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Classification syllabus

> 4 classification algorithms.

» Of which:
» 2 are probabilistic.
> Bayes classifier.
> Logistic regression.
» 2 non-probabilistic.
P K-nearest neighbours.
» Support Vector Machines (SVM).

» There are many others!
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» We have seen several algorithms where we find the parameters
that optimise something:

» Minimise the loss.
» Maximise the likelihood.
> Maximise the posterior (MAP).

» The Support Vector Machine (SVM) is no different:

» It finds the decision boundary that maximises the margin.
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Some data
» We'll ‘think’ in 2-dimensions.

SVM is a binary classifier.
N data points, each with
attributes x = [x1, %] " and
target t = +1

» A linear decision boundary can be represented as a straight
line:
wix+b=0

» Our task is to find w and b
» Once we have these, classification is easy:

WiXpew +b>0 1 thew=1
W Xnew +H<0 & thew = —1

> e thew = Sign(WTxnew + b)
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The margin

» How do we choose w and b?
» Need a quantity to optimise!
» Use the margin, «

» Maximise it!

Perpendicular distance from the decision boundary to the closest
points on each side.
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» Maximum margin decision boundary (left) seems to better
reflect the data characteristics than other boundary (right).



Why maximise the margin?
s

» Maximum margin decision boundary (left) seems to better
reflect the data characteristics than other boundary (right).

» Note how margin is much smaller on right and closest points
have changed.

» There is going to be one ‘best’ boundary (w.r.t margin)

> Statistical theory justifying the choice.
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Computing the margin

1
2y = —wT(xl — X2)
[lw]

Fix the scale such that:

wa1+b =1
wa2+b = -1

Therefore:

(Ww'x; + b) — (W'x + b)
wT(x1 —X2) =
1

AT
[wl]
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Maximising the margin

> We want to maximise v = m

v

Equivalent to minimising ||w]|
-

v

Equivalent to minimising %||w||?> = iwTw

» There are some constraints:
» For x, with t, =1: wix,+b>1
» For x, with t, = —1: w'x, + b < —1

» Which can be expressed more neatly as:
T
th(w'x, +b) >1

» (This is why we use t, = £1 and not t, = {0,1}.)



Maximising the margin

» We have the following optimisation problem:

1
argmin —w - w

w
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Maximising the margin

» We have the following optimisation problem:

1
argmin —w - w

w

Subject to: t,,(wa,, +b)>1

» Can put the constraints into the minimisation using Lagrange
multipliers:

N
1
argmin inw - z; an(ta(w'x, + b) — 1)
n—=

Subject to: a, > 0
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What now?

» Let's think about what happens at the solution (we'll see

why...)
» We know that 8% =0 and % =0.
0
T = W—Zn:antnx,,zo
0
— = - nth =0
ab zn:“

» From which we can infer that:

w = Zant,,xn
n
Zoznt,, =0
n

» Substitute these back into our optimisation problem:
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: ) : ; :
= Zan — EZanamt,,tmxnxm
n n,m

» Instead of minimising the previous expression, we can
maximise this one (for reasons we won't go into).
» Subject to:

a, >0

Zantn =0



1
EWTW - zn: an(tn(w'x, + b) — 1)

: ) : ; :
= Zan — EZanamt,,tmxnxm
n n,m

» Instead of minimising the previous expression, we can
maximise this one (for reasons we won't go into).
» Subject to:

a, >0

Zantn =0

» Decision function was sign(w ' Xnew + b) and is now:

N
. T
thew = SigN Z QntpX, Xnew + b

n=1
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nml
N
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n=1

» This is a standard optimisation problem (quadratic
programming)

» Has a single, global solution. This is very useful!

» Many algorithms around to solve it.

> e.g. quadprog in Matlab...



So?

argmax E a,,— - E a,,amt,,tmx Xm

nml
N

subject to Za,,t,, =0, ap>0
n=1

v

This is a standard optimisation problem (quadratic
programming)

Has a single, global solution. This is very useful!
Many algorithms around to solve it.

e.g. quadprog in Matlab...

vvyyvyy

Once we have a,:

N
thew = SigN (Z ap 1.“,,xIxneW + b)

n=1



Primal and Dual

Primal
1
argmin —w'w
w
Subject to: t,,(wan +b)>1
Dual

argmax g a,,— g anamtntmx Xm

nml

N
subject to Zant,, =0, a, >0
n=1

» This is a standard optimisation problem (quadratic
programming)
» Has a single, global solution. This is very useful!



Optimal boundary
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» Optimisation gives us a1,...,ay
> Compute w =) antnXy

» Compute b = t, — w'x, (for one of the closest points)
» Recall that we defined w'x, + b = +1 = t, for closest points.

» Plotw'x+b=0



Support Vectors

» At the optimum, only 3 non-zero « values (squares).
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Support Vectors

» At the optimum, only 3 non-zero « values (squares).
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thew = SIgN (Zn AntnX ) Xnew + b)
Predictions only depend on these data-points!
We knew that — margin is only a function of closest points.

These are called Support Vectors

vvyyVvyy

Normally a small proportion of the data:
» Solution is sparse.
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Is sparseness good?

> Not always:
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» Why does this happen?
to(w'x, + b) > 1

» All points must be on correct side of boundary.

» This is a hard margin
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Soft margin
» We can relax the constraints:

t,,(WTX,, + b) 2 1- éna fn Z 0

» Qur optimisation becomes:

1
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n
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Soft margin

» We can relax the constraints:
to(wx, +b) >1—&,, & >0

» Qur optimisation becomes:

1
argm|n2w Tw+ Cz:lg,,
n

subject to 1“,,(wa,7 +b)>1-¢&,
» And when we add Lagrange etc:

N

argmax g ap — g « amt,,tmx Xm

n.m=1
subject to Zant,, =0, 0<a,<C
n=1

» The only change is an upper-bound on «,!



Soft margins
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Soft margins

» Here's our problematic data again:
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» «, for the ‘bad’ square is 3.5.

» So, if we set C < 3.5, we should see this point having less
influence and the boundary moving to somewhere more
sensible...



Soft margins

> Try C=1
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> We have an extra support vector.

> And a better decision boundary.
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Soft margins

» The choice of C is very important.
» Too high and we over-fit to noise.

» Too low and we underfit
» _..and lose any sparsity.

» Choose it using cross-validation.
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SVMs — some observations

» In our example, we started with 3 parameters:
T
W = [Wl, W2] s b

In general: D+1.
We now have N: ai,...,an
Sounds harder?

Depends on data dimensionality:

» Typical Microarray dataset:
> D ~ 3000, N ~ 30.
» In some cases N <« D
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Inner products

» Here's the optimisation problem:
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Inner products

» Here's the optimisation problem:
1 T
arglrlnax zn: ap — 5 Z ApOmtptmX, Xm

n,m

» Here's the decision function:

thew = SIgN (Z oz,,t,,xIxneW + b)

n

» Data (Xn, Xm, Xnew, €tc) only appears as inner (dot) products:

T T
X, Xm, XpXnew; €tC



Projections

» Our SVM can find linear decision boundaries.

> What if the data requires something nonlinear?
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Projections

» Our SVM can find linear decision boundaries.

> What if the data requires something nonlinear?
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» We can transform the data e.g.:

B(xn) = 2 Xh

» So that it can be separated with a straight line.

» And use ¢(x,) instead of x, in our optimisation.

10



Projections

» Our optimisation is now:
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Projections
» Our optimisation is now:
1
argmax Z an — 5 Z anamtntqu(x,,)Td)(xm)

@ n n,m
» And predictions:

thew = SigN (Z Antnd(Xn) T D(Xnew) + b)

n

» In this case:

O(xq)d(xm) = (xa1 + Xi2) (Xim1 + Xim) = K (X, Xm)



Projections
» Our optimisation is now:

1
argmax Z an— 3 Z AnQmtntm®(Xn) " ¢(Xm)
@
n n,m

» And predictions:

thew = SigN (Z ntnd(Xn) T P(Xnew) + b)

» In this case:

O(xq)d(xm) = (xa1 + Xi2) (Xim1 + Xim) = K (X, Xm)

> We can think of the dot product in the projected space as a
function of the original data.
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Projections

> We needn't directly think of projections at all.

» Can just think of functions k(xp,Xm) that are dot products in
some space.

» Called kernel functions.

» Don't ever need to actually project the data — just use the
kernel function to compute what the dot product would be if
we did project.

» Optimisation task:
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argmax Z an— 3 Z AnQmtatmk(Xn, Xm)
[0
n

n,m



Projections

> We needn't directly think of projections at all.

» Can just think of functions k(xp,Xm) that are dot products in
some space.

» Called kernel functions.

» Don't ever need to actually project the data — just use the
kernel function to compute what the dot product would be if
we did project.

» Optimisation task:

1
argmax Z an— 3 Z AnQmtatmk(Xn, Xm)
« n n,m
» Predictions:

thew = SigN <Z antnk(Xn, Xnew) + b)

n
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Kernels

» Plenty of off-the-shelf kernels that we can use:

» Linear:
-
k(Xn,Xm) = XpXm

» Gaussian:
k(Xp,Xm) = exp {—B(Xn — xm)T(xn — xm)}
» Polynomial:
k(xn, xXm) = (1 + x4 Xm)"

» These all correspond to ¢(x,)" ¢(xm) for some transformation
P(xn)-

» Don't know what the projections ¢(x,) are — don't need to
know!
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Kernels

» Our algorithm is still only finding linear boundaries....
» ...but we're finding linear boundaries in some other space.
» The optimisation is just as simple, regardless of the kernel
choice.
> Still a quadratic program.
» Still a single, global optimum.
» We can find very complex decision boundaries with a linear
algorithm!



A technical point

» Our decision boundary was defined as w'x + b = 0.

» Now, w is defined as:

N
w = Zantn¢(xn)
n=1

» We don't know ¢(x,).



A technical point

v

Our decision boundary was defined as w'x + b = 0.

» Now, w is defined as:

N
W = Zantn¢(xn)
n=1

v

We don't know ¢(x,).
We only know ¢(xn)T¢(xm) = k(Xn,Xm)

» So, we can't compute w or the boundary!

v



A technical point

» Our decision boundary was defined as w'x + b = 0.

» Now, w is defined as:

N
W = Zantn¢(xn)
n=1

» We don't know ¢(x,).
> We only know ¢(xn)T¢(xm) = k(Xn,Xm)
» So, we can't compute w or the boundary!

» But we can evaluate the predictions on a grid of Xpew and use
Matlab to draw a contour:

N
Z Oéntnk(xm Xnew) +b
n=1



Aside: kernelising other algorithms

» Many algorithms can be kernelised.
» Any that can be written with data only appearing as inner
products.
» Simple algorithms can be used to solve very complex
problems!
» Class exercise:
» KNN requires the distance between X, and each x,:

(Xnew - xn)T(XneW - xn)

» Can we kernelise it?



Example — nonlinear data
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» We'll use a Gaussian kernel:
k(xna Xm) = exp {_B(xn - xm)T(xn — xm)}

» And vary 5 (C = 10).
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Examples

k(Xp,Xm) = exp {—,B(X,, — Xm)T(Xn - Xm)}



Examples
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k(Xp,Xm) = exp {—B(xn — Xm)T(Xn - Xm)}
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The Gaussian kernel

» 3 controls the complexity of the decision boundaries.
> 3 =0.01 was too simple:

> Not flexible enough to surround just the square class.
» 3 = 50 was too complex:

» Memorises the data.
> 3 =1 was about right.

Neither 5 =50 or 8 = 0.01 will generalise well.

vy

Both are also non-sparse (lots of support vectors).
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Choosing kernel function, parameters and C

Kernel function and parameter choice is data dependent.
Easy to overfit.
Need to set C too

C and B are linked

» C too high — overfitting.
» C too low — underfitting.

v

Cross-validation!
Search over 8 and C
> SVM scales with N3 (naive implementation)

» For large N, cross-validation over many C and [ values is
infeasible.

v



Summary - SVMs

» Described a classifier that is optimised by maximising the
margin.

» Did some re-arranging to turn it into a quadratic
programming problem.

» Saw that data only appear as inner products.

» Introduced the idea of kernels.

» Can fit a linear boundary in some other space without
explicitly projecting.

» Loosened the SVM constraints to allow points on the wrong
side of boundary.

» Other algorithms can be kernelised...we'll see a clustering one
in the future.
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Performance evaluation

> We've seen 4 classification algorithms.
» How do we choose?
» Which algorithm?
» Which parameters?
» Need performance indicators.
> We'll cover:

» 0/1 loss.
» ROC analysis (sensitivity and specificity)
» Confusion matrices



0/1 loss

» 0/1 loss: proportion of times classifier is wrong.
» Consider a set of predictions ti,..., ty and a set of true labels
R
» Mean loss is defined as:
L
S 6(t £ 1)

n=1

» (6(a) is 1 if ais true and 0 otherwise)



0/1 loss

» 0/1 loss: proportion of times classifier is wrong.
» Consider a set of predictions ti,..., ty and a set of true labels
R
» Mean loss is defined as:
L
S 6(t £ 1)

n=1

» (6(a) is 1 if ais true and 0 otherwise)
» Advantages:

» Can do binary or multiclass classification.
» Simple to compute.
» Single value.
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0/1 loss

Disadvantage: Doesn't take into account class imbalance:

vVvVvvyVvYvyyvyy

We're building a classifier to detect a rare disease.
Assume only 1% of population is diseased.
Diseased: t =1

Healthy: t =0

What if we always predict healthy? (t = 0)
Accuracy 99%

But classifier is rubbish!
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We'll stick with our disease example.
Need to define 4 quantities. The numbers of:

True positives (TP) — the number of objects with ¢ =1 that
are classified as t, = 1 (diseased people diagnosed as
diseased).

True negatives (TN) — the number of objects with ¢ = 0 that
are classified as t, = 0 (healthy people diagnosed as healthy).

False positives (FP) — the number of objects with t = 0 that
are classified as t, = 1 (healthy people diagnosed as diseased).

False negatives (FN) — the number of objects with ¢} =1

that are classified as t, = 0 (diseased people diagnosed as
healthy).



Sensitivity

s _ TP
¢ TP+FN

» The proportion of diseased people that we classify as diseased.
» The higher the better.

» In our example, S = 0.



Specificity

s __TN
PT TN+ FP

» The proportion of healthy people that we classify as healthy.
» The higher the better.

» In our example, S, = 1.
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Optimising sensitivity and specificity

» We would like both to be as high as possible.
» Often increasing one will decrease the other.

» Balance will depend on application:
P> e.g. diagnosis:
» We can probably tolerate a decrease in specificity (healthy
people diagnosed as diseased)....

> __.if it gives us an increase in sensitivity (getting diseased
people right).
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N
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Many classification algorithms involve setting a threshold.
e.g. SVM:

N
thew = SIgN (Z tnnk(Xn, Xnew) + b)

n=1

Implies a threshold of zero (sign function)
However, we could use any threshold we like....

The Receiver Operating Characteristic (ROC) curve shows
how S, and 1 — S, vary as the threshold changes.



ROC curve
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» SVM for nonlinear data with 8 = 50.

» Each point is a threshold value.
> Bottom left — everything classified as 0 (-1 in SVM)
» Top right — everything classified as 1.

» Goal: get the curve to the top left corner — perfect
classification (Se = 1,5, = 1).



ROC curve
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» SVM for nonlinear data with 3 = 0.01.

» Better than g = 50
» Closer to top left corner.
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» SVM for nonlinear data with g = 1.
> Better still.



AUC

» We can quantify performance by computing the Area Under
the ROC Curve (AUCQ)
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> 3 =0.01: AUC= 0.9551
> 3 =1: AUC=0.9936



AUC

» We can quantify performance by computing the Area Under
the ROC Curve (AUCQ)
» The higher this value, the better.

> 3 =50: AUC=0.8348
> 3 =0.01: AUC= 0.9551
> 3 =1: AUC=0.9936

» AUC is generally a safer measure than 0/1 loss.



Confusion matrices

The quantities we used to compute Se and S, can be neatly
summarised in a table:

True class

1] 0

. 1| TP | FP
Predicted class ol EN | TN

» This is known as a confusion matrix
» It is particularly useful for multi-class classification.
P Tells us where the mistakes are being made.

» Note that normalising columns gives us S, and S,



Confusion matrices — example

v

20 newsgroups data.

Thousands of documents from 20 classes (newsgroups)
Use a Naive Bayes classifier (= 50000 dimensions (words)!)
» Details in book Chapter.

~ 7000 independent test documents.

Summarise results in 20 x 20 confusion matrix:
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True class

10 11 12 13 14 15 16 18 18 19 20
1 4 2 0 2 10 4 7 1 12 7 47
2 0 0 4 18 7 8 2 0 1 1 3
ﬁ 3 0 0 1 0 1 0 1 0 0 0 0
o 4 1 0 1 28 3 0 0 0 0 0 0
o
8 .
5] .
'-a .
g 16 3 2 2 5 17 4 376 3 7 2 68
17 1 0 9 0 3 1 3 325 3 95 19
18 2 1 0 2 6 2 1 2 325 4 5
19 8 4 8 0 10 21 1 16 19 185 7
20 0 0 1 0 1 1 2 4 0 1 92

Algorithm is getting ‘confused’ between classes 20 and 16,
and 19 and 17.

P> 17: talk.politics.guns

P> 19: talk.politics.misc
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Algorithm is getting ‘confused’ between classes 20 and 16,
and 19 and 17.

P> 17: talk.politics.guns

P> 19: talk.politics.misc

> 16: talk.religion.misc

» 20: soc.religion.christian

Maybe these should be just one class?

Maybe we need more data in these classes?
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10 11 12 13 14 15 16 18 18 19 20
1 4 2 0 2 10 4 7 1 12 7 47
2 0 0 4 18 7 8 2 0 1 1 3
ﬁ 3 0 0 1 0 1 0 1 0 0 0 0
o 4 1 0 1 28 3 0 0 0 0 0 0
o
8 .
5] .
'-a .
g 16 3 2 2 5 17 4 376 3 7 2 68
17 1 0 9 0 3 1 3 325 3 95 19
18 2 1 0 2 6 2 1 2 325 4 5
19 8 4 8 0 10 21 1 16 19 185 7
20 0 0 1 0 1 1 2 4 0 1 92

Algorithm is getting ‘confused’ between classes 20 and 16,
and 19 and 17.

P> 17: talk.politics.guns
P> 19: talk.politics.misc
> 16: talk.religion.misc
» 20: soc.religion.christian

Maybe these should be just one class?
Maybe we need more data in these classes?

Confusion matrix helps us direct our efforts to improving the
classifier.
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Summary

» SVM: a kernel classifier.

» Linear classifier — (possibly) nonlinear data transformation.
» Introduced two different performance measures:
» 0/1 loss
» ROC/AUC
» Introduced confusion matrices — a way of assessing the
performance of a multi-class classifier.
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