## TDA 231 Machine Learning 2016: Final Exam

Instructor: Devdatt Dubhashi

Due: 4 PM, Room 6472, March 16, 2016

1. (10 points) A sequence of points  $(x_1, y_1), \dots, (x_N, y_N)$  is described by the following model:

$$y_i = mx_i + \epsilon_i, \epsilon_i \sim \mathcal{N}(0, \sigma^2),$$

and each data point is independent of the others.

- (a) Write the likelihood function  $P(y_1, \dots, y_n \mid x_1, \dots, x_n, m, \sigma^2)$ .
- (b) Compute the MLE estimate of m.
- (c) Select a prior distribution on  $\sigma^2$  which is conjugate to the likelihood.
- (d) Write the posterior distribution explicitly giving the formulas for the parameters (use conjugacy!).
- 2. (10 points) Consider a 3-class Naive Bayes classifier with one binary and one Gaussian feature:

$$y \sim \operatorname{Cat}(\pi)$$
,  $x_1 \mid y = c \sim \operatorname{Ber}(\theta_c)$ ,  $x_2 \mid y = c \sim \mathcal{N}(\mu_c, \sigma_c^2)$ .

(Recall definitions of categorical, Bernoulli and Gaussian variables!)

(a) Write the joint distribution.

Suppose the parameters are:

$$\pi = (0.5, 0.25, 0.25), \theta = (0.5, 0.75, 0.5), \mu = (-1, 0, 1), \sigma^2 = (1, 1, 1).$$

- (b) Compute  $P(y \mid x_1 = 0, x_2 = 0)$  (the result should be a vector whose entries sum to 1). Show your reasoning
- (c) Compute  $P(y \mid x_1 = 0)$ . Show your reasoning.
- (c) Compute  $P(y \mid x_2 = 0)$ . Show your reasoning.
- 3. (10 points) A sequence of points  $(x_1, y_1), \dots, (x_N, y_N)$  is produced by the following generative model. There are L straight lines  $y = m_{\ell}x, \ell = 1 \cdots L$ . To generate a point:
  - 1. Pick  $\ell \in \{1 \cdots L\}$  uniformly at random.
  - 2. Generate  $x \sim \mathcal{N}(\mu_{\ell}, 100)$ .
  - 3. Generate  $y = m_{\ell}x + \mathcal{N}(0, \sigma^2)$ .

The aim of this probem is to infer the underlying model from the data.

- (a) Draw the probabilistic graphical model representing this process. Adopt a Bayesian approach allowing for priors on parameters, and use plate notation.
- (b) Write the joint distribution function represented by it.
- (c) Describe a Markov chain that explores the parameter space what are the states of this Markov chain?
- (d) Outline Metropolis-Hastings transitions on this Markov chain to sample from the posterior.

Due: March 15,2016

- 4. (10 points) Similar setup as previous problem. Points  $(x_1, y_i)i = 1 \cdots N$  are generated as follows:
  - 1. Choose line  $\ell$  with probability  $p_{\ell}$ , for  $\ell \in \{1 \cdots L\}$ .
  - 2. Generate  $x \sim \mathcal{N}(0, 100)$  and  $y \sim m_{\ell}(x) + \mathcal{N}(0, \sigma^2)$

In this problem you will develop a EM style algorithm to estimate the hidden.

- (a) Write the E step assuming all parameters are known: compute the residuals  $\Delta_{\ell} := (y m_{\ell}x)^2$  for each point with respect to line  $\ell$  and use a softmax assignment based on these residuals.
- (b) Write the M step assuming the assignment of points to lines is known. What are the MLE estimates of the parameters?
- (c) How would you initialize? Will the algorithm always return the same answer?
- (d) Compare the pros and cons of this approach versus the MCMC approach in the previous problem.
- 5. (10 points) Consider a neural network with a single hidden layer of logistic units being used for a multiclass classification problem:

$$\mathbf{h} = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}), \quad \hat{\mathbf{y}} = \operatorname{softmax}(\mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)}).$$

and trained using the cross-entropy error:

$$C(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{i} y_i \log \hat{y}_i.$$

- (a) If the input is D dimensional, the number of classes is k and the number of hidden units is H, what is the total number of parameters in the model?
- (b) Write down the gradients of the error with respect to the parameters in the first layer, i.e. the layer closest to the input. Assume the output target  $\mathbf{y}$  is a one-hot representation. You may find the following useful:  $\frac{\partial C}{\partial \mathbf{z}} = \mathbf{y} \hat{\mathbf{y}}$ , where  $\mathbf{z} = \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)}$ .
- $6.\ (10\ \mathrm{points})$  Consider first the following binary training data:

$$+\mathbf{1}: (4,4), (4,0), (2,2), (0,0)$$

$$-1:(2,0),(0,2).$$

This is the same as in your problem set *except* that the point (0,0) was in class -1. In that case, you computed the optimal maximum margin separator to be the line  $x_1 + x_2 - 3 = 0$ .

- (a) It is visually clear that the data set is not linearly separable. How would you prove this? That is, show that no line can separate the two classes.
- (b) Write the primal and dual *soft margin* SVM formulations *correpsonding to this instance*. Do not use the general formulation, do not use summation signs.
- (c) For C = 10, write down values of slack variables in the primal corresponding to a feasible solution using the line  $x_1 + x_2 3 = 0$ . What is the primal objective value? Is this the optimal solution?
- (d) For C = 1, find the optimal solution, give the objective function value, plot the separating line and indicate the support vectors. Write the separating hyperplane in terms of the support vectors.
- (e) True of false? "If you apply a soft margin SVM to a linearly separable data set you recover the hard margin separator". Justify briefly.