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Introduction

I Supervised learning
I Regression

I Minimised loss (least squares)
I Maximised likelihood
I Bayesian approach

I Classification

I Unsupervised learning
I Clustering
I Projection



Classification
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I A set of N objects with attributes (usually vector) xn.

I Each object has an associated response (or label) tn.
I Binary classification: tn = {0, 1} or tn = {−1, 1},

I (depends on algorithm).

I Multi-class classification: tn = {1, 2, . . . ,K}.



Classification syllabus

I 4 classification algorithms.
I Of which:

I 2 are probabilistic.
I Bayes classifier.
I Logistic regression.

I 2 are non-probabilistic.
I K-nearest neighbours.
I Support Vector Machines.

I There are many others!



Probabilistic vs non-probabilistic classifiers

Classifier is trained on x1, . . . , xN and t1, . . . , tN and then used to
classify xnew.

I Probabilistic classifiers produce a probability of class
membership P(tnew = k|xnew,X, t)
I e.g. binary classification: P(tnew = 1|xnew,X, t) and

P(tnew = 0|xnew,X, t).

I Non-probabilistic classifiers produce a hard assignment
I e.g. tnew = 1 or tnew = 0.

I Which to choose depends on application....
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Probabilistic vs non-probabilistic classifiers

I Probabilities provide us with more information –
P(tnew = 1) = 0.6 is more useful than tnew = 1.
I Tells us how sure the algorithm is.

I Particularly important where cost of misclassification is high
and imbalanced.
I e.g. Diagnosis: telling a diseased person they are healthy is

much worse than telling a healthy person they are diseased.

I Extra information (probability) often comes at a cost.

I For large datasets, might have to go with non-probabilistic.
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Algorithm 1: K-Nearest Neighbours

I Non-probabilistic.

I Can do binary or multi-class.

I No ‘training’ phase.

I How it works:
I Choose K
I For a test object xnew:
I Find the K closest points from the training set.
I Find majority class of these K neighbours.
I (Assign randomly in case of a tie)
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KNN

Training data from 3 classes.



KNN

Test point.



KNN

Find K = 6 nearest neighbours.



KNN

3 from class 1

1 from class 2

2 from class 3

Class one has most votes – classify xnew as belonging to class 1.



KNN

Classify this test 
point as class 2 

(blue)

Second example – class 2 has most votes.



KNN – real example

−2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

I Binary data.



KNN – real example
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I 1-Nearest Neighbour.

I Line shows decision boundary.

I Too complex – should the islands exist?
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I 2-Nearest Neighbour.

I What’s going on?

I Lots of ties – random guessing.
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KNN – real example
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I 5-Nearest Neighbour.

I Much smoother.



KNN – real example
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I 19-Nearest Neighbour.

I Very smooth.



KNN – real example 2
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KNN – real example 2
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I Non-smooth – too complex again?



KNN – real example 2
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I Smoother still.



Problems with KNN

I Class imbalance
I As K increases, small classes will disappear!
I Imagine we had only 5 training objects for class 1 and 100 for

class 2.
I For K ≥ 11, class 2 will always win!

I How do we choose K?
I Right value of K will depend on data.
I Cross-validation!
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Cross-validation for classification

I E.g. to find K in KNN:

I Exactly the same as we have seen before.

I Split the (training) data up – use some to train, some to
validation.

I Need a measure of ‘goodness’.

I Use number of mis-classifications.....

I ....and use K that minimises it!



Remember...

Fold 1

Fold 2

Fold C

Training 
set

Validation 
set

All data

Average number of misclassifications over the C folds.



Example – 5 classes
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I 5 classes.

I Smallest has 20 instances, biggest 120.



Example – 5 classes
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I Curve shows average misclassification error for 10-fold CV.

I Minimum at approximately K = 30.



Example – 5 classes
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I As K increases, classes ‘disappear’

I Causes the ‘steps’ in error.



KNN – summary

I Non-probabilistic.

I Fast.

I Only one parameter to tune (K ).

I Important to tune it well....

I ...can use CV.

I There is a probabilistic version.
I Not covered in this course.

I Now onto a (different) probabilistic classifier...
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Bayes classifier

I Our first probabilistic classifier is based on Bayes rule:

P(tnew = k |X, t, xnew)

=
P(xnew|tnew = k ,X, t)P(tnew = k)∑
j p(xnew|tnew = j ,X, t)P(tnew = j)

I We need to define a likelihood and a prior and we’re done!



Bayes classifier – likelihood

p(xnew|tnew = k,X, t)

I How likely is xnew if it is in class k? (not necessarily a
probability...)

I We are free to define this class-conditional distribution as we
like.

I Will depend on type of data.
I e.g.

I Data are D-dimensional vectors of real values – Gaussian
likelihood.

I Data are number of heads in N coin tosses – Binomial
likelihood.

I In both cases, training data with t = k used to determine
parameters of likelihood for class k (e.g. Gaussian mean and
covariance).
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Bayes classifier – prior

P(tnew = k)

I xnew not present.

I Used to specify prior probabilities for different classes.
I e.g.

I There are far fewer instances of class 0 than class 1:
P(tnew = 1) > P(tnew = 0).

I No prior preference: P(tnew = 0) = P(tnew = 1).
I Class 0 is very rare: P(tnew = 0)� P(tnew = 1).



Naive-Bayes

I Naive-Bayes makes the following additional likelihood
assumption:

I The components of xnew are independent for a particular class:

p(xnew|tnew = k ,X, t) =
D∏

d=1

p(x new
d |tnew = k ,X, t)

I Where D is the number of dimensions and x new
d is the value of

the dth one.
I Often used when D is high:

I Fitting D uni-variate distributions is easier than fitting one
D-dimensional one.



Bayes classifier, example 1
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I Each object has two attributes: x = [x1, x2]T.

I K = 3 classes.

I We’ll use Gaussian class-conditional distributions (with
Naive-Bayes assumption).

I P(tnew = k) = 1/K – uniform prior.



Step 1: fitting the class-conditional densities
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µkd =
1

Nk

∑
n:tn=k

xnd σ2kd =
1

Nk

∑
n:tn=k

(xnd − µkd)2
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Step 2: Evaluate densities at test point
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Compute predictions
I Remember that we assumed P(tnew = k) = 1/K .

P(tnew = k |xnew,X, t) =
p(xnew|tnew = k ,X, t)p(tnew = k)∑
j p(xnew|tnew = j ,X, t)P(tnew = j)
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Bayes classifier, example 2

I Data are number of heads in 20 tosses (repeated 50 times for
each) from one of two coins:
I Coin 1 (tn = 0): xn = 4, 7, 7, 7, 4, . . .
I Coin 2 (tn = 1): xn = 18, 16, 18, 14, 17, . . .

I Use binomial class conditional densities:

P(xn|rk) =

(
20
xn

)
r xn(1− r)20−xn

I Where rk is the probability that coin k lands heads on any
particular toss.

I Problem – predict the coin, tnew given a new count, xnew.

I (Again assume P(tnew = k) = 1/K )



Fit the class conditionals...
I Fitting is just finding rk :

rk =
1

20Nk

∑
n:tn=k

xn

I r0 = 0.287, r1 = 0.706.
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Compute predictions

P(tnew = k|xnew,X, t) =
p(xnew|tnew = k ,X, t)P(tnew = k)∑
j p(xnew|tnew = j ,X, t)P(tnew = j)
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Bayes classifier – summary

I Decision rule based on Bayes rule.

I Choose and fit class conditional densities.

I Decide on prior.

I Compute predictive probabilities.
I Naive-Bayes:

I Assume that the dimensions of x are independent within a
particular class.

I Our Gaussian used the Naive Bayes assumption (could have
written p(x|t = k , . . .) as product of two independent
Gaussians).


	Reference
	Introduction
	Non-probabilistic classification
	K-Nearest Neighbours

	Probabilistic classification
	Bayes classifier


