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Some data and a problem
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Winning times for the
men's Olympic 100m
sprint, 1896-2008.

In this lecture, we will use this data to predict the winning
time in London 2012

Reading: Section 1.1 of FCML



Back of envelope calculation

Draw a line through it!
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Back of envelope calculation
Draw a line through it!
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Our aim is to formalise this process.



What did we do?

Basically:
» Decided to draw a line through our data.
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Technically
» Decided we needed a model.
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What did we do?

Basically:
>

» Chose a straight line.
>
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Technically
» Decided we needed a model.
» Chose a linear model.
>
>
>




What did we do?

Basically:
>
>
> Drew a good straight line.
>
>

Technically
» Decided we needed a model.
Chose a linear model.

>
> Fitted a linear model.
| 2
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What did we do?

Basically:
>
>
>
> Extended the line to 2012.
>

Technically

» Decided we needed a model.
Chose a linear model.
Fitted a linear model.

>
| 2
» Evaluated the model at 2012.
>




What did we do?

Basically:
>
>
>
>

» Read off the winning time for 2012.

Technically

» Decided we needed a model.
Chose a linear model.
Fitted a linear model.
Evaluated the model at 2012.

>
>
>
» Used this as our prediction.




Assumptions

Our Assumptions

1. That there exists a relationship between Olympic year
and winning time.




Assumptions

Our Assumptions
1. That there exists a relationship between Olympic year and
winning time.

2. That this relationship is linear (i.e. a straight line).




Assumptions
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3. That this relationship will continue into the future.




Assumptions

Our Assumptions
1. That there exists a relationship between Olympic year and
winning time.
2. That this relationship is linear (i.e. a straight line).

3. That this relationship will continue into the future.

Are they any good?
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attributes and corresponding targets:
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Definitions

Attributes and targets

Typically in Supervised Machine Learning, we have a set of
attributes and corresponding targets:

> Attributes: Olympic year.

» Targets: Winning time.

Variables

Mathematically, each is described by a variable:
» Olympic year: x.
» Winning time: t.




Definitions

Model
Our goal is to create a model.

» This is a function that can relate x to t.
t = f(x)

» Hence, we can work out t when x = 2012.
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Our goal is to create a model.

» This is a function that can relate x to t.
t = f(x)

» Hence, we can work out t when x = 2012.

Data

We're going to create the model from data:
» N attribute-response pairs, (xp, tp)
> eg. (1896,12s),(1900,11s),...,(2008,9.69s)
> x3 = 1896, t; =12, etc




Definitions
Model

Our goal is to create a model.

» This is a function that can relate x to t.
t =1f(x)

» Hence, we can work out t when x = 2012.

Data

We're going to create the model from data:
» N attribute-response pairs, (xp, tp)
> eg. (1896,12s),(1900,11s),...,(2008,9.69s)
> x; = 1896, t; = 12, etc

Often called training data




A linear model

t = f(x)



A linear model

t =f(x) = wp+ wix



A linear model

t =f(x)=wy+ wix = f(x; wp, wy)

» wy and wy are parameters of the model.
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A linear model

» wy and wy are parameters of the model.

t =f(x)=wy+ wix = f(x; wp, wy)

» They determine the properties of the line.
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What next?

We have data and a family of models:

Increasing w;
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What next?

We have data and a family of models:

Increasing w;

Time (seconds)
]
o

o t=wo+wiz
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Year
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Need to find wy, wy from (Xl, tl), (X2, tg), ce, (XN, tN)



How good is a particular wy, wy?

» How good is a particular line (wp, wy)?



How good is a particular wy, wy?

» How good is a particular line (wp, wy)?
> We need to be able to provide a numerical value of goodness
for any wy, wy.
» How good is wg =5, w; = 0.17
» Is wg =5, w; = —0.1 better or worse?



How good is a particular wy, wy?

» How good is a particular line (wp, wy)?
> We need to be able to provide a numerical value of goodness
for any wy, wy.
» How good is wy =5, w; = 0.17
» Is wg =5, w; = —0.1 better or worse?
» Once we can answer these questions, we can search for the
best wp, wy pair.
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This means that we can compute f(x,; wp, wy) for each x,.
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Loss
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x
f(xn; wo, wi1) can be compared with the truth, t,.

(tn — f(xn; wo, w1))? tells us how badly we model (x,, t,).



Squared loss

» The Squared loss of training point n is defined as:

Ly = (tn - f(Xn; Wo, Wl))2
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» The Squared loss of training point n is defined as:
Ly = (tn - f(Xn; Wo, Wl))2

» It is the squared difference between the true response
(winning time), t, when the input is x, and the response
predicted by the model, f(xp; wo, w1) = wo + wix.



Squared loss

» The Squared loss of training point n is defined as:
Ly = (tn - f(Xn; Wo, Wl))2

» It is the squared difference between the true response
(winning time), t, when the input is x, and the response
predicted by the model, f(xp; wo, w1) = wo + wix.

» The lower L, the closer the line at x, passes to t,.



Total squared loss
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Average the loss at each training point to give single figure for all

data:



» The average loss:

N
1
L= m Z(t,, — £ (Xn; wo, w1))?

n=1

» L tells us how good the model is as a function of wy and wjy.

» Remember that lower is better!
» How good is wy =5, w; =0.17
» How good is wy = 6, w; = —0.27
» Which is better?



Example
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An optimisation problem

> \We've derived an expression for how good the model is for
any wyp and wj.

N
1 . 2
L= N nZ::l(t,, — F(Xn; wo, wi))

» Could use trial and error to find a good wy, w; combination.



An optimisation problem

> \We've derived an expression for how good the model is for
any wyp and wj.

N
1
L= m Z(t,, — f(Xn; wo, W1))2
n=1
» Could use trial and error to find a good wy, w; combination.

> Can we get a mathematical expression?

N
1
argmin £ = argmin — Z(t,, — £ (Xn; wo, w1))?

wo, w1 wo, w1 N




Aside - finding maxima and minima

Say we want to find

argmin f(z), f(z) = 2z°> — 12z + 15.
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Aside - finding maxima and minima

Say we want to find

argmin f(z), f(z) = 2z°> — 12z + 15.

At a minimum (or a
=) maximum), the gradient must
be zero.

2 3

The gradien’E is given by the first derivative of the function:

df(z)
T =4z — 12

Setting to zero and solving for z

47-12=0, z=12/4=3



Finding maxima and minima

» So, we know that the gradient is 0 at z = 3.

» How do we know if it is @ minimum or a maximum?



Finding maxima and minima

» So, we know that the gradient is 0 at z = 3.

» How do we know if it is @ minimum or a maximum?

At a minimum, the gradient
must be increasing.

o 1(2)




Finding maxima and minima

» So, we know that the gradient is 0 at z = 3.

» How do we know if it is @ minimum or a maximum?

At a minimum, the gradient
must be increasing.

L f(2)

2 3 4 5

Taking the second derivative:

df(z)

= 4z-12
dz z
d?z
2 — 4
dz?

The gradient is always increasing. Therefore, we have found a
minimum and it is the only minumum.



Finding maxima and minima

What about functions of more than one variable?

argmin f(y,z2), f(y,z) =y*+ 22 +y+z+yz
y?z

We now use partial

o of of
derivatives, 3 and oy

10

-10 -5 0 5

10
When calculating the partial derivative with respect to y we
assume everything else (including z) is a constant.

of
=2y 41 2 =2741
gy ~ Y Tltz gi=22+14y



f f
8—z2y—|—1—|—z, a—z2z—|—1—|—y
oy 0z

To find a potential minimum, set both to zero and solve for y and
z:

_ 1
Yy = 73
1

z = —-.
3

To make sure its a minimum, check second derivatives:

Pr_, Pf_

= 2.
Oy? T 022

Both are positive so we have a minimum.



Back to our function

N
1
L= m Z(t,, — f(xn; wo, Wl))z.
n=1
Now, recall that:
f(xn; wo, w1) = wo + wix
So:

N
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wo, W1 wo, Wi n—1



Back to our function

1 N

£ 13— i )P

n=1
Now, recall that:
f(xn; wo, w1) = wo + wix
So:

N
. 1
argmin £ = argmin N Z(t,, — wo — W1Xn)2

wo, W1 wo, Wi n—1

We need to find g—f and g—ﬁ, and use thoese to find the best }
(1] wi
values!




Differentiating the loss

P Taking partial derivatives with respect to wy and wy:

1 N
L = N Z(tn — wp — W1Xn)2
n=1
N
oL 2
EVN = N Z(tn_ Wo — WiXp)
0 n=1
N
oL 2
Bwr = N Zx,,(t,, — Wo — WiXp)

3
Il
-



Finding wy:

N
oL 2
Ow = _N Z(tn — Wy — Wlxn)
0 n=1
9 N
0 = N ;(t,, — Wo — WiXp)
N N N
2 2 2
—Zwo = —Zt,,—— W1Xn
N n=1 N n=1 N n=1

Where



Finding wx:

Where

N
23t )
= -7 Xp\lp — WQ — W1Xp
Nn:l
1Y 1Y
R STTRS O
anl Nn:l
= Xt — wpX



Substituting:

Substituting our expression for wy into that for wy:

wg = t—wmwmXx
wix?2 = Xt — wyX
wix?2 = xt —X(t — wix)
xt — Xt
M = 2 )2
x* —(x)
So, to summarise:
xt — Xt z _
Wl = > WO = - WlX
X2 _ (y)Q

Note that Xt # X7 and x2 # (X)2.




Gradient Descent: an alternative approach

Repeatedly move in the direction of the gradient using step size 7:

oL
Wy <— Wy —nN-—
8W0
oL
Wiy < Wy —nN——
8W1
For convex functions, this is guaranteed to converge to the global

optimum.
There are many accelerated variations to speed up convergence.






“climbing down" formally: gradient descent

Ll

define a “learning rate” 7
initialize the parameters wy, wy (slope and intercept)
compute the gradients (steepest direction)

update the parameters as

oL
oL
Wi <— Wy —N=—
8W1

is the gradient close to zero? if no, go back to 3



gradient descent example

sssss



Olympic data

2

n Xn th Xntn Xn
1 1896 | 12.00 | 22752.0 | 3.5948e+06
2 1900 | 11.00 | 20900.0 | 3.6100e+06
3 1904 | 11.00 | 20944.0 | 3.6252e+06
26 2004 | 9.85 | 19739.4 | 4.0160e+06
27 2008 | 9.69 | 19457.5 | 4.0321e+06
(1/N) > | 195237 | 10.39 | 20268.1 | 3.8130e+06
X t xt x2



Olympic data

2

n Xn th Xntn Xn
1 1896 | 12.00 | 22752.0 | 3.5948e+06
2 1900 | 11.00 | 20900.0 | 3.6100e+06
3 1904 | 11.00 | 20944.0 | 3.6252e+06
26 2004 | 9.85 | 19739.4 | 4.0160e+06
27 2008 | 9.69 | 19457.5 | 4.0321e+06
(1/N) > | 195237 | 10.39 | 20268.1 | 3.8130e+06
X t xt x2

Substituting these values into our expressions gives:

w; = —0.0133, wp = 36.416



The model
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Our prediction

> We want to predict the winning time at London 2012.
» Substitute x = 2012 into our model.

t = 36.416 — 0.0133x
tro12 = 36.416 — 0.0133 x 2012
tro12 = 9.5947 s

» Based on our modelling assumptions and the previous data,
we predict a winning time of 9.5947 seconds.



Assumptions

Our Assumptions

1. That there exists a relationship between Olympic year
and winning time.

Are they any good?
1. Is the relationship really between Olympic year and time?
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Our Assumptions

1. That there exists a relationship between Olympic year and
winning time.

2. That this relationship is linear (i.e. a straight line).

Are they any good?
1. Is the relationship really between Olympic year and time?

2. Seems a bit simple? Does the line go through all of the
points?




Assumptions

Our Assumptions

1. That there exists a relationship between Olympic year and
winning time.

2. That this relationship is linear (i.e. a straight line).
3. This this relationship will continue into the future.

Are they any good?
1. Is the relationship really between Olympic year and time?

2. Seems a bit simple? Does the line go through all of the
points?

3. Forever? Negative winning times?




Some things to think about

» Is this a good prediction?

» Would you go to the bookmakers and place a bet on the
winning time being exactly 9.547 s?

» If we had done this before 2008 would we have been correct?

P> Are we asking the correct question? Being too precise?



A question we could have answered in 1950
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A question we could have answered in 1950
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A question we could have answered in 1950
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Regression in statistics and machine learning

P regression models are among the most widely used tools in
statistics
P but regression is also an important problem in machine
learning
» difference in emphasis:
» in statistics, the purpose is often explanation: “how does x
affect t?" “is x important for t?”
» in machine learning, the purpose is typically prediction:
“what's the most likely t, given x?"



Multivariate Data

» Olympic winning time may depend also on weather, track
conditions etc.

» Each data point is thus represented by a vector of dimension
D of features or attributes, x.

» Our problem thus is to find a function t = f(x).
» Multi-linear function:

t="f(x,wp,wi, -+ ,wp):=wp+ wixi + -+ wpxp.



Squared loss

» The squared loss of training point n is:
L,= (tn - f(xn; wo, Wy -+, WD))2

» The averaged squared loss is:

c = Z(tn - f(xn; Wwo, Wi, -+, WD))2



Squared loss

» The averaged squared loss is:

» Then

Note that: (we append 1 to the begining of x,)
Xp < [1 xp]

» Therefore )
L= 5t Xw)' (t — Xw)



Recipe
» Put data and parameters into vectors/matrix.
» Write the model in vector form.

» Write the loss in vector/matrix form.
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Recipe
» Put data and parameters into vectors/matrix.
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» Write the loss in vector/matrix form.

Why?
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Recipe

» Put data and parameters into vectors/matrix.

» Write the model in vector form.

» Write the loss in vector/matrix form.

Why?

More features: t = wy + wixy + - - - + wpxp

More complex models: t = wp + wix + wox? + ... + wpxP

wo
wi

WD

y Xp =

1
Xn,1
Xn,2

[EE Y

X1,1
X2,1

XN,1

X1,2
X2,2

XN,2

X1,D
X2,.D

XN,D




Recipe
» Put data and parameters into vectors/matrix.
» Write the model in vector form.

» Write the loss in vector/matrix form.

Why?
More features: t = wy + wixy + - - - + wpxp
More complex models: t = wp + wix + wox? + ... + wpxP

1
wo Xn1 1 X171 X172 cooa Xl,D
wy - 1 X21 X22 ... X2p
W = - an = Xn’2 7x - . . -
wWp ' 1 XNl XN2 ... XN,D
L Xn,D |

1
L= N(t — Xw)T(t — Xw)




Different models, same loss

» We have a single loss that corresponds to many different
models, with different w and X

1
L= N(t — Xw)T(t — Xw).

> We can get an expression for the w that minimises £, that
will work for any of these models.



Minimising the loss
» When minimising the scalar loss

L'zl

=|

N
> (ta — wo — wixy)?,
n=1

> we took partial derivatives with respect to each parameter and
set to zero.



Minimising the loss
» When minimising the scalar loss

L'zl

=|

N
> (ta — wo — wixy)?,
n=1

> we took partial derivatives with respect to each parameter and
set to zero.

» We now have a vector/matrix loss
1 T
L= N(t — Xw) ' (t — Xw),

» and will take partial derivatives with respect to the vector w
and set to zero:

oL

a—W—O



Partial diff. wrt vector

The result of taking the partial derivative with respect to a vector
is a vector where each element is the partial derivative with respect
to one parameter:

é)aiﬂ
o _| 5
ow :
oL

owp



Partial diff. wrt vector

The result of taking the partial derivative with respect to a vector
is a vector where each element is the partial derivative with respect
to one parameter:

oL
Ow
oL
oL | owm
ow :
oL
owp

Useful identites:




Computing g—ﬁ

0 1 1
— [ =(t—Xw)T(t—X = —(2XTXw —2XTt
o (X xw) ) = XX 2XTy
Matrix transpose
X11  X12
X — Xo1 X2 XT _ |: X11 X21 X31 :|
’ X12 X202 X32
X31 X32

Transpose of sum/product

(a+b)T=a +b", Xw)" =w'X"




Computing g—ﬁ

0 1 _ Tre o i T o Tg)
8_W<N(t Xw)' (t Xw)) = N(2X Xw—-2X't)=0

X™Xw = X't

Matrix transpose

a1 X2 X111 Xo1  X31
N
X=| 1 x» |, X =
X12 X202 X32
X3l X32

Transpose of sum/product

(a+b)T=a +b", Xw)T =w'X"




Computing g—ﬁ

X™Xw = Xt



Computing g—‘fl

X™Xw = Xt

Matrix inverse
Inverse is defined (for a square matrix A) as the matrix A1 that
satisfies:
AA"l =1
Where | is the identity matrix,

10 ... 0
01 ... 0
1= . . |, and IA = A, for any A




Computing g—‘fl

X™Xw = XTt
(XTX)"IXTXw = (XTX)"IXTt

Matrix inverse
Inverse is defined (for a square matrix A) as the matrix A1 that
satisfies:
AA"l =1
Where | is the identity matrix,

10 ... 0
01 ... 0
1= . ] |, and IA=A, for any A




Computing g—‘ﬁ

X™Xw = XTt
(XTX)"IXTXw = (XTX)"IXTt
w = (XTX)"IXTt

Matrix inverse

Inverse is defined (for a square matrix A) as the matrix A1 that

satisfies:
AA~! =

Where | is the identity matrix,

10 ... 0
01 ... 0
1= . ] |, and IA=A, for any A




An alternative optimization: Gradient Descent

Repeatedly move in the direction of the gradient for w using step
size n:
W<~ W — 17—
T ow
For convex functions, this is guaranteed to converge to the global

optimum.
There are many accelerated variations to speed up convergence.



Linear model - Olympic data
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Linear model - Olympic data
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Linear model - Olympic data

1 1896

1 1900
w— [ wo } x=|
w1 :

1 2008

36.416

—0.0133 ]

Time (seconds)

giBBO 1900 1920 1940 1960

1980 2000
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Quadratic

model - synthetic data

Wo 1 x
w=| w |, X=]":
W2 1 xn
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Quadratic

model - synthetic data

Wo 1 xg x?
w=|w |, X=|:1 :
W2 1 xp x,%,
—0.0149

w=(X"X)"'XTt = | —0.9987
1.0098

t, = —0.0149 — 0.9987x,, + 1.0098x>

n

10




8th order model - Olympic data
t:Wo+W1x+W2X2+...+W8x8

W
0 1 xx x ... X8

w = ) , X =

1 xy x5 ... x8
wg N AN N



8th order model - Olympic data

t:Wo+W1x+W2X2+...+W3x8
W

0 1 xx x ... X8
w1

w= . , X=| 1 :

1 xy x3 x8

wg N Ay N
1
11.5|
o
Ell
o
TglOS
=
10]

9.
1880 1900 1920 1940 1960 1980 2000 2020
Year



More general models
» So far, we've only considered functions of the form
— 2 D
t=wp+ wiXx + wox“ 4+ ...+ wpx
» In fact, each term can be any function of x (or even x)
t= Woho(X) + W1h1(X) +...+ WDhD(X)

» For example,

t = wo + wix + wasin(x) + wax 1+ ...



More general models
» So far, we've only considered functions of the form

t:W0+W1x+W2X2—|—...+WDXD

» In fact, each term can be any function of x (or even x)
t = woho(x) + wihi(x) + ...+ wphp(x)

» For example,
t = wo + wix + wasin(x) + wax 1+ ...

» In General:

ho(Xl) hl(Xl) hD(Xl)

X — hO(.Xz) h1('X2) - hD(.xz)

ho(xw) () - ho(xw)



Example — Olympic data

. X —a
t=W0+W1X+W25In< b >

wo 1 x; sin((x1 —a)/b)
w = [ wy ] , X=| :
w2 1 xy sin((xy — a)/b)



Example — Olympic data

. X —a
t:Wo+W1x+W25|n< b >

wo 1 x; sin((x1 —a)/b)
w=| w |, X=]:1 :
w2 1 xy sin((xy — a)/b)

-
=

Time (seconds)
. 5
(=} U1

9.5

1900 1920 1940 1960 1980 2000 2020
Year



Summary

v

v

Formulated our loss in terms of vectors and matrices.
Differentiated it with respect to the parameter vector.

Used this to find a general expression for w - the parameters
that minimise the loss.

Shown examples of models with differing numbers of terms.
Not restricted to xP - can have any function of x (or even x).

Shown example of model including a sin term.



Making predictions

w=(XTX)"1XTt
Where X depends on the choice of model:
ho(Xl) h1 (Xl) e hD(Xl)
X=| S
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hD (Xnew)



Making predictions

w=(XTX)"1XTt
Where X depends on the choice of model:

ho(Xl) hl(Xl) hD(Xl)

ho(xn) hi(xn) ... hp(xw)
To predict t at a new value of x, we first create Xnew:
hO(XneW)

Xpnew = : 5

hD (Xnew)

and then compute

T
thew = W Xpew



Example - Olympic data

10.4,

10.3

10.2

Time (seconds)

©
o

©
3

9.6 .
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1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

Linear model — predictions OK?
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Example - Olympic data

12

115

11

10.5

Time (seconds)

10

95 . . . . . .
1880 1900 1920 1940 1960 1980 2000 2020
Year

8th order model — predictions terrible!

Choice of model is very important.




Possible ways of choosing

» Lowest loss, £7?



How does loss change?
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Loss, L, on the Olympic 100m data as additional terms (x°) are
added to the model.



How does loss change?

1.2
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Training Loss
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o
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o
~

o
w

o

=
Nk

3 7 5 6
Polynomial Order
Loss, L, on the Olympic 100m data as additional terms (x°) are
added to the model.

Loss always decreases as the model is made more complex (i.e.
higher order terms are added)




Loss always decreases with model complexity

Data comes from t = x with some noise added:

10
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x
Linear model t = wy 4+ wy x.



Loss always decreases with model complexity

Data comes from t = x with some noise added:

10
of
st

1 2 3 4 5 6
x

Quadratic model t = wy + wix + wax?.



Loss always decreases with model complexity

Data comes from t = x with some noise added:

10

9.
8.

Fourth order t = wy + wix + wox? + wax3 + wax?.

1

2

3

xT

4

5

6

4



Loss always decreases with model complexity

Data comes from t = x with some noise added:

12

10f

1 2 3 4 5 6
T
Fifth order t = wy + wix + wox? + w3x3 + wax® + wx®.



Generalisation and over-fitting

There is a trade-off between generalisation (predictive ability) and
over-fitting (decreasing the loss).
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present.




Generalisation and over-fitting

There is a trade-off between generalisation (predictive ability) and

over-fitting (decreasing the loss).
» Fitting a model perfectly to the training data is likely to lead
to poor predictions because there will almost always be noise

present.

Noise

Not necessarily ‘noise’, just
things we can't, or don't
need to model.

Time (seconds)

9,
1880 1900 1920 1940 1960 1980 2000 2020
Year
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» Lowest loss, L7
» Loss always decreases as model gets more complex.
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Possible ways of choosing

» Lowest loss, L7
» Loss always decreases as model gets more complex.
» Predictions don't necessarily get better.

» Best predictions?

» Can't use future predictions because we don't know the
answer!
» Other data?
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» We have N input-response pairs for training:

(x1,t1), (x2, t2), ..., (xn, tn)-
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Where can we get more data?

» We have N input-response pairs for training:

(x1,t1), (x2, t2), ..., (Xn, tr)-

» We could use N — M pairs to find w for several models.
» Choose the model that makes best predictions on remaining
M pairs.
» The N — M pairs constitute training data.
» The M pairs are known as validation data.
» Example — use Olympics pre 1980 to train and post 1980 to
validate.



Validation example

10

2 Predictions evaluated using

= ? . -

5 ’ validation loss:

g 10°

s 1M
o Ty \2

§) ﬁv = M (tm — W Xm)
10° m—1
107‘1 3 4 5 6 7 8

Polynomial Order
Best model?

Results suggest that a first order (linear) model (t = wp + wix) is
best.




Validation example

4th order

Valigation data

_.
o
[ ]
L]
o4
|
, L]
1,
]
]
[]
]
[]
]

Winning time (seconds)

Training data 1‘\\ n
9.5 p 4 S~ R ]
8th order
v 1storder

g 1 1 1 1 1 1 1
1880 1900 1920 1940 1960 1980 2000 2020
Year

Best model

First order (linear) model generalises best.




How should we choose which data to hold back?

» In some applications it will be clear.

» Olympic data — validating on the most recent data seems
sensible.

» In many cases — pick it randomly.
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How should we choose which data to hold back?

» In some applications it will be clear.
» Olympic data — validating on the most recent data seems
sensible.
» In many cases — pick it randomly.
» Do it more than once — average the results.
» Do cross-validation.

» Split the data into C equal sets. Train on C — 1, test on
remaining.



Cross-validation

Training  Validation
set set

§ D Fold 1
All data

Average performance over the C ‘folds’.



Leave-one-out Cross-validation

» Cross-validation can be repeated to make results more
accurate.

> e.g. Doing 10-fold CV 10 times gives us 100 performance
values to average over.



Leave-one-out Cross-validation

» Cross-validation can be repeated to make results more
accurate.

> e.g. Doing 10-fold CV 10 times gives us 100 performance
values to average over.

» Extreme example is when C = N so each fold includes one
input-response pair.
> Leave-one-out (LOO) CV.

> Example....



LOOCV — Olympic data

0.095

0.09

9 0.085

Los
o
8

o
<)
1
o

o
o
I
a1

Mean LOOCV

3 PR 6
Polynomial Order

Best model?
LOO CV suggests a 3rd order model. Previous method suggests
1st order. Who knows which is right!




LOOCV - synthetic data (we know the answer!)
» Generate some data from a 3rd order model

t=wy+ wix+ ng2 + W3X3.



LOOCV - synthetic data (we know the answer!)
» Generate some data from a 3rd order model

t=wy+ wix+ ng2 + W3X3.

» Use LOOCV to compare models from first to 7th order:

* LOOCV Loss

P S

Testing Loss

Training Loss

15 2 3 4 5 6 7
Polynomial Order

(Testing loss comes from another dataset)
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predictive performance.
» This comes at a computational cost:
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Computational issues

» CV and LOOCV let us choose from a set of models based on
predictive performance.
» This comes at a computational cost:
» For C-fold CV, need to train our model C times.
» For LOO-CV, need to train our model N times.
» For t = w'x, this is feasible if D (number of terms in
function) isn't too big:

D
t = dehd(x)

d=0
(XTX)1XTt

S
Il



Computational issues

» CV and LOOCV let us choose from a set of models based on
predictive performance.
» This comes at a computational cost:
» For C-fold CV, need to train our model C times.
» For LOO-CV, need to train our model N times.
» For t = w'x, this is feasible if D (number of terms in
function) isn't too big:

D
t = dehd(x)

d=0
w = (XTX)"'XTt

» For some models we will need to use C <« N.



Summary

» Showed how we can make predictions with our ‘linear’ model.
» Saw how choice of model has big influence in quality of
predictions.

» Saw how the loss on the training data, £, cannot be used to
choose models.

» Making model more complex always decreases the loss.
» Introduced the idea of using some data for validation.

» Introduced cross validation and leave-one-out cross validation.
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