

(=Apt, x) = a(¥, x) = alx, V) = (=Anx, V) = (¢, —Anx)-

For the positive definiteness, we recall that an operator A on a Hilbert space H
is positive definite if

A
inf (Az, )

> 0.
0#zcH (x,7)

We see this straight away by applying the definition, as

(_Ah¢v¢) = a(¢7¢) = Wjﬁ > 07

where equality holds if and only if ¢ = 0, and hence —A}, is positive definite
with respect to (-, ).

(b) We know that the set of discrete eigenfunctions {; ,}M" forms an ON-
basis for Sj. By the definition of the discrete Laplacian, as well as the discrete
eigenvalue problem, we also have

(=Apvn, @in) = a(vh, ©in) = Xin(Vn, Qin)-

Thus, if we expand —Ajvy, € S), in the basis {%h}]\ihl we see that

(2

Mh I\Jh,
—Apvp, = Z(_Ahvha ©ih)Pih = Z Xioh (Vns Pin) @ik
i=1 i=1



To show that |Ap|| = An,.h, we need to show that
[Anonll < Angy nllonll,  Von € Sh,
with equality for some vy, € S. To show the inequality, consider

|ARvn|1? = (—Apvn, —Apvp)

My, My,
(Z i,k (Vhs @i n) ik Z Ajh(Vn, @j,h)sﬂj,h)
i=1 j=1
My My
=N NinAin(Wn, 0in) Wn, 050)(in, 05.0)
i=1 j=1
= Z A7 1 (Vns @in)
Mp,
1<D?<aﬁh /\MZ Uy i)
M; My
Mh’h Z Z Uh,, i, h Uh7 ®j,h )(SOZ hs Pj,h )
i=1 j=1
Mh Mh
=X\ ( Z(Uha Pi,h)Pi,h Z(Um Pj,h)@j,h)
i=1 =1

= )\?\/[h,thh”Q’

Remains to find a function in Sj, such that equality holds. Consider —App; j €
Sp. For this function we can apply the definition of the discrete Laplacian and
the discrete eigenvalue problem to find that

(=Anrin, X) = a(@ihs X) = Ain(@ihs X)-
Rearranging the terms and using linearity of Lo-product we thus have that

(=Anpin — Ninpin, x) =0, Vx € Sh.
Take x = —Apwin — Xi,npin € Sk and insert this to get

| = Anpih = Xippinl> =0 = —Anpin = Xiwpih-
For ¢, .n € Sy, we thus see that
AR, ]l = [ Angy 0001, ]l = Anty wll s, n

which shows the equality, and hence ||Ap|| = A, n-
(c) Take x € Sy, and note that since —Apx € Sp,

[ARXIIP = (—Arx, —Anx) = a(x, —Arx) = (Vx, V(=Arx))
< VxIIV(=Arx)|| € CR7Yx||[CR™H [ Apx]-



Cancel one factor on each side to end up with the inequality
[Anx]l < Ch2Ix]l,  Vx € S,
which by the definition of the operator-norm gives

|Ax]l < Ch™2.



EXERCISE 10.4

Let u and uy, be the solutions of

u—Au=0, inOxRy,
u=0, onI xRy,
u(-,0) =wv, in Q,

and

(un,t, x) + alun, x) = (f,x), VX € Sk, t>0,
'LLh(O) = Up,

respectively, with v, = Pjv.

(a) Assume that v € H2 N HE. Show that
lun () = u(®)]| < Ch?|Jv]2, for t > 0.
(b) Assume that v € Lo. Show that
llun (t) —u(t)|| < Ch?t~||v]|, for t > 0.
Solution: (a) Decompose the error by using the Ritz-projection, i.e.

e(t) = up(t) — u(t) = up(t) — Rpu(t) + Rpu(t) — u(t),

=:6(t) =:p(t)

so that the error can be bounded as
llell < 11011 + lloll-

We begin with the error from the elliptic projection p, and recall the error
estimates
|Rnv — v|| + h|Rpv — v|1 < ChP||v]|s, for s =1, 2,

from Theorem 5.5. Hence, we can bound p as

loll < CR?[u(t)]]2 < Ch?|Jv]l2,

where the last inequality follows from Problem 8.10. For # we make the same
calculation as in (10.14) in the course literature and get

(01, %) + a0, x) == (pt:X) »
N—— ~——
(—AR8,x) (Prpt;x)

which in turn yields

(et - Ahe + PhPth) = 0) VX S Sh'



Take y = 0; — Ap0 + Prp; € Sy and insert this to get
— Ahe = *Phpt-

With 6 satisfying this equation, we can apply the discrete version of Duhamel’s
principle ((10.8) in the course literature) to get

H(t) / Eh Phps( )d

We now follow the hint given in the problem formulation (as stated in the course
literature) and split the integral as

t t/2 t
/ ...ds:/ ...ds+/ ...ds
0 0 t/2

and apply integration by parts on the first integral to get
t/2
—/ Ey(t —s)Dg(Prp)(s)ds
0

t/2 /2
= _ [Eh(t — S)PhP(S)}O/ + /0 D,Ep(t — s)Pup(s)ds

/2
= Bt/ Pup(t/2) + Eap(0) + [ DuBn(t — 5)Pup(s) ds.
0
Note here that we wrote Py ps(s) = Ds(Prp)(s), which works since Dy commutes
with P,. Consequently, we can write 6 as

(€9) (1)

0(t) = En(t)0(0) + En(t)Pap(0) — En(t/2)Pap(t/2)
t/2 t
+ ; D Ey(t — 8)Prp(s)ds — o En(t — s)Prps(s) ds,

(1) (V)

so that we furthermore can bound it as

101 < NI+ IEDI + IO+ [TV

For the first one we find that

(1) = En(t)(0(0) + Prp(0))
= En(t)Pn(0(0) + p(0))
= Ep(t)(Prun(0) — Pru(0))
= Eh(t) (’Uh - "Uh) 0.



Here we used the fact that 6(0) € Sj, so that 6(0) = P,6(0) in the second
equality, and the rest follows from the projection property of Pj. For the second
one we get, since ||P| =1,

D)l = [1Bw(t/2)Prp(t/2)]| = 1Pup(t/2)Il < lo(t/2)I] < CR?|Jv]2,

where the last inequality follows from the p-part. A similar bound is found for
the third one by

t/2
WDl = | [ DeBa(t — ) Papts) ds|
0
t/2
< [ 1B 9)Pap(s) | ds
0
t/2
<c [T s P ds
0

t/2
< Ch?||v]|2 ds
t
0 - S

) t/2
= —1 —
Ch? vl —log(t = 5)]
= Ch?Jo]|2(log(t) — log(t/2))
= Clog(2)?|Joll> = CH?Jo.

Here we applied inequality (10.18) from the course literature in the third line,
followed by the previously found bound for P, p in the subsequent step. Remains
to show similar bound for (IV). At first we note that

1ER(t = 5)Pups(s)ll < llps(s)ll = [Ruus(s) — us(s)]| < Ch?us(s)]2,
since ||Ex(t — s)|| <1 and ||Py|| = 1. Thus, we find that

IIV)] < /t/z [ En(t = 8)Prps(s)] ds

t
<cn [ fuulo)lads
t/2
t
:Ch2/ | DsE(s)v||2 ds
t/2
t
gc;ﬂ/ Cs~1-2/2||y|| ds
2

t/
t
:Ch2||vH/ 52 ds
t/2

< ol - 571,

c
= S22 < CRZ[[o]).

10



In these calculations, we used the fact that u(s) = E(s)v in the third step,
followed by the property (8.18) from the course literature. Moreover, the last
step assumes that ¢ > 0. In the case ¢ = 0 it holds that (IV) = 0, so the
estimate holds regardless. Summing these results now gives the bound

@) < Ch?||v]l2,

which in turn yields the desired estimate.

(b) Assume t > 0. We decompose the error in the same p-6 way as in (a). For
the elliptic projection we have

o)l = [ Rru(t) = u)|| < CR2[lu(t)]l2 = CH* | E(t)v|ls < CR* v]].

Here, the first inequality followed from the error estimate results for the Ritz-
projection, and the last inequality from the identity (8.18) in the course lit-
erature. For the #-part, we follow the hint given in the course literature and
write

t
o) = [ pls)ds,
0
so that Dyp(t) = p(t). The results given in the hint follows since
1A = |Rha(t) — a(s)|| < Ch*[[allz,

and by elliptic regularity ||al2 < C||Aal|. Moreover, by the heat equation, it
follows that

t
Aﬂ:/ usds = u(t) — v,
0
so we end up with the estimate
15l < CR?||u(t) —vl| = Ch*|(E(t) — I)vl| < CR?||E(t) — I||[|v]| < Ch?|lv]].

For the estimate of 6, we will decompose the error in a similar way as in task
(a), but this time we apply integration by parts once more on (I11), so that

t/2
(III) = /0 DsEp(t — s)Prp(s)ds

t/2
= DyEp(t — s)PrnDsp(s)ds

0
R t/2 t/2 ) ~
— [DBut = Puio)]] ~ [ DB - )Pl ds
0
t/2
= DiEp(t/2)Pup(t/2) — 0 — D2Ey,(t — s)Prp(s) ds,
0

where the second boundary term vanishes since p(0) = 0. Moreover, recall
that (I) = 0 in (a), so we can neglect that term this time. The decomposition

11



becomes
(4) (i1)

0(t) = — Bu(t/2) Pup(t/2) + DiEn(t/2) Pu(t/2)
t/2

— D2Eh(t — S Php / Eh t—s Phpg( )d
0 t/2

(43) (iv)
so that we bound the #-error as
101 < 1@ + ([ @) + [[@Ea) ]| + [ (Gv)]]-

For the first term, it suffices to bound the operators by their corresponding
norms and then apply the results for p, i.e.

I = 1En(t/2)Pup(t/2)]| < lp(t/2)Il < 20R* o).

For the second term, which includes a derivative on the discrete solution op-
erator, we can once again apply the identity (10.18) from the course literature
along with the previously derived results for p to get

1(@0)[| = | DeEn(t/2) Prp(t/2)]]
< Ct | Pup(t/2)l
< ot at/2)
< Ch2t vl

For the third term, we once again apply (10.18) for the derivative on the discrete
solution operator and the results for p to get

t/2
| (i) | g/o | D2En(t — s)Pnp(s)|| ds
t/2
< / C(t — 5) 72| Pup(s)|| ds
0
t/2
<croll [t ds
0

= Ch*t Hv].

For (iv), we repeat the calculations from (I'V) in (a), but skip the part where
we bound ||v]| by ||[v||2 and just leave it as it is, which gives the bound

IGo)ll < CR*E ]

In total, we thus get
9] < Cr*t= o],

which yields the desired estimate.
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