Probabilistic Approach to Linear Regression

Morteza H. Chehreghani
morteza.chehreghani@chalmers.se
Department of Computer Science and Engineering
Chalmers University of Technology

March 30, 2020

Reference

The content and the slides are adapted from
S. Rogers and M. Girolami, A First Course in Machine Learning (FCML), 2nd edition, Chapman \& Hall/CRC 2016, ISBN: 9781498738484

Some data and a problem

Use the model (line) to predict the winning time in 2012.

Recipe for a linear model

$$
\begin{aligned}
& t=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+\ldots+w_{D} x_{D} \\
& \mathbf{x}_{n}=\left[\begin{array}{c}
1 \\
x_{n, 1} \\
x_{n, 2} \\
\vdots \\
x_{n, D}
\end{array}\right], \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1, D} \\
1 & x_{2,1} & x_{2,2} & \ldots & x_{2, D} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{N, 1} & x_{N, 2} & \ldots & x_{N, D}
\end{array}\right] \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
t_{n} \\
\vdots \\
t_{N}
\end{array}\right],
\end{aligned}
$$

Recipe for a linear model

$$
\begin{gathered}
t=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+\ldots+w_{D} x_{D} \\
\mathbf{x}_{n}=\left[\begin{array}{c}
1 \\
x_{n, 1} \\
x_{n, 2} \\
\vdots \\
x_{n, D}
\end{array}\right], \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1, D} \\
1 & x_{2,1} & x_{2,2} & \ldots & x_{2, D} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{N, 1} & x_{N, 2} & \ldots & x_{N, D}
\end{array}\right] \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
t_{n} \\
\vdots \\
t_{N}
\end{array}\right], \\
\mathbf{w}=\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{D}
\end{array}\right], \quad \text { Model }: t_{n}=\mathbf{w}^{\top} \mathbf{x}_{n}, \quad \text { or } \mathbf{t}=\mathbf{X} \mathbf{w}
\end{gathered}
$$

What about the errors?

$$
\begin{gathered}
t=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+\ldots+w_{D} x_{D}=\sum_{d=0}^{D} w_{d} x_{d}=\mathbf{w}^{\top} \mathbf{x} \\
\mathcal{L}=\frac{1}{N} \sum_{n=1}^{N}\left(t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2} \\
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
\end{gathered}
$$

We should model the errors

- We know they're there - shouldn't ignore them.

We should model the errors

- We know they're there - shouldn't ignore them.
- They tell us how confident our predictions should be:

We should model the errors

- We know they're there - shouldn't ignore them.
- They tell us how confident our predictions should be:

Additive errors

We'll assume that the noise is an additive term in the model:

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}+\epsilon_{n}
$$

Additive errors

We'll assume that the noise is an additive term in the model:

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}+\epsilon_{n}
$$

What assumptions can we make about ϵ_{n} ?

Additive errors

We'll assume that the noise is an additive term in the model:

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}+\epsilon_{n}
$$

What assumptions can we make about ϵ_{n} ?

- It's different for each n.

Additive errors

We'll assume that the noise is an additive term in the model:

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}+\epsilon_{n}
$$

What assumptions can we make about ϵ_{n} ?

- It's different for each n.
- It's positive and negative.

Additive errors

We'll assume that the noise is an additive term in the model:

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}+\epsilon_{n}
$$

What assumptions can we make about ϵ_{n} ?

- It's different for each n.
- It's positive and negative.
- There doesn't seem to be any relationship between ϵ at different n.

Additive errors

We'll assume that the noise is an additive term in the model:

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}+\epsilon_{n}
$$

What assumptions can we make about ϵ_{n} ?

- It's different for each n.
- It's positive and negative.
- There doesn't seem to be any relationship between ϵ at different n.
- Looks very hard to model exactly (if it were, it wouldn't be noise!)

Gaussian noise model

- Our model:

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}+\epsilon_{n}
$$

Gaussian noise model

- Our model:

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}+\epsilon_{n}
$$

- ϵ_{n} is continuous.
- We need to choose $p(\epsilon)$.

Gaussian noise model

- Our model:

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}+\epsilon_{n}
$$

- ϵ_{n} is continuous.
- We need to choose $p(\epsilon)$.
- Gaussian:

$$
p\left(\epsilon \mid \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma^{2}}(\epsilon-\mu)^{2}\right\}
$$

Gaussian noise model

- Our model:

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}+\epsilon_{n}
$$

- ϵ_{n} is continuous.
- We need to choose $p(\epsilon)$.
- Gaussian:

$$
p\left(\epsilon \mid \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma^{2}}(\epsilon-\mu)^{2}\right\}
$$

- 2 parameters: Mean μ and Variance σ^{2}.

Gaussian examples

Effect of varying the mean (μ) and variance $\left(\sigma^{2}\right)$ parameters of the Gaussian.

Generating data

Likelihood

- Evaluate the density:

$$
p\left(t \mid \mathbf{x}_{n}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)
$$

- t is a random variable too!
- at $t=t_{n}$ is called for the Likelihood, i.e., the quantity obtained when evaluating the density.

Likelihood

- Evaluate the density:

$$
p\left(t \mid \mathbf{x}_{n}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)
$$

- t is a random variable too!
- at $t=t_{n}$ is called for the Likelihood, i.e., the quantity obtained when evaluating the density.
- The higher the value, the more likely t_{n} is given the model....

Likelihood

- Evaluate the density:

$$
p\left(t \mid \mathbf{x}_{n}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)
$$

- t is a random variable too!
- at $t=t_{n}$ is called for the Likelihood, i.e., the quantity obtained when evaluating the density.
- The higher the value, the more likely t_{n} is given the model....
-the better the model is.

Likelihood

Lets look at the 1980 Olympics $(n=20)$.
Dashed line shows t_{20}.

Likelihood

Model 1. Red line shows $\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)$

Likelihood

Likelihood

Model 2. Red line shows $\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)$ for a different \mathbf{w}

Likelihood

Likelihood

Model 3.

Likelihood

Likelihood

Model 3 looks best.

Likelihood

- The value we get when we evaluate the density function is called the likelihood.

Likelihood

- The value we get when we evaluate the density function is called the likelihood.
\rightarrow i.e.
- The likelihood for model 1 was 0.1.
- The likelihood for model 2 was 0.9.
- The likelihood for model 3 was 4.8.
- For continuous random variables, it is not a probability!

Likelihood

- The value we get when we evaluate the density function is called the likelihood.
\rightarrow i.e.
- The likelihood for model 1 was 0.1.
- The likelihood for model 2 was 0.9.
- The likelihood for model 3 was 4.8.
- For continuous random variables, it is not a probability!
- As t_{n} is fixed, we can find the values of \mathbf{w} and σ^{2} that maximise the likelihood.
- ...just like we found them that minimised the loss.

Likelihood optimisation

- For each input-response pair, we have a Gaussian likelihood:

$$
p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)
$$

Likelihood optimisation

- For each input-response pair, we have a Gaussian likelihood:

$$
p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)
$$

- To combine them all, we want the joint likelihood:

$$
p\left(t_{1}, \ldots, t_{N} \mid \mathbf{w}, \sigma^{2}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)
$$

Likelihood optimisation

- For each input-response pair, we have a Gaussian likelihood:

$$
p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)
$$

- To combine them all, we want the joint likelihood:

$$
p\left(t_{1}, \ldots, t_{N} \mid \mathbf{w}, \sigma^{2}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)
$$

- Assume that the t_{n} are independent:

$$
p\left(t_{1}, \ldots, t_{N} \mid \mathbf{w}, \sigma^{2}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)
$$

Likelihood optimisation

Finding the parameters that maximise the likelihood is expressed mathematically as:

$$
\underset{\mathbf{w}, \sigma^{2}}{\operatorname{argmax}} \prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)
$$

Likelihood optimisation

Finding the parameters that maximise the likelihood is expressed mathematically as:

$$
\underset{\mathbf{w}, \sigma^{2}}{\operatorname{argmax}} \prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)
$$

In fact, we'll optimise the (natural) log likelihood because it's easier.

- If we increase $z, \log (z)$ increases, if we decrease $z, \log (z)$ decreases. So, at a maximum of $z, \log (z)$ will also be at a maximum.

Likelihood optimisation

Finding the parameters that maximise the likelihood is expressed mathematically as:

$$
\underset{\mathbf{w}, \sigma^{2}}{\operatorname{argmax}} \prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)
$$

In fact, we'll optimise the (natural) log likelihood because it's easier.

- If we increase $z, \log (z)$ increases, if we decrease $z, \log (z)$ decreases. So, at a maximum of $z, \log (z)$ will also be at a maximum.

$$
\underset{\mathbf{w}, \sigma^{2}}{\operatorname{argmax}} \log \prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)
$$

Some re-arranging...

$$
\begin{aligned}
p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right) & =\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2}\right\} \\
\log L & =\log \prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)
\end{aligned}
$$

Some re-arranging...

$$
\begin{aligned}
p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right) & =\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2}\right\} \\
\log L & =\log \prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right) \\
& =\sum_{n=1}^{N} \log p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right) \\
& =\sum_{n=1}^{N} \log \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)-\sum_{n=1}^{N} \frac{1}{2 \sigma^{2}}\left(t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2} \\
& =-N \log (\sigma \sqrt{2 \pi})-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2}
\end{aligned}
$$

Looks familiar!

Some re-arranging...

$$
\begin{aligned}
p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right) & =\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2}\right\} \\
\log L & =\log \prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right) \\
& =\sum_{n=1}^{N} \log p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right) \\
& =\sum_{n=1}^{N} \log \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)-\sum_{n=1}^{N} \frac{1}{2 \sigma^{2}}\left(t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2} \\
& =-N \log (\sigma \sqrt{2 \pi})-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2}
\end{aligned}
$$

Looks familiar! To continue (good exercise):

$$
\frac{\partial \log L}{\partial \mathbf{w}}=0, \frac{\partial \log L}{\partial \sigma^{2}}=0
$$

A shortcut

The multi-variate Gaussian

$$
\begin{gathered}
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right], p(\mathbf{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{K / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\}
\end{gathered}
$$

$K(=2)$ is number of variables, $|\boldsymbol{\Sigma}|$ is the determinant.

A shortcut

The multi-variate Gaussian

$$
\begin{gathered}
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right], p(\mathbf{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{K / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\}
\end{gathered}
$$

$K(=2)$ is number of variables, $|\boldsymbol{\Sigma}|$ is the determinant.

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \boldsymbol{\Sigma}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

A shortcut

The multi-variate Gaussian

$$
\begin{gathered}
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right], p(\mathbf{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{K / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\}
\end{gathered}
$$

$K(=2)$ is number of variables, $|\boldsymbol{\Sigma}|$ is the determinant.

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \boldsymbol{\Sigma}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
1 & 0.8 \\
0.8 & 1
\end{array}\right]
$$

A shortcut

The multi-variate Gaussian
A special case:

$$
\begin{gathered}
\prod_{n=1}^{N} \mathcal{N}\left(\mu_{n}, \sigma^{2}\right)=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\boldsymbol{\mu}=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{N}
\end{array}\right], \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma^{2} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma^{2}
\end{array}\right]=\sigma^{2} \mathbf{I}
\end{gathered}
$$

So, in our model:

$$
\log L=\log \prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)=\log \mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)=\log p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)
$$

Maximising the multi-variate log-likelihood

- Partial derivative w.r.t. w, set to zero and solve:

$$
\begin{aligned}
\log L & =\log \mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right) \\
\frac{\partial \log L}{\partial \mathbf{w}} & =-\frac{1}{2 \sigma^{2}}\left(2 \mathbf{X}^{\top} \mathbf{X} \mathbf{w}-2 \mathbf{X}^{\top} \mathbf{t}\right)=0 \\
\mathbf{w} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
\end{aligned}
$$

Maximising the multi-variate log-likelihood

- Partial derivative w.r.t. w, set to zero and solve:

$$
\begin{aligned}
\log L & =\log \mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right) \\
\frac{\partial \log L}{\partial \mathbf{w}} & =-\frac{1}{2 \sigma^{2}}\left(2 \mathbf{X}^{\top} \mathbf{X} \mathbf{w}-2 \mathbf{X}^{\top} \mathbf{t}\right)=0 \\
\mathbf{w} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
\end{aligned}
$$

- This is the same expression we've seen before!

Maximising the multi-variate log-likelihood

- Partial derivative w.r.t. w, set to zero and solve:

$$
\begin{aligned}
\log L & =\log \mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right) \\
\frac{\partial \log L}{\partial \mathbf{w}} & =-\frac{1}{2 \sigma^{2}}\left(2 \mathbf{X}^{\top} \mathbf{X} \mathbf{w}-2 \mathbf{X}^{\top} \mathbf{t}\right)=0 \\
\mathbf{w} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
\end{aligned}
$$

- This is the same expression we've seen before!
- Same for σ^{2} :

$$
\begin{aligned}
\frac{\partial \log L}{\partial \sigma^{2}} & =-\frac{N}{2 \sigma^{2}}+\frac{1}{2\left(\sigma^{2}\right)^{2}}(\mathbf{t}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{t}-\mathbf{X} \mathbf{w})=0 \\
\sigma^{2} & =\frac{1}{N}(\mathbf{t}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{t}-\mathbf{X} \mathbf{w})
\end{aligned}
$$

Optimum parameters

- Compute optimum $\widehat{\mathbf{w}}$ from:

$$
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- Use this to compute optimum $\widehat{\sigma^{2}}$ from:

$$
\widehat{\sigma^{2}}=\frac{1}{N}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})^{\top}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})
$$

Optimum parameters

- Compute optimum $\widehat{\mathbf{w}}$ from:

$$
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- Use this to compute optimum $\widehat{\sigma^{2}}$ from:

$$
\widehat{\sigma^{2}}=\frac{1}{N}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})^{\top}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})
$$

- e.g. Olympic 100 m data (again!)

$$
\widehat{\mathbf{w}}=\left[\begin{array}{c}
36.416 \\
-0.0133
\end{array}\right], \widehat{\sigma^{2}}=0.0503
$$

Optimum parameters

- We have point estimates of our parameters.
- How confident should we be in them?
- If we changed them a little bit, would the model still be good?

Confidence in parameter estimates

- Imagine there are true parameters, \mathbf{w} and σ^{2}.

Confidence in parameter estimates

- Imagine there are true parameters, \mathbf{w} and σ^{2}.
- How good our our estimates $\widehat{\mathbf{w}}$ and $\widehat{\sigma^{2}}$?
- Are they correct (on average)?
- If we could keep adding data, would we converge on the true value?

Confidence in parameter estimates

- Imagine there are true parameters, \mathbf{w} and σ^{2}.
- How good our our estimates $\widehat{\mathbf{w}}$ and $\widehat{\sigma^{2}}$?
- Are they correct (on average)?
- If we could keep adding data, would we converge on the true value?
- How confident should we be in our estimates?
- Could we change parameters a little bit and still have a good model?

Confidence in parameter estimates

- Imagine there are true parameters, \mathbf{w} and σ^{2}.
- How good our our estimates $\widehat{\mathbf{w}}$ and $\widehat{\sigma^{2}}$?
- Are they correct (on average)?
- If we could keep adding data, would we converge on the true value?
- How confident should we be in our estimates?
- Could we change parameters a little bit and still have a good model?

Confidence in parameter estimates

- Imagine there are true parameters, \mathbf{w} and σ^{2}.
- How good our our estimates $\widehat{\mathbf{w}}$ and $\widehat{\sigma^{2}}$?
- Are they correct (on average)?
- If we could keep adding data, would we converge on the true value?
- How confident should we be in our estimates?
- Could we change parameters a little bit and still have a good model?

Expectations - refresher

- To progress we need to understand Expectations

Expectations - refresher

- To progress we need to understand Expectations
- Imagine a random variable X with density $p(x)$

Expectations - refresher

- To progress we need to understand Expectations
- Imagine a random variable X with density $p(x)$
- We want to work out the average value of X, \tilde{x}.

Expectations - refresher

- To progress we need to understand Expectations
- Imagine a random variable X with density $p(x)$
- We want to work out the average value of X, \tilde{x}.
- Generate S samples, x_{1}, \ldots, x_{S}

Expectations - refresher

- To progress we need to understand Expectations
- Imagine a random variable X with density $p(x)$
- We want to work out the average value of X, \tilde{x}.
- Generate S samples, x_{1}, \ldots, x_{S}
- Average the samples:

$$
\tilde{x} \approx \frac{1}{S} \sum_{s=1}^{S} x_{s}
$$

Expectations - refresher

- Our sample based approximation to \tilde{x} will get better as we take more samples.

Expectations - refresher

- Our sample based approximation to \tilde{x} will get better as we take more samples.
- We can also (sometimes) compute it exactly using expectations.

Expectations - refresher

- Our sample based approximation to \tilde{x} will get better as we take more samples.
- We can also (sometimes) compute it exactly using expectations.
- Discrete: $\tilde{x}=\mathbf{E}_{p(x)}\{x\}=\sum_{x} x p(x)$
- Example:
- X is outcome of rolling die. $P(X=x)=1 / 6$
- $\tilde{x}=\sum_{x} x P(X=x)=3.5$

Expectations - refresher

- Our sample based approximation to \tilde{x} will get better as we take more samples.
- We can also (sometimes) compute it exactly using expectations.
- Discrete: $\tilde{x}=\mathbf{E}_{p(x)}\{x\}=\sum_{x} x p(x)$
- Continuous: $\tilde{x}=\mathbf{E}_{p(x)}\{x\}=\int_{x} x p(x) d x$
- Example:
- X is outcome of rolling die. $P(X=x)=1 / 6$
- $\tilde{x}=\sum_{x} x P(X=x)=3.5$
- Example:
- X is uniform distributed RV between a and b
- $\tilde{x}=\int_{x=a}^{x=b} x p(x) d x=(b-a) / 2$

Expectations - refresher

- In general:

$$
\mathbf{E}_{p(x)}\{f(x)\}=\int f(x) p(x) d x
$$

Expectations - refresher

- In general:

$$
\mathbf{E}_{p(x)}\{f(x)\}=\int f(x) p(x) d x
$$

- Some important things:
- $\mathbf{E}_{p(x)}\{f(x)\} \neq f\left(\mathbf{E}_{p(x)}\{x\}\right)$
- $\mathbf{E}_{p(x)}\{k f(x)\}=k \mathbf{E}_{p(x)}\{f(x)\}$

Expectations - refresher

- In general:

$$
\mathbf{E}_{p(x)}\{f(x)\}=\int f(x) p(x) d x
$$

- Some important things:
- $\mathbf{E}_{p(x)}\{f(x)\} \neq f\left(\mathbf{E}_{p(x)}\{x\}\right)$
- $\mathbf{E}_{p(x)}\{k f(x)\}=k \mathbf{E}_{p(x)}\{f(x)\}$
- Mean, $\mu=\mathbf{E}_{p(x)}\{x\}$

Expectations - refresher

- In general:

$$
\mathbf{E}_{p(x)}\{f(x)\}=\int f(x) p(x) d x
$$

- Some important things:
- $\mathbf{E}_{p(x)}\{f(x)\} \neq f\left(\mathbf{E}_{p(x)}\{x\}\right)$
- $\mathbf{E}_{p(x)}\{k f(x)\}=k \mathbf{E}_{p(x)}\{f(x)\}$
- Mean, $\mu=\mathbf{E}_{p(x)}\{x\}$
- Variance: $\sigma^{2}=\mathbf{E}_{p(x)}\left\{(x-\mu)^{2}\right\}=\mathbf{E}_{p(x)}\left\{x^{2}\right\}-\left(\mathbf{E}_{p(x)}\{x\}\right)^{2}$

Expectations - refresher

- In general:

$$
\mathbf{E}_{p(x)}\{f(x)\}=\int f(x) p(x) d x
$$

- Some important things:
- $\mathbf{E}_{p(x)}\{f(x)\} \neq f\left(\mathbf{E}_{p(x)}\{x\}\right)$
- $\mathbf{E}_{p(x)}\{k f(x)\}=k \mathbf{E}_{p(x)}\{f(x)\}$
- Mean, $\mu=\mathbf{E}_{p(x)}\{x\}$
- Variance: $\sigma^{2}=\mathbf{E}_{p(x)}\left\{(x-\mu)^{2}\right\}=\mathbf{E}_{p(x)}\left\{x^{2}\right\}-\left(\mathbf{E}_{p(x)}\{x\}\right)^{2}$
- For vectors of random variables:
- $\mathbf{E}_{p(\mathbf{x})}\{f(\mathbf{x})\}=\int f(\mathbf{x}) p(\mathbf{x}) d x$

Expectations - refresher

- In general:

$$
\mathbf{E}_{p(x)}\{f(x)\}=\int f(x) p(x) d x
$$

- Some important things:
- $\mathbf{E}_{p(x)}\{f(x)\} \neq f\left(\mathbf{E}_{p(x)}\{x\}\right)$
- $\mathbf{E}_{p(x)}\{k f(x)\}=k \mathbf{E}_{p(x)}\{f(x)\}$
- Mean, $\mu=\mathbf{E}_{p(x)}\{x\}$
- Variance: $\sigma^{2}=\mathbf{E}_{p(x)}\left\{(x-\mu)^{2}\right\}=\mathbf{E}_{p(x)}\left\{x^{2}\right\}-\left(\mathbf{E}_{p(x)}\{x\}\right)^{2}$
- For vectors of random variables:
- $\mathbf{E}_{p(\mathbf{x})}\{f(\mathbf{x})\}=\int f(\mathbf{x}) p(\mathbf{x}) d x$
- Mean: $\boldsymbol{\mu}=\mathbf{E}_{p(\mathbf{x})}\{\mathbf{x}\}$
- Covariance:

$$
\begin{aligned}
\operatorname{cov}\{x\} & =\mathbf{E}_{p(\mathbf{x})}\left\{(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right\} \\
& =\mathbf{E}_{p(\mathbf{x})}\left\{\mathbf{x x}^{\top}\right\}-\mathbf{E}_{p(\mathbf{x})}\{\mathbf{x}\} \mathbf{E}_{p(\mathbf{x})}\left\{\mathbf{x}^{\top}\right\}
\end{aligned}
$$

Expectations - Gaussians

- Uni-variate
- $p\left(x \mid \mu, \sigma^{2}\right)=\mathcal{N}\left(\mu, \sigma^{2}\right)$
- Mean: $\mathbf{E}_{p(x)}\{x\}=\mu$
- Variance: $\mathbf{E}_{p(x)}\left\{(x-\mu)^{2}\right\}=\sigma^{2}$

Expectations - Gaussians

- Uni-variate
- $p\left(x \mid \mu, \sigma^{2}\right)=\mathcal{N}\left(\mu, \sigma^{2}\right)$
- Mean: $\mathbf{E}_{p(x)}\{x\}=\mu$
- Variance: $\mathbf{E}_{p(x)}\left\{(x-\mu)^{2}\right\}=\sigma^{2}$
- Multi-variate
- $p\left(\mathbf{x} \mid \mu, \sigma^{2}\right)=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Mean: $\mathbf{E}_{p(\mathrm{x})}\{\mathbf{x}\}=\boldsymbol{\mu}$
- Variance: $\mathbf{E}_{p(\mathrm{x})}\left\{(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\right\}=\boldsymbol{\Sigma}$

Back to the model...

- Parameter estimates:

$$
\begin{aligned}
\widehat{\mathbf{w}} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} \\
\widehat{\sigma^{2}} & =\frac{1}{N}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})^{\top}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})
\end{aligned}
$$

Back to the model...

- Parameter estimates:

$$
\begin{aligned}
\widehat{\mathbf{w}} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} \\
\widehat{\sigma^{2}} & =\frac{1}{N}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})^{\top}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})
\end{aligned}
$$

- True values: \mathbf{w}, σ^{2}

Back to the model...

- Parameter estimates:

$$
\begin{aligned}
\widehat{\mathbf{w}} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} \\
\widehat{\sigma^{2}} & =\frac{1}{N}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})^{\top}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})
\end{aligned}
$$

- True values: \mathbf{w}, σ^{2}
- Our model:

$$
p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)
$$

Back to the model...

- Parameter estimates:

$$
\begin{aligned}
\widehat{\mathbf{w}} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} \\
\widehat{\sigma^{2}} & =\frac{1}{N}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})^{\top}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})
\end{aligned}
$$

- True values: \mathbf{w}, σ^{2}
- Our model:

$$
p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)
$$

- What's $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$?

Back to the model...

- Parameter estimates:

$$
\begin{aligned}
\widehat{\mathbf{w}} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} \\
\widehat{\sigma^{2}} & =\frac{1}{N}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})^{\top}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})
\end{aligned}
$$

- True values: \mathbf{w}, σ^{2}
- Our model:

$$
p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)
$$

- What's $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$?
- What do we expect our parameter estimate to be?

$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$

We'll try and find $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$ in terms of the true value \mathbf{w} :

$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$

We'll try and find $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$ in terms of the true value \mathbf{w} :

$$
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}=\int \widehat{\mathbf{w}} p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right) d \mathbf{t}
$$

$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$

We'll try and find $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$ in terms of the true value \mathbf{w} :

$$
\begin{aligned}
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\} & =\int \widehat{\mathbf{w}} p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right) d \mathbf{t} \\
& =\int\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right) d \mathbf{t} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\mathbf{t}\}
\end{aligned}
$$

$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$

We'll try and find $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$ in terms of the true value \mathbf{w} :

$$
\begin{aligned}
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\} & =\int \widehat{\mathbf{w}} p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right) d \mathbf{t} \\
& =\int\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right) d \mathbf{t} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\mathbf{t}\} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} \\
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\} & =\mathbf{l} \mathbf{w}=\mathbf{w}
\end{aligned}
$$

$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$

We'll try and find $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$ in terms of the true value \mathbf{w} :

$$
\begin{aligned}
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\} & =\int \widehat{\mathbf{w}} p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right) d \mathbf{t} \\
& =\int\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right) d \mathbf{t} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\mathbf{t}\} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} \\
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\} & =\mathbf{l} \mathbf{w}=\mathbf{w}
\end{aligned}
$$

$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$

We'll try and find $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}$ in terms of the true value \mathbf{w} :

$$
\begin{aligned}
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\} & =\int \widehat{\mathbf{w}} p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right) d \mathbf{t} \\
& =\int\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right) d \mathbf{t} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\mathbf{t}\} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} \\
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\} & =\mathbf{l} \mathbf{w}=\mathbf{w}
\end{aligned}
$$

$\widehat{\mathbf{w}}$ is unbiased
On average, we expect our estimate to equal the true value!

$\operatorname{cov}\{\widehat{\mathbf{w}}\}$

- What does $\operatorname{cov}\{\widehat{\mathbf{w}}\}$ tell us?

$\operatorname{cov}\{\widehat{\mathbf{w}}\}$

- What does $\operatorname{cov}\{\widehat{\mathbf{w}}\}$ tell us?
- Recall the linear model, $\mathbf{w}=\left[\begin{array}{l}w_{0} \\ w_{1}\end{array}\right]$

$\operatorname{cov}\{\widehat{\mathbf{w}}\}$

- What does $\operatorname{cov}\{\widehat{\mathbf{w}}\}$ tell us?
- Recall the linear model, $\mathbf{w}=\left[\begin{array}{l}w_{0} \\ w_{1}\end{array}\right]$

$$
\operatorname{cov}\{\widehat{\mathbf{w}}\}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

$\operatorname{cov}\{\widehat{\mathbf{w}}\}$

- What does $\operatorname{cov}\{\widehat{\mathbf{w}}\}$ tell us?
- Recall the linear model, $\mathbf{w}=\left[\begin{array}{l}w_{0} \\ w_{1}\end{array}\right]$

$$
\operatorname{cov}\{\widehat{\mathbf{w}}\}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

- Tells us how well defined the parameters are by the data. How much can the parameters vary and still give a good model.
- a and c - how much can we change w_{0} and $w_{1} . b$ - how the values should be changed together.

$\operatorname{cov}\{\widehat{\mathbf{w}}\}$

- What does $\operatorname{cov}\{\widehat{\mathbf{w}}\}$ tell us?
- Recall the linear model, $\mathbf{w}=\left[\begin{array}{l}w_{0} \\ w_{1}\end{array}\right]$

$$
\operatorname{cov}\{\widehat{\mathbf{w}}\}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

- Tells us how well defined the parameters are by the data. How much can the parameters vary and still give a good model.
- a and c - how much can we change w_{0} and $w_{1} . b$ - how the values should be changed together.

$\operatorname{cov}\{\widehat{\mathbf{w}}\}$

- What does $\operatorname{cov}\{\widehat{\mathbf{w}}\}$ tell us?
- Recall the linear model, $\mathbf{w}=\left[\begin{array}{l}w_{0} \\ w_{1}\end{array}\right]$

$$
\operatorname{cov}\{\widehat{\mathbf{w}}\}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

- Tells us how well defined the parameters are by the data. How much can the parameters vary and still give a good model.
- a and c - how much can we change w_{0} and $w_{1} . b$ - how the values should be changed together.

$\operatorname{cov}\{\widehat{\mathbf{w}}\}$

$$
\begin{aligned}
\operatorname{cov}\{\widehat{\mathbf{w}}\}= & \mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\} \\
& -\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\} \mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}^{\top}
\end{aligned}
$$

$\operatorname{cov}\{\widehat{\mathbf{w}}\}$

$$
\begin{aligned}
\operatorname{cov}\{\widehat{\mathbf{w}}\}= & \mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\} \\
& -\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\} \mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}^{\top} \\
= & \mathbf{E}\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}-\mathbf{w w}^{\top} \\
= & \vdots \\
\operatorname{cov}\{\widehat{\mathbf{w}}\}= & \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Example

$$
\begin{gathered}
t_{n}=-2+3 x_{n}+\epsilon_{n} \\
p\left(\epsilon_{n}\right)=\mathcal{N}\left(0, \sigma^{2}\right) \\
\sigma^{2}=0.5^{2}
\end{gathered}
$$

Example

$$
\begin{gathered}
t_{n}=-2+3 x_{n}+\epsilon_{n} \\
p\left(\epsilon_{n}\right)=\mathcal{N}\left(0, \sigma^{2}\right) \\
\sigma^{2}=0.5^{2}
\end{gathered}
$$

$$
\widehat{\mathbf{w}}=\left[\begin{array}{c}
-1.95 \\
2.94
\end{array}\right], \operatorname{cov}\{\widehat{\mathbf{w}}\}=\left[\begin{array}{cc}
0.1195 & -0.1847 \\
-0.1847 & 0.3190
\end{array}\right]
$$

Example

$$
\begin{aligned}
& t_{n}=-2+3 x_{n}+\epsilon_{n} \\
& p\left(\epsilon_{n}\right)=\mathcal{N}\left(0, \sigma^{2}\right) \\
& \sigma^{2}=0.5^{2} \\
& \widehat{\mathbf{w}}=\left[\begin{array}{c}
-1.95 \\
2.94
\end{array}\right], \operatorname{cov}\{\widehat{\mathbf{w}}\}=\left[\begin{array}{cc}
0.1195 & -0.1847 \\
-0.1847 & 0.3190
\end{array}\right]
\end{aligned}
$$

$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\}$ - beyond this class
We saw that $\widehat{\mathbf{w}}$ was unbiased, what about $\widehat{\sigma^{2}}$?

$$
\begin{aligned}
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\} & =\frac{1}{N} \mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})^{\top}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})\right\} \\
& =\sigma^{2}\left(1-\frac{D}{N}\right)
\end{aligned}
$$

Useful identity

$$
\begin{aligned}
p(\mathbf{t}) & =\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\mathbf{E}_{p(\mathbf{t})}\left\{\mathbf{t}^{\top} \mathbf{A} \mathbf{t}\right\} & =\operatorname{Tr}(\mathbf{A} \boldsymbol{\Sigma})+\boldsymbol{\mu}^{\top} \mathbf{A} \boldsymbol{\mu} \\
\operatorname{Tr}(\mathbf{A}) & =\sum_{i} A_{i i}
\end{aligned}
$$

Another useful identity

$$
\operatorname{Tr}(\mathbf{A B})=\operatorname{Tr}(\mathbf{B A})
$$

$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\hat{\sigma^{2}}\right\}$ - beyond this class

$$
\begin{aligned}
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\}= & \frac{1}{N}\left(\operatorname{Tr}\left(\sigma^{2} \mathbf{I}\right)+\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}\right) \\
& -\frac{1}{N}\left(\operatorname{Tr}\left(\sigma^{2} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right)+\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}\right) \\
= & \sigma^{2}-\frac{\sigma^{2}}{N} \operatorname{Tr}\left(\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right) \\
= & \sigma^{2}-\frac{\sigma^{2}}{N} \operatorname{Tr}\left(\mathbf{X}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right) \\
= & \sigma^{2}\left(1-\frac{D}{N}\right)
\end{aligned}
$$

Where D is the number of columns in \mathbf{X} (the number of elements in \mathbf{w}.

Another useful identity

$$
\operatorname{Tr}(\mathbf{A B})=\operatorname{Tr}(\mathbf{B A})
$$

$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\}$ - beyond this class

$$
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\}=\sigma^{2}\left(1-\frac{D}{N}\right)
$$

- In general $D<N$.
- So $1-D / N<1$.
- So $\widehat{\sigma^{2}}<\sigma^{2}$
$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\hat{\sigma^{2}}\right\}$ - beyond this class

$$
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\}=\sigma^{2}\left(1-\frac{D}{N}\right)
$$

- In general $D<N$.
- So $1-D / N<1$.
- So $\widehat{\sigma^{2}}<\sigma^{2}$
- $\widehat{\sigma^{2}}$ is biased and will generally be too low.
$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\}$ - beyond this class

$$
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\}=\sigma^{2}\left(1-\frac{D}{N}\right)
$$

- In general $D<N$.
- So $1-D / N<1$.
- So $\widehat{\sigma^{2}}<\sigma^{2}$
- $\widehat{\sigma^{2}}$ is biased and will generally be too low.
- Why?
- Because it is based on $\widehat{\mathbf{w}}$ which will, in general, be closer to the data than \mathbf{w}.
$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\hat{\sigma^{2}}\right\}$ - beyond this class

$$
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\}=\sigma^{2}\left(1-\frac{D}{N}\right)
$$

- In general $D<N$.
- So $1-D / N<1$.
- So $\widehat{\sigma^{2}}<\sigma^{2}$
- $\widehat{\sigma^{2}}$ is biased and will generally be too low.
- Why?
- Because it is based on $\widehat{\mathbf{w}}$ which will, in general, be closer to the data than \mathbf{w}.
- As N increases, $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\} \rightarrow \sigma^{2}$
$\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\hat{\sigma^{2}}\right\}$ - beyond this class

$$
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\}=\sigma^{2}\left(1-\frac{D}{N}\right)
$$

- In general $D<N$.
- So $1-D / N<1$.
- So $\widehat{\sigma^{2}}<\sigma^{2}$
- $\widehat{\sigma^{2}}$ is biased and will generally be too low.
- Why?
- Because it is based on $\widehat{\mathbf{w}}$ which will, in general, be closer to the data than \mathbf{w}.
- As N increases, $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\} \rightarrow \sigma^{2}$
- To think about - what if $D=N$ or $D>N$?

Example - beyond this class

Generate 100 datasets from the following model:

$$
t_{n}=w_{0}+w_{1} x_{n}+\epsilon_{n}, p\left(\epsilon_{n}\right)=\mathcal{N}(0,0.25)
$$

For $N=[10,20,50,100,200,500,1000,2000,5000,10000]$

Example - beyond this class

Generate 100 datasets from the following model:

$$
t_{n}=w_{0}+w_{1} x_{n}+\epsilon_{n}, p\left(\epsilon_{n}\right)=\mathcal{N}(0,0.25)
$$

For $N=[10,20,50,100,200,500,1000,2000,5000,10000]$

Red curve - average $\widehat{\sigma^{2}}$ over 100 datasets. Black curve theoretical value. Dashed line - true value.

Summary

- Computed $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}=\mathbf{w}$
- $\widehat{\mathbf{w}}$ is unbiased.

Summary

- Computed $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}=\mathbf{w}$
- $\widehat{\mathbf{w}}$ is unbiased.
- Computed $\operatorname{cov}\{\widehat{\mathbf{w}}\}=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$
- Tells us how much slack there is in our parameters.

Summary

- Computed $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\{\widehat{\mathbf{w}}\}=\mathbf{w}$
- $\widehat{\mathbf{w}}$ is unbiased.
- Computed $\operatorname{cov}\{\widehat{\mathbf{w}}\}=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$
- Tells us how much slack there is in our parameters.
- Computed $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\sigma^{2}}\right\}=\sigma^{2}(1-D / N)$ [beyond this class!]
- $\widehat{\sigma^{2}}$ is biased.
- Gets better and better as we get more data.

Predictions

- Our aim is to make predictions (e.g. London 2012)

Predictions

- Our aim is to make predictions (e.g. London 2012)
- The noise in our data tells us that we can't predict exactly.

Predictions

- Our aim is to make predictions (e.g. London 2012)
- The noise in our data tells us that we can't predict exactly.

Predictions

- Our model is defined as:

$$
t=\mathbf{w}^{\top} \mathbf{x}+\epsilon
$$

- Given our estimate of the parameters, $\widehat{\mathbf{w}}$ and a new input, $\mathbf{x}_{\text {new }}$, if we had to predict a single value:

$$
t_{\text {new }}=\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }}
$$

- Is this sensible?

Predictions

- Our model is defined as:

$$
t=\mathbf{w}^{\top} \mathbf{x}+\epsilon
$$

- Given our estimate of the parameters, $\widehat{\mathbf{w}}$ and a new input, $\mathbf{x}_{\text {new }}$, if we had to predict a single value:

$$
t_{\text {new }}=\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }}
$$

- Is this sensible? What is $\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{t_{\text {new }}\right\}$?

$$
\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{t_{\text {new }}\right\}=\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }}\right\}=\mathbf{w}^{\top} \mathbf{x}_{\text {new }}
$$

- which is a good thing!

Predictions

- What about $\operatorname{var}\left\{t_{\text {new }}\right\}$?

$$
\operatorname{var}\left\{t_{\text {new }}\right\}=\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{t_{\text {new }}^{2}\right\}-\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{t_{\text {new }}\right\}^{2}
$$

Predictions

- What about $\operatorname{var}\left\{t_{\text {new }}\right\}$?

$$
\begin{aligned}
\operatorname{var}\left\{t_{\text {new }}\right\} & =\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{t_{\text {new }}^{2}\right\}-\mathbf{E}_{p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)}\left\{t_{\text {new }}\right\}^{2} \\
& =\mathbf{E}\left\{\left(\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }}\right)^{2}\right\}-\left(\mathbf{w}^{\top} \mathbf{x}_{\text {new }}\right)^{2} \\
& =\mathbf{x}_{\text {new }}^{\top} \mathbf{E}\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\} \mathbf{x}_{\text {new }}-\mathbf{x}_{\text {new }}^{\top} \mathbf{w} \mathbf{w}^{\top} \mathbf{x}_{\text {new }} \\
& =\vdots \\
\operatorname{var}\left\{t_{\text {new }}\right\} & =\sigma^{2} \mathbf{x}_{\text {new }}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{\text {new }}
\end{aligned}
$$

Prediction and variance

$$
\begin{aligned}
t_{\text {new }} & =\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }} \\
\operatorname{var}\left\{t_{\text {new }}\right\} & =\sigma^{2} \mathbf{x}_{\text {new }}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{\text {new }}
\end{aligned}
$$

Prediction and variance

$$
\begin{aligned}
t_{\text {new }} & =\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }} \\
\operatorname{var}\left\{t_{\text {new }}\right\} & =\sigma^{2} \mathbf{x}_{\text {new }}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{\text {new }}
\end{aligned}
$$

- Recall the expression for the covariance of the parameter estimate:

$$
\operatorname{cov}\{\widehat{\mathbf{w}}\}=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
$$

Prediction and variance

$$
\begin{aligned}
t_{\text {new }} & =\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }} \\
\operatorname{var}\left\{t_{\text {new }}\right\} & =\sigma^{2} \mathbf{x}_{\text {new }}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{\text {new }}
\end{aligned}
$$

- Recall the expression for the covariance of the parameter estimate:

$$
\operatorname{cov}\{\widehat{\mathbf{w}}\}=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
$$

- Appears in the variance of the prediction:

$$
\operatorname{var}\left\{t_{\text {new }}\right\}=\mathbf{x}_{\text {new }}^{\top} \operatorname{cov}\{\widehat{\mathbf{w}}\} \mathbf{x}_{\text {new }}
$$

Prediction and variance

$$
\begin{aligned}
t_{\text {new }} & =\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }} \\
\operatorname{var}\left\{t_{\text {new }}\right\} & =\sigma^{2} \mathbf{x}_{\text {new }}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{\text {new }}
\end{aligned}
$$

- Recall the expression for the covariance of the parameter estimate:

$$
\operatorname{cov}\{\widehat{\mathbf{w}}\}=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
$$

- Appears in the variance of the prediction:

$$
\operatorname{var}\left\{t_{\text {new }}\right\}=\mathbf{x}_{\text {new }}^{\top} \operatorname{cov}\{\widehat{\mathbf{w}}\} \mathbf{x}_{\text {new }}
$$

- If the variance in the parameters is high, so is the variance in the predictions.

Example

Data sampled from a 3rd order polynomial function:

$$
t=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\epsilon
$$

Example

Data sampled from a 3rd order polynomial function:

$$
t=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\epsilon
$$

Linear
Plots show $t_{\text {new }} \pm \operatorname{var}\left\{t_{\text {new }}\right\}$. (Black line is truth).

Example

Data sampled from a 3rd order polynomial function:

$$
t=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\epsilon
$$

Plots show $t_{\text {new }} \pm \operatorname{var}\left\{t_{\text {new }}\right\}$. (Black line is truth).

Example

Data sampled from a 3rd order polynomial function:

$$
t=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\epsilon
$$

Plots show $t_{\text {new }} \pm \operatorname{var}\left\{t_{\text {new }}\right\}$. (Black line is truth).

Example

Data sampled from a 3rd order polynomial function:

$$
t=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\epsilon
$$

Plots show $t_{\text {new }} \pm \operatorname{var}\left\{t_{\text {new }}\right\}$. (Black line is truth).

Why does the predictive variance increase above and below the correct order?

Not complex enough model - more 'noise'

In practice we don't know σ^{2} so substitute $\widehat{\sigma^{2}}$:

$$
\operatorname{var}\left\{t_{\text {new }}\right\}=\widehat{\sigma^{2}} \mathbf{x}_{\text {new }}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{\text {new }}
$$

- The model is too simple.
- Some true variability can only be modelled noise.
- $\widehat{\sigma^{2}}$ is significantly over-estimated.
- Results in high $\operatorname{var}\left\{t_{\text {new }}\right\}$.

Too complex model - parameters not well defined

Similarly, we substitute $\widehat{\sigma^{2}}$ into expression for $\operatorname{cov}\{\widehat{\mathbf{w}}\}$:

$$
\operatorname{cov}\{\widehat{\boldsymbol{w}}\}=\widehat{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
$$

- 6th order model is too flexible.
- Many sets of parameters lead to a good model.
- Means that $\operatorname{cov}\{\widehat{\boldsymbol{w}}\}$ is high.

Too complex model - parameters not well defined

Similarly, we substitute $\widehat{\sigma^{2}}$ into expression for $\operatorname{cov}\{\widehat{\mathbf{w}}\}$:

$$
\operatorname{cov}\{\widehat{\boldsymbol{w}}\}=\widehat{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
$$

- 6th order model is too flexible.
- Many sets of parameters lead to a good model.
- Means that $\operatorname{cov}\{\widehat{\boldsymbol{w}}\}$ is high.

- 'good' 6th order models.

Too complex model - parameters not well defined

Similarly, we substitute $\widehat{\sigma^{2}}$ into expression for $\operatorname{cov}\{\widehat{\mathbf{w}}\}$:

$$
\operatorname{cov}\{\widehat{\boldsymbol{w}}\}=\widehat{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
$$

- 6th order model is too flexible.
- Many sets of parameters lead to a good model.
- Means that $\operatorname{cov}\{\widehat{\boldsymbol{w}}\}$ is high.

- 'good' 6th order models.
- 'good' 3rd order models.

Olympic prediction

Linear model:

$$
t=w_{0}+w_{1} x+\epsilon
$$

Olympic prediction

Linear model:

$$
t=w_{0}+w_{1} x+\epsilon
$$

Olympic prediction

Linear model:

$$
t=w_{0}+w_{1} x+\epsilon
$$

Predictive variance increases as we get further from the training data.

Olympic prediction

Linear model:

$$
t=w_{0}+w_{1} x+\epsilon
$$

Predictive variance increases as we get further from the training data.

Can we use likelihood to choose models?

- We've already seen that training loss is no good for model choice.
- Described cross-validation as an alternative.
- Can we use the likelihood L or $\log L$?

Can we use likelihood to choose models?

- We've already seen that training loss is no good for model choice.
- Described cross-validation as an alternative.
- Can we use the likelihood L or $\log L$?

Data from 3rd order polynomial.

- No.

Can we use likelihood to choose models?

- We've already seen that training loss is no good for model choice.
- Described cross-validation as an alternative.
- Can we use the likelihood L or $\log L$?

Data from 3rd order polynomial.

- No.
- More complex models can always get closer to the data.

Summary

- Decided to model the noise.
- Recapped random variables.
- Introduced likelihood and maximised it to find $\widehat{\mathbf{w}}$ and $\widehat{\sigma^{2}}$.
- What did it buy us?

Summary

- Decided to model the noise.
- Recapped random variables.
- Introduced likelihood and maximised it to find $\widehat{\mathbf{w}}$ and $\widehat{\sigma^{2}}$.
- What did it buy us?
- We can now:
- Quantify the uncertainty in our parameters.
- Quantify the uncertainty in our predictions.
- This is very important in all applications....

Summary

- Decided to model the noise.
- Recapped random variables.
- Introduced likelihood and maximised it to find $\widehat{\mathbf{w}}$ and $\widehat{\sigma^{2}}$.
- What did it buy us?
- We can now:
- Quantify the uncertainty in our parameters.
- Quantify the uncertainty in our predictions.
- This is very important in all applications....
- What next?
- Going Bayesian.
- Got to forget about single parameter values - parameters are random variables too.

Aside - from one model to many

- All of our efforts so far have been to find the 'best' model:
- The one that minimises the loss.
- The one that maximises the likelihood.
- Given the uncertainty, maybe we shouldn't trust one on its own?
- Consider the following random variable (RV):

$$
p(\mathbf{q})=\mathcal{N}(\widehat{\mathbf{w}}, \operatorname{cov}\{\widehat{\mathbf{w}}\})
$$

- Samples of this $\mathrm{RV} \mathbf{q}_{s}$ are models (assume $\widehat{\sigma^{2}}$ is fixed)
- We can generate lots of good models...
- Sample lots of \mathbf{q} from:

$$
p(\mathbf{q})=\mathcal{N}(\widehat{\mathbf{w}}, \operatorname{cov}\{\widehat{\mathbf{w}}\})
$$

- Each corresponds to a model.

- Sample lots of \mathbf{q} from:

$$
p(\mathbf{q})=\mathcal{N}(\widehat{\mathbf{w}}, \operatorname{cov}\{\widehat{\mathbf{w}}\})
$$

- Each corresponds to a model.
- Compute a prediction from each one:

- Sample lots of \mathbf{q} from:

$$
p(\mathbf{q})=\mathcal{N}(\widehat{\mathbf{w}}, \operatorname{cov}\{\widehat{\mathbf{w}}\})
$$

- Each corresponds to a model.
- Compute a prediction from each one:

$$
t_{s}=\mathbf{q}_{s}^{\top} \mathbf{x}_{\mathrm{new}}
$$

- Look at the distribution of predictions:

Do we need to take samples at all?

- Take an expectation...

$$
\mathbf{E}_{p(\mathbf{q})}\left\{t_{\text {new }}\right\}=\int t_{\text {new }} \mathcal{N}(\widehat{\mathbf{w}}, \operatorname{cov}\{\widehat{\mathbf{w}}\}) d t_{\text {new }}
$$

- We'll see more of this in the next lecture....

