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Introduction

» Supervised learning
» Regression

> Minimised loss (least squares)
P> Maximised likelihood
> Bayesian approach

> Classification
» Unsupervised learning

» Clustering
» Projection



Classification
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» A set of N objects with attributes (usually vector) x,.
» Each object has an associated response (or label) t,.
» Binary classification: t, = {0,1} or t, = {—1,1},

» (depends on algorithm).

» Multi-class classification: t, = {1,2,...,K}.



Classification syllabus

» 4 classification algorithms.
» Of which:
» 2 are probabilistic.
> Bayes classifier.
> Logistic regression.
» 2 are non-probabilistic.
P K-nearest neighbours.
» Support Vector Machines.

» There are many others!



Probabilistic vs non-probabilistic classifiers

Classifier is trained on x1,...,xy and t1,..., ty and then used to
classify Xpew-

» Probabilistic classifiers produce a probability of class
membership P(thew = k|Xnew; X, t)
> e.g. binary classification: P(thew = 1|Xnew, X, t) and
P(thew = O|Xnew, X, t).

» Which to choose depends on application....
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Classifier is trained on x1,...,xy and t1,..., ty and then used to
classify Xpew-

» Probabilistic classifiers produce a probability of class
membership P(thew = k|Xnew; X, t)
> e.g. binary classification: P(thew = 1|Xnew, X, t) and
P(thew = O|Xnew, X, t).

» Non-probabilistic classifiers produce a hard assignment
> e.g. thew =1 o0r thew = 0.

» Which to choose depends on application....
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Probabilistic vs non-probabilistic classifiers

» Probabilities provide us with more information —
P(thew = 1) = 0.6 is more useful than thew = 1.

» Tells us how sure the algorithm is.

» Particularly important where cost of misclassification is high
and imbalanced.

» e.g. Diagnosis: telling a diseased person they are healthy is
much worse than telling a healthy person they are diseased.

» Extra information (probability) often comes at a cost.

P For large datasets, might have to go with non-probabilistic.
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> No ‘training’ phase.



Algorithm 1: K-Nearest Neighbours

» Non-probabilistic.

» Can do binary or multi-class.
> No ‘training’ phase.

» How it works:

» Choose K

P For a test object Xpew:

» Find the K closest points from the training set.
» Find majority class of these K neighbours.

» (Assign randomly in case of a tie)



KNN

Training data from 3 classes.



KNN

Test point.



KNN

Find K = 6 nearest neighbours.



KNN

Q@O®@® 3fromclass 1

O 1 from class 2

. . 2 from class 3

Class one has most votes — classify Xnew as belonging to class 1.



KNN
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Second example — class 2 has most votes.



KNN — real example
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» Binary data.




KNN — real example
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» 1-Nearest Neighbour.
» Line shows decision boundary.

» Too complex — should the islands exist?



KNN — real example
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» 2-Nearest Neighbour.
» What's going on?



KNN — real example
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» 2-Nearest Neighbour.
» What's going on?

P> Lots of ties — random guessing.



KNN — real example

P 5-Nearest Neighbour.

» Much smoother.



KNN — real example

» 19-Nearest Neighbour.
> Very smooth.



KNN — real example 2
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» Binary data.




KNN — real example 2
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» Non-smooth — too complex again?



KNN — real example 2
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KNN — real example 2
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KNN — real example 2
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» Smoother still.



Problems with KNN

» Class imbalance

» As K increases, small classes will disappear!

» Imagine we had only 5 training objects for class 1 and 100 for
class 2.

» For K > 11, class 2 will always win!



Problems with KNN

» Class imbalance
» As K increases, small classes will disappear!
» Imagine we had only 5 training objects for class 1 and 100 for
class 2.
» For K > 11, class 2 will always win!
» How do we choose K?

» Right value of K will depend on data.
» Cross-validation!



Cross-validation for classification

> E.g. to find K in KNN:

Exactly the same as we have seen before.

v

» Split the (training) data up — use some to train, some to
validation.

> Need a measure of ‘goodness’.

v

Use number of mis-classifications.....

» ....and use K that minimises it!



Remember...

Training  Validation
set set

- PP
P 6

Average number of misclassifications over the C folds.



Example — 5 classes

5
4 L4 R
3
3 > e ¢, 4 oo 00
> Po Iy L2
2 >> 0° 04 3 Y o
L e %00 3 ¢
> o &
° o o
1 o 00 %g 9
> "s%oo%e ®ooeg0r 6 o
0 8% % g% o,
0 v B S 889 03 °
-]
- 00 fo ©o 8°o
-1 . N M {i.. ° 0"3%; ® oo, o
S R LAY O
-2t M 8
R I Y ) o I,r.|“ s 0 og
K 1 H
-3t " . . o 770 :u B,
_a} . LI
. a
5 R R R R R R R R
5 -4 -3 -2 -1 0 1 2 3 4
> 5 classes.

» Smallest has 20 instances, biggest 120.



Example — 5 classes
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» Curve shows average misclassification error for 10-fold CV.
» Minimum at approximately K = 30.



Example — 5 classes
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> As K increases, classes ‘disappear’

» Causes the ‘steps’ in error.



KNN — summary

Non-probabilistic.
Fast.

>
>
» Only one parameter to tune (K).
» Important to tune it well....

>

...can use CV.
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KNN — summary

Non-probabilistic.

Fast.

Only one parameter to tune (K).
Important to tune it well....

...can use CV.

There is a probabilistic version.
» Not covered in this course.

» Now onto a (different) probabilistic classifier...



Bayes classifier

» Our first probabilistic classifier is based on Bayes rule:
P(tnew = k’X7taxnew)
- P(xnew|tnew = kaxat)P(tnew = k)
Zj p(xnew|tnew :.jv Xa t)P(tnew :J)

» We need to define a likelihood and a prior and we're done!



Bayes classifier — likelihood

p(xnew‘ thew = k: X7 t)

» How likely is Xpew if it is in class k? (not necessarily a
probability...)
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p(xnew‘ thew = k: X7 t)

» How likely is Xpew if it is in class k? (not necessarily a
probability...)
» We are free to define this class-conditional distribution as we
like.
» Will depend on type of data.
> eg.
» Data are D-dimensional vectors of real values — Gaussian
likelihood.
» Data are number of heads in N coin tosses — Binomial
likelihood.



Bayes

classifier — likelihood

p(xnew‘ thew = k: X7 t)

How likely is xpew if it is in class k? (not necessarily a
probability...)

We are free to define this class-conditional distribution as we
like.

Will depend on type of data.
e.g.
» Data are D-dimensional vectors of real values — Gaussian
likelihood.
» Data are number of heads in N coin tosses — Binomial
likelihood.

In both cases, training data with t = k used to determine
parameters of likelihood for class k (e.g. Gaussian mean and
covariance).



Bayes classifier — prior

P(thew = k)

P> Xnew NOt present.

» Used to specify prior probabilities for different classes.
> eg.
» There are far fewer instances of class 0 than class 1:
P(thew = 1) > P(thew = 0).
» No prior preference: P(thew = 0) = P(thew = 1).
» Class 0 is very rare: P(thew = 0) < P(thew = 1).



Naive-Bayes

» Naive-Bayes makes the following additional likelihood
assumption:

» The components of Xne are independent for a particular class:

D
P(Xnew|thew = k, X, ) = [ ] p(x5" | tnew = k, X, t)
d=1

» Where D is the number of dimensions and X is the value of
the dth one.
> Often used when D is high:

» Fitting D uni-variate distributions is easier than fitting one
D-dimensional one.



Bayes classifier, example 1
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» Each object has two attributes: x = [x1, x2] .
» K = 3 classes.

» We'll use Gaussian class-conditional distributions (with
Naive-Bayes assumption).

» P(thew = k) = 1/K — uniform prior.



Step 1: fitting the class-conditional densities
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Step 1: fitting the class-conditional densities

p(x|t =k, X,t) = HN(Mkdvo-id)
d=1
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Step 1: fitting the class-conditional densities

p(x|t =k, X,t) = HN(Mkdvo-id)
d=1
1
— 2 2
Hkd = Ny Z Xnd Okd = Ny Z (Xnd — 1ka)

n:thy=k n:tp=k



Step 2: Evaluate densities at test point

P(xnew|tnew = k,X,t) = HN(:UJkd’Jid)
d=1



Compute predictions
» Remember that we assumed P(thew = k) = 1/K.

nwtnw:k,x7t th:k
P(tnew:k|xneW7X7t) P(Xe | i )p( < )

B ZJ p(xnew|tnew :jaxat)P(tnew :_/)

P(tnew=1|..)

Contours Of P(tnew - 1|xneW7X7t)



Compute predictions
» Remember that we assumed P(thew = k) = 1/K.
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Compute predictions
» Remember that we assumed P(thew = k) = 1/K.

p(xnew‘tnew = kaxat)P(tnew = k)
P(thew = k X, t) =
( e |xneW7 ’ ) ZJ p(xnew|tnew :jaxat)P(tnew :J)
P(tnew=3|...)
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Bayes classifier, example 2

» Data are number of heads in 20 tosses (repeated 50 times for
each) from one of two coins:

» Coinl(t,=0): x,=4,7,7, 7, 4,...
> Coin 2 (t, = 1): x, = 18, 16, 18, 14, 17, ...

» Use binomial class conditional densities:

P(xnlre) = ( 20 ) Pl — )20

Xn
» Where ry is the probability that coin k lands heads on any
particular toss.

» Problem — predict the coin, thew given a new count, Xnew.
» (Again assume P(thew = k) = 1/K)



Fit the class conditionals...
» Fitting is just finding ry:

1
K= 20N, Zk""

n:tp=

> n = 0.287, n = 0.706.



Fit the class conditionals...
» Fitting is just finding ry:
1
k= 20N, ka”

n:tp=

> rp=0.287, p = 0.706.
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Compute predictions

p(Xnew|tnew - k,X,t)P(tneW - k)

Ptnw:k nWaXat: ’ .
( © |Xe ) ij(xnew“'new:Jaxat)P(tnew:J)



Compute predictions

_ P(Xnewthew = k; X, t) P(thew = k)
Zj p(Xnew|tnew :jaxyt)P(tnew :_/)

P(thew = k|Xnew, X, t)
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Bayes classifier — summary

Decision rule based on Bayes rule.

Choose and fit class conditional densities.

>
>
» Decide on prior.
» Compute predictive probabilities.
> Naive-Bayes:
» Assume that the dimensions of x are independent within a
particular class.
» Our Gaussian used the Naive Bayes assumption (could have
written p(x|t = k,...) as product of two independent
Gaussians).
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