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Some data and a problem

Predict the winning time for 2012!
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Some data and a problem
Fit a linear model (draw a line through the data)
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Some data and a problem
Use the model (line) to predict the winning time in 2012.
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Recipe for a linear model

More complex model: t = wy + wixi + woxo + ... + wpxp

Xn =

1
Xn,1
Xn,2

Xn,D

, X

1 x31 X2
1 x1 x0p

1 xn1 xnp

X1,D t

X2.D ty
t =

XN,D ty



Recipe for a linear model

More complex model: t = wy + wixi + woxo + ... + wpxp
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Recipe for linear model

Model : t, = wa,,, or t=Xw

Usually, t and Xw are not exactly equal. So, we try to minimise

the difference. 1
L= N(t — Xw)T(t — Xw)

w=(X"X)"1xTt



Recipe for a linear model

Model
t, = wa,,, or t=Xw
Parameters
w=(XTX)"1xTt
Prediction _ )
1
Xnew,1
Xnew = | Xnew,2
L Xnew,D |

then compute

T
thew = W Xnew



Recipe for a probabilistic linear model

» In the probabilistic linear regression, we model the error, i.e.,
Model : t, = w'x, + €n, or t=Xw-+e

In other words, we consider p(t,|w,x,, 02) = N(w'x,,o?)

» The full likelihood is

p(tlw, X, 0%) = p(t1, ..., ty|w, 02, x1,...,Xp)
> Note that
N
p(ty,. .., ty|w, 0% x1,. .., xn) = H p(tnlw, X, 02)
n=1

> And  p(tlw, X, 02) = N (Xw, o2I)
| is the identity matrix of size N x N. The covariance marix

o2l indicates i.i.d..



Recipe for a probabilistic linear model

» The full likelihood is
p(t|w, X, 0‘2) = p(ty,..., tN‘W,O'2,X1, Ce XN)

> We maximise the log-likelihood to obtain the parameters w
and o?.

» Compute optimum w from:
w=(XTX)"1XTt

» Use this to compute optimum o2 from:

—

1 N .
0% = N(t — Xw)T(t — Xw)



Recipe for a probabilistic linear model

Olympic 100 m data (again!)
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Recipe for a probabilistic linear model

Model
p(tjw, X, 0?) = N(Xw, 5°I)
Parameters
w = (XTX) Xt
—~ 1 N N
02 = N(t — Xw)T(t — Xw)
Prediction

T
thew = W Xnew

XTX) ™ Xnew

var{thew} = 0 Xnew(

Hint: Always check the consistency of the dimesions
(numpy . shape () in Python).



Olympic prediction
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Predictive variance increases as we get further from the training
data.



What is next?

» We have seen two ways of finding the ‘best’ parameter values:

» Those that minimise the loss L.

» Those that maximise the likelihood (probabilistic linear
regression).

» If the probabilistic model is Gaussian, both are the same:

w=(X"X)"'X"t
» In the probabilistic linear regression, we also estimate o2.

» s this the ‘right’ set of parameters?

» Is there a ‘right’ set of parameters?



Problems with a point estimate

L

W
> Might be more than one ‘best’ value.
> Might not be a single representative value.
» Different values might give very different predictions.

» Is there an alternative?



Averaging
L

W
W1 Wy WA

Prediction is some function of w. Say f(w).
Choose A different values — w1y, ..., wx.
Compute Z:‘Zl gaf(wy)

qa is proportional to L (subject to >, q, = 1)
Note that each w, is a vector.

vVvvyVvVvYyypy

Increasing A seems like a good idea....



Example

v

Olympic 100 m data.
> Want to predict winning time at London 2012 — t,ew.

v

Choose 2 ‘good’ values of w

> wj predicts thew = 9.5 s
> wy predicts thew = 9.2 s

» According to likelihood, wy is twice as likely as wj.

> g1+ q=1 g =2q.
» Therefore: g1 =1/3, g2 =2/3

> Average prediction is (1/3) x 9.5+ (2/3) x 9.2 =19.3



Averaging

» What if w is a random variable with density p(w|stuff)?
P> Imagine a weird die that chucks out values of w.



Averaging

» What if w is a random variable with density p(w|stuff)?
P> Imagine a weird die that chucks out values of w.

» We can use every value of w!
» We do this with the following expectation:

Eusm (7)) = [ F(w)p(wstuft) o

What is f(w) is this course?
» An average of predictions from each possible w weighted by
how likely that w value is.



Averaging

» What if w is a random variable with density p(w|stuff)?
P> Imagine a weird die that chucks out values of w.

» We can use every value of w!
» We do this with the following expectation:

Eusm (7)) = [ F(w)p(wstuft) o

What is f(w) is this course?
» An average of predictions from each possible w weighted by
how likely that w value is.

» What is ‘stuff’?
» How do we compute p(w|stuff)?



Bayes rule

» ‘Stuff’ should include data: X,t: p(w|X,t)
» i.e. what we know about w after observing some data.

> We've seen something like this before: p(t|w, X, o?) — the
likelihood.
> For simplicity, we ignore 2 for now (we can assume its value is
known).
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Bayes rule

» ‘Stuff’ should include data: X,t: p(w|X,t)
» i.e. what we know about w after observing some data.

> We've seen something like this before: p(t|w, X, o?) — the
likelihood.

> For simplicity, we ignore 2 for now (we can assume its value is
known).

» Can we use p(t|X,w) to find p(w|X,t)?

> Bayes rule:
p(tIX, w)p(w)
pw| X, t) = ——F—2——-=
(WiX.t) === )
» Comes from:

p(w|X,t)p(t]X) = p(t|w,X)p(w)
p(w,t]X) = p(w,t[X)



Bayes rule

> Bayes rule:
p(tIX, w)p(w)
wiXt)=——""-"3—"



Bayes rule

> Bayes rule:
p(tIX, w)p(w)

PIWIX.t) = =X

» Posterior density: p(w|X,t)
» This is what we're after.



Bayes rule

> Bayes rule: (X w)p(w)
p(t| X, w)p(w
p(W’X,t) - p(t]X)
» Posterior density: p(w|X,t)
» This is what we're after.
» Likelihood : p(t|X,w)
» We've used this before.
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> Bayes rule: (X w)p(w)
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» Posterior density: p(w|X,t)
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» Prior density: p(w)

» This is new: do we know anything about the parameters before
we see any data?



Bayes rule

> Bayes rule: (X w)p(w)
p(t| X, w)p(w
p(W’X,t) - p(t]X)
» Posterior density: p(w|X,t)
» This is what we're after.
» Likelihood : p(t|X,w)
» We've used this before.
» Prior density: p(w)

» This is new: do we know anything about the parameters before
we see any data?

» Marginal likelihood (or evidence or normalization):
p(t[X)
» This is new: w isn't in here. It is a normalisation constant.
Ensures [ p(w|X,t) dw = 1.



Computing the posterior

» Unfortunately, computing the posterior can be hard in
general...

» ...because marginal likelihood p(t|X) is hard to compute:

p(tX) = / p(tlw, X)p(w) dw



Computing the posterior

» Unfortunately, computing the posterior can be hard in
general...

» ...because marginal likelihood p(t|X) is hard to compute:

p(tX) = / p(tlw, X)p(w) dw

» In some cases we can do it (this lecture).



When can we compute the posterior?

Conjugacy (definition)

A prior p(w) is said to be conjugate to a likelihood it results in a
posterior of the same type of density as the prior.

> Example:
» Prior: Gaussian; Likelihood: Gaussian; Posterior: Gaussian
» Prior: Beta; Likelihood: Binomial; Posterior: Beta
» Many others, e.g.
http://en.wikipedia.org/wiki/Conjugate_prior


http://en.wikipedia.org/wiki/Conjugate_prior

Why is this important?

> Bayes rule:
p(tX, w)p(w)
pwXt)=—F_2——-
X0 = = o)
» If prior and likelihood are conjugate, we know the form of
p(w(X, t)

» Therefore, we know the form of the normalising constant.

» Therefore, we don’t need to compute p(t|X)



Why is this important?

> Bayes rule:
p(tX, w)p(w)
pwXt)=—F_2——-
X0 = = o)
» If prior and likelihood are conjugate, we know the form of
p(w(X, t)

» Therefore, we know the form of the normalising constant.

v

Therefore, we don’t need to compute p(t|X)

» We just need to use some algebra to make p(t|X, w)p(w)
look like the correct density, ignoring all terms without w.



Example - Olympic data

» Remember the (Gaussian) likelihood we used for maximum
likelihood:
p(t|xn, w, 02) = N(WTXm 02)



Example - Olympic data

» Remember the (Gaussian) likelihood we used for maximum
likelihood:
p(t|xn, w, 02) = N(WTXm 02)

» For the set of N observations (variables) {X,t}, we have

p(tlw, X, 0?%) = N (Xw, o21)



Example - Olympic data

» We'll use the (Gaussian) likelihood we used for maximum
likelihood:
p(tlw, X, 0?) = N (Xw, 5°I)

» The prior conjugate to the Gaussian is Gaussian. So:

pw) =(0.5). 5= | 17 2|

»> Mean (0) and covariance (S) are design choices (prior
knowledge).



Example - Olympic data

» We'll use the (Gaussian) likelihood we used for maximum
likelihood:

p(tlw, X, 0?) = N (Xw, 5°I)
» The prior conjugate to the Gaussian is Gaussian. So:

pw) =(0.5). 5= | 17 2|

0 5

»> Mean (0) and covariance (S) are design choices (prior
knowledge).

» Posterior must be Gaussian with unknown parameters u, X:

p(w|X,t,0%) = N(p, X)



Finding posterior parameters

» Ignoring normalising constant, the posterior is:
plwlX.t.0?) o exp{ (w0 E N )}
= exp {—;(WTZ_lw —ow'x 4 uTZ_lu)}
X  exp {—;(WT}:lw - 2wT}:1u)}

» \We only care about the terms that are related to w.



Finding posterior parameters

» Ignoring non w terms, the prior multiplied by the likelihood is:
p(tlw, X, 02) - p(w)

x exp {—1(t —xw)T(t— xW)} exp {—;wTs—lw}

202

1 1 2
o exp {—2 <wT [UZXTX + S_l} w— UszXTt> }

» Posterior (from previous slide):

1
x exp {—2(WT):_1W - 2wTZ_1u)}



Finding posterior parameters

» Equate individual terms on each side.

» Covariance:
1
wrlw = w' [ZXTX + S_l] w
o

N 1 -1
> = <2xTx+sl>
g

> Mean:
Ty-1 2 TyT
2wy = Sw X't
o
~ oot
n = —=xXX't

o2



Olympic example

> To make numbers better, rescape olympic year:
> 1896 = 1,1900 = 2,...,2008 = 27,2012 = 28



Olympic example

> To make numbers better, rescape olympic year:
> 1896 = 1,1900 = 2,...,2008 = 27,2012 = 28

» Prior density:
6

4

%5 -10 0 10 20
Wo

» Mean (0) and covariance (S).

» Quite a vague prior.




Olympic example

-0.5

Posterior (left) (prior shown in grey, zoomed in) and functions
corresponding to some w sampled from posterior (right).



Olympic example — predictions

» Our motivation for being Bayesian was to be able to average
predictions (at the test data Xnew) over all w

Epwix.on) (FW)} = / F(w)p(wlt, X, 02) dw

» We have the full posterior distribution over all possible values
of w, it is also Gaussian and we computed the parameters.



Olympic example — predictions

» Our motivation for being Bayesian was to be able to average
predictions (at the test data Xnew) over all w

Epwix.on) (FW)} = / F(w)p(wlt, X, 02) dw

» We have the full posterior distribution over all possible values
of w, it is also Gaussian and we computed the parameters.

> We can compute exactly the predictive density to make
probabilistic predictions:

P(thew| X, £, Xnew, 0'2) = Ep(W|X,t,U2) {p(tnew|xnewa w, 02)}

_ / P Enewe Xnew W, 02)p(W]t, X, 0%) dw



Olympic example — predictions

> We can even compute exactly, the predictive density to make
probabilistic predictions:

p(tneW’X7 t7 Xnew 02) - Ep(w|X,t,U2) {p(tnewlxnewv w, 02)}

_ / P(Erew Xnews W, 02)p(W[t, X, 02) dw

» D(thew|Xnew, W, 02) is defined by our model as the product of
Xnew and w with some additive Gaussian noise.

P(tnew|xneW7 w, 02) = N(X;\I—ewwv 02)

» Because this expression and the posterior are both Gaussian,
the result of expectation is another Gaussian.

p(tnew’X7 t7 xneW7 0-2) = N(x;]rewl/‘\l’? 0-2 + xg—ewzxnew)



Olympic example — predictions

» Therefore, the predictive density is

p(tneW’X> t, Xnew, (72) = N(X;rewl/,\l,, 02 + X;rewfxnew)

where,

and



Olympic example — predictions

2
—15
:
51
I
K
o5
85 9 95 10 10.5
tnew
Predictive density at 2012 Olympics. Note that o was fixed at
0.05.

P(thew| X, £, Xnew, 02) = N(9.5951, 0.0572)



Computing posterior: recipe

» (Assuming prior conjugate to likelihood)

» Write down prior times likelihood (ignoring any constant
terms, i.e., the term that are irrelevant to w)

» Write down posterior (ignoring any constant terms)
» Re-arrange them so the look like one another

» Equate terms on both sides to read off parameter values.



Choosing a prior

» How should we choose the prior?

» Prior effect will diminish as more data arrive.
»> When we don't have much data, prior is very important.
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simple’
» Computational considerations (not as important as it used to
be!)



Choosing a prior

» How should we choose the prior?

>
>

Prior effect will diminish as more data arrive.
When we don’t have much data, prior is very important.

» Some influencing factors:

>
>

>

Data type: real, integer, string, etc.

Expert knowledge: 'the coin is fair’, 'the model should be
simple’

Computational considerations (not as important as it used to
be!)

If we know nothing, can use a broad prior — e.g. uniform
density.



Summary

> Moved away from a single parameter value.

» Saw how predictions could be made by averaging over all
possible parameter values — Bayesian.

» Saw how Bayes rule allows us to get a density for w
conditioned on the data (and other stuff).

» Computing the posterior is hard except in some cases....

v

....we can do it when things are conjugate.



Recipe for a Bayesian linear model

» In the Bayesian linear regression, we compute a distribution
over w instead of estimating it by w = (XTX) !XTt
» The model is
p(w|X,t,0%) = N (p, ).
» We use the Gaussian prior p(w) and the likelihood
p(tjw, X, 02) = N (Xw, 1) to compute the model
parameters @ and X.

and



Recipe for a Bayesian linear model

» In the Bayesian linear regression, we compute a distribution
over w instead of estimating it by w = (XTX)~!XTt.
» The model is
p(WIX, t,0%) = N(p1, X).

» Prediction (probabilistic predictions)

p(tneW’X7 t7 xneW7 0-2) = N(x;]rewl/‘\l’? 0-2 + xIewixnew)
where,
1o -1 -
o
and
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