Classification: Nearest Neighbor and Bayes Methods

Morteza H. Chehreghani morteza.chehreghani@chalmers.se

Chalmers University of Technology
April 16, 2020

Reference

The content and the slides are adapted from
S. Rogers and M. Girolami, A First Course in Machine Learning (FCML), 2nd edition, Chapman \& Hall/CRC 2016, ISBN: 9781498738484

Introduction

- Supervised learning
- Regression
- Minimised loss (least squares)
- Maximised likelihood
- Bayesian approach
- Classification
- Unsupervised learning
- Clustering
- Projection

Classification

- A set of N objects with attributes (usually vector) \mathbf{x}_{n}.
- Each object has an associated response (or label) t_{n}.
- Binary classification: $t_{n}=\{0,1\}$ or $t_{n}=\{-1,1\}$,
- (depends on algorithm).
- Multi-class classification: $t_{n}=\{1,2, \ldots, K\}$.

Classification syllabus

- 4 classification algorithms.
- Of which:
- 2 are probabilistic.
- Bayes classifier.
- Logistic regression.
- 2 are non-probabilistic.
- K-nearest neighbours.
- Support Vector Machines.
- There are many others!

Probabilistic vs non-probabilistic classifiers

Classifier is trained on $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ and t_{1}, \ldots, t_{N} and then used to classify $\mathbf{x}_{\text {new }}$.

- Probabilistic classifiers produce a probability of class membership $P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$
- e.g. binary classification: $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$ and $P\left(t_{\text {new }}=0 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$.
- Which to choose depends on application....

Probabilistic vs non-probabilistic classifiers

Classifier is trained on $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ and t_{1}, \ldots, t_{N} and then used to classify $\mathbf{x}_{\text {new }}$.

- Probabilistic classifiers produce a probability of class membership $P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$
- e.g. binary classification: $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$ and $P\left(t_{\text {new }}=0 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$.
- Non-probabilistic classifiers produce a hard assignment
- e.g. $t_{\text {new }}=1$ or $t_{\text {new }}=0$.
- Which to choose depends on application....

Probabilistic vs non-probabilistic classifiers

- Probabilities provide us with more information $P\left(t_{\text {new }}=1\right)=0.6$ is more useful than $t_{\text {new }}=1$.
- Tells us how sure the algorithm is.

Probabilistic vs non-probabilistic classifiers

- Probabilities provide us with more information $P\left(t_{\text {new }}=1\right)=0.6$ is more useful than $t_{\text {new }}=1$.
- Tells us how sure the algorithm is.
- Particularly important where cost of misclassification is high and imbalanced.
- e.g. Diagnosis: telling a diseased person they are healthy is much worse than telling a healthy person they are diseased.

Probabilistic vs non-probabilistic classifiers

- Probabilities provide us with more information $P\left(t_{\text {new }}=1\right)=0.6$ is more useful than $t_{\text {new }}=1$.
- Tells us how sure the algorithm is.
- Particularly important where cost of misclassification is high and imbalanced.
- e.g. Diagnosis: telling a diseased person they are healthy is much worse than telling a healthy person they are diseased.
- Extra information (probability) often comes at a cost.
- For large datasets, might have to go with non-probabilistic.

Algorithm 1: K-Nearest Neighbours

- Non-probabilistic.
- Can do binary or multi-class.
- No 'training' phase.

Algorithm 1: K-Nearest Neighbours

- Non-probabilistic.
- Can do binary or multi-class.
- No 'training' phase.
- How it works:
- Choose K
- For a test object $\mathbf{x}_{\text {new }}$:
- Find the K closest points from the training set.
- Find majority class of these K neighbours.
- (Assign randomly in case of a tie)

Training data from 3 classes.

KNN

Test point.

Find $K=6$ nearest neighbours.

3 from class 1 1 from class 2

Class one has most votes - classify $\mathbf{x}_{\text {new }}$ as belonging to class 1 .

Second example - class 2 has most votes.

KNN - real example

- Binary data.

KNN - real example

- 1-Nearest Neighbour.
- Line shows decision boundary.
- Too complex - should the islands exist?

KNN - real example

- 2-Nearest Neighbour.
- What's going on?

KNN - real example

- 2-Nearest Neighbour.
- What's going on?
- Lots of ties - random guessing.

KNN - real example

- 5-Nearest Neighbour.
- Much smoother.

KNN - real example

- 19-Nearest Neighbour.
- Very smooth.

KNN - real example 2

- Binary data.

KNN - real example 2

- Non-smooth - too complex again?

KNN - real example 2

- Random effects again...

KNN - real example 2

- Getting smoother.

KNN - real example 2

- Smoother still.

Problems with KNN

- Class imbalance
- As K increases, small classes will disappear!
- Imagine we had only 5 training objects for class 1 and 100 for class 2.
- For $K \geq 11$, class 2 will always win!

Problems with KNN

- Class imbalance
- As K increases, small classes will disappear!
- Imagine we had only 5 training objects for class 1 and 100 for class 2.
- For $K \geq 11$, class 2 will always win!
- How do we choose K?
- Right value of K will depend on data.
- Cross-validation!

Cross-validation for classification

- E.g. to find K in KNN:
- Exactly the same as we have seen before.
- Split the (training) data up - use some to train, some to validation.
- Need a measure of 'goodness'.
- Use number of mis-classifications.....
-and use K that minimises it!

Remember...

Average number of misclassifications over the C folds.

Example - 5 classes

- 5 classes.
- Smallest has 20 instances, biggest 120.

Example - 5 classes

- Curve shows average misclassification error for 10 -fold CV.
- Minimum at approximately $K=30$.

Example - 5 classes

- As K increases, classes 'disappear'
- Causes the 'steps' in error.

KNN - summary

- Non-probabilistic.
- Fast.
- Only one parameter to tune (K).
- Important to tune it well....
- ...can use CV.

KNN - summary

- Non-probabilistic.
- Fast.
- Only one parameter to tune (K).
- Important to tune it well....
- ...can use CV.
- There is a probabilistic version.
- Not covered in this course.

KNN - summary

- Non-probabilistic.
- Fast.
- Only one parameter to tune (K).
- Important to tune it well....
- ...can use CV.
- There is a probabilistic version.
- Not covered in this course.
- Now onto a (different) probabilistic classifier...

Bayes classifier

- Our first probabilistic classifier is based on Bayes rule:

$$
\begin{aligned}
& P\left(t_{\text {new }}=k \mid \mathbf{X}, \mathbf{t}, \mathbf{x}_{\text {new }}\right) \\
&=\frac{P\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=k\right)}{\sum_{j} p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=j, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=j\right)}
\end{aligned}
$$

- We need to define a likelihood and a prior and we're done!

Bayes classifier - likelihood

$$
p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right)
$$

- How likely is $\mathbf{x}_{\text {new }}$ if it is in class k ? (not necessarily a probability...)

Bayes classifier - likelihood

$$
p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right)
$$

- How likely is $\mathbf{x}_{\text {new }}$ if it is in class k ? (not necessarily a probability...)
- We are free to define this class-conditional distribution as we like.
- Will depend on type of data.
- e.g.
- Data are D-dimensional vectors of real values - Gaussian likelihood.
- Data are number of heads in N coin tosses - Binomial likelihood.

Bayes classifier - likelihood

$$
p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right)
$$

- How likely is $\mathbf{x}_{\text {new }}$ if it is in class k ? (not necessarily a probability...)
- We are free to define this class-conditional distribution as we like.
- Will depend on type of data.
- e.g.
- Data are D-dimensional vectors of real values - Gaussian likelihood.
- Data are number of heads in N coin tosses - Binomial likelihood.
- In both cases, training data with $t=k$ used to determine parameters of likelihood for class k (e.g. Gaussian mean and covariance).

Bayes classifier - prior

$$
P\left(t_{\text {new }}=k\right)
$$

- $\mathrm{x}_{\text {new }}$ not present.
- Used to specify prior probabilities for different classes.
- e.g.
- There are far fewer instances of class 0 than class 1 : $P\left(t_{\text {new }}=1\right)>P\left(t_{\text {new }}=0\right)$.
- No prior preference: $P\left(t_{\text {new }}=0\right)=P\left(t_{\text {new }}=1\right)$.
- Class 0 is very rare: $P\left(t_{\text {new }}=0\right) \ll P\left(t_{\text {new }}=1\right)$.

Naive-Bayes

- Naive-Bayes makes the following additional likelihood assumption:
- The components of $\mathbf{x}_{\text {new }}$ are independent for a particular class:

$$
p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right)=\prod_{d=1}^{D} p\left(x_{d}^{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right)
$$

- Where D is the number of dimensions and $x_{d}^{\text {new }}$ is the value of the d th one.
- Often used when D is high:
- Fitting D uni-variate distributions is easier than fitting one D-dimensional one.

Bayes classifier, example 1

- Each object has two attributes: $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$.
- $K=3$ classes.
- We'll use Gaussian class-conditional distributions (with Naive-Bayes assumption).
- $P\left(t_{\text {new }}=k\right)=1 / K$ - uniform prior.

Step 1: fitting the class-conditional densities

$$
p(\mathbf{x} \mid t=k, \mathbf{X}, \mathbf{t})=\prod_{d=1}^{2} \mathcal{N}\left(\mu_{k d}, \sigma_{k d}^{2}\right)
$$

$$
\mu_{k d}=\frac{1}{N_{k}} \sum_{n: t_{n}=k} x_{n d} \quad \sigma_{k d}^{2}=\frac{1}{N_{k}} \sum_{n: t_{n}=k}\left(x_{n d}-\mu_{k d}\right)^{2}
$$

Step 1: fitting the class-conditional densities

Step 1: fitting the class-conditional densities

Step 2: Evaluate densities at test point

Compute predictions

- Remember that we assumed $P\left(t_{\text {new }}=k\right)=1 / K$.

$$
\begin{gathered}
P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=\frac{p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right) p\left(t_{\text {new }}=k\right)}{\sum_{j} p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=j, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=j\right)} \\
P\left(t_{\text {new }}=1 \mid \ldots\right)
\end{gathered}
$$

Contours of $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$

Compute predictions

- Remember that we assumed $P\left(t_{\text {new }}=k\right)=1 / K$.

$$
P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=\frac{p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right) p\left(t_{\text {new }}=k\right)}{\sum_{j} p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=j, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=j\right)}
$$

Contours of $P\left(t_{\text {new }}=2 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$

Compute predictions

- Remember that we assumed $P\left(t_{\text {new }}=k\right)=1 / K$.

$$
\begin{gathered}
P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=\frac{p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=k\right)}{\sum_{j} p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=j, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=j\right)} \\
P\left(t_{\text {new }}=3 \mid \ldots\right)
\end{gathered}
$$

Contours of $P\left(t_{\text {new }}=3 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$

Bayes classifier, example 2

- Data are number of heads in 20 tosses (repeated 50 times for each) from one of two coins:
- Coin $1\left(t_{n}=0\right): x_{n}=4,7,7,7,4, \ldots$
- Coin $2\left(t_{n}=1\right): x_{n}=18,16,18,14,17, \ldots$
- Use binomial class conditional densities:

$$
P\left(x_{n} \mid r_{k}\right)=\binom{20}{x_{n}} r^{x_{n}}(1-r)^{20-x_{n}}
$$

- Where r_{k} is the probability that coin k lands heads on any particular toss.
- Problem - predict the coin, $t_{\text {new }}$ given a new count, $x_{\text {new }}$.
- (Again assume $\left.P\left(t_{\text {new }}=k\right)=1 / K\right)$

Fit the class conditionals...

- Fitting is just finding r_{k} :

$$
r_{k}=\frac{1}{20 N_{k}} \sum_{n: t_{n}=k} x_{n}
$$

- $r_{0}=0.287, r_{1}=0.706$.

Fit the class conditionals...

- Fitting is just finding r_{k} :

$$
r_{k}=\frac{1}{20 N_{k}} \sum_{n: t_{n}=k} x_{n}
$$

- $r_{0}=0.287, r_{1}=0.706$.

Compute predictions

$$
P\left(t_{\text {new }}=k \mid x_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=\frac{p\left(x_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=k\right)}{\sum_{j} p\left(x_{\text {new }} \mid t_{\text {new }}=j, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=j\right)}
$$

Compute predictions

$$
P\left(t_{\text {new }}=k \mid x_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=\frac{p\left(x_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=k\right)}{\sum_{j} p\left(x_{\text {new }} \mid t_{\text {new }}=j, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=j\right)}
$$

Bayes classifier - summary

- Decision rule based on Bayes rule.
- Choose and fit class conditional densities.
- Decide on prior.
- Compute predictive probabilities.
- Naive-Bayes:
- Assume that the dimensions of \mathbf{x} are independent within a particular class.
- Our Gaussian used the Naive Bayes assumption (could have written $p(\mathbf{x} \mid t=k, \ldots)$ as product of two independent Gaussians).

