Logistic regression

Morteza H. Chehreghani
morteza.chehreghani@chalmers.se

Chalmers University of Technology

April 27, 2020

Reference

The content and the slides are adapted from

S. Rogers and M. Girolami, A First Course in Machine Learning
(FCML), 2nd edition, Chapman & Hall/CRC 2016, ISBN:
0781498738484

Classification syllabus

» 4 classification algorithms.
» Of which:
» 2 are probabilistic.
> Bayes classifier.
> Logistic regression.
» 2 are non-probabilistic.
P K-nearest neighbours.
» Support Vector Machines.

» There are many others!

Some data

Logistic regression

> In the Bayes classifier, we built a model of each class and then
used Bayes rule:

(Xnew‘tnew =k X t) (new =)
Z p(xnew|tnew —J;X t:)P(tnew _/)

P(tnew = k|xnewvx,t)

Logistic regression

> In the Bayes classifier, we built a model of each class and then
used Bayes rule:

(Xnew‘tnew =k X t) (new =)
Z p(xnew|tnew —J;X t:)P(tnew _/)

P(tnew = k|xnewvxvt)

» Alternative is to directly model P(thew = K|Xnew; X, t) = f(Xnew; W)
with some parameters w.

Logistic regression

> In the Bayes classifier, we built a model of each class and then
used Bayes rule:

. p(xnew‘tnew = kaxat)'D(tnew = k)
ZJ p(xnew|tnew :_j)X? t)P(tnew :_/)

P(tnew = k|xnewvxvt)

» Alternative is to directly model P(thew = K|Xnew; X, t) = f(Xnew; W)
with some parameters w.

> We've seen f(Xpew; W) = W X0, before — can we use it here?
» No — output is unbounded and so can't be a probability.

Logistic regression

> In the Bayes classifier, we built a model of each class and then
used Bayes rule:

p(xnew‘tnew = kaxat)'D(tnew = k)

P(tnew = k newvxvt = T .
(|x) ZJ p(xnew|tnew :Jaxat)P(tnew :_/)

» Alternative is to directly model P(thew = K|Xnew; X, t) = f(Xnew; W)
with some parameters w.

> We've seen f(Xpew; W) = W X0, before — can we use it here?
» No — output is unbounded and so can't be a probability.

> But, can use P(thew = k|Xnew; W) = h(f (Xnew; W)) where h(+)
squashes f(Xpew; W) to lie between 0 and 1 — a probability.

h(-)
» For logistic regression (binary), we use the sigmoid function:

1
1+ exp(—w Xpew)

P(tnew = 1|xneW7W) = h(WTxnew) =

_No

h(-)

» For logistic regression (binary), we use the sigmoid function:

1
P(t = 1|X,W) = h(wa) = m
exp(—wx)

P(t = O’X,W) =1- h(WTX) = m

~No

Perceptron

Likelihood

We consider likelihood on train data to infer the parameters w.

N
p(tX,w) =] p(talxs w)
n=1

= H p(t,,|x,,,W) H p(tn|xn,W)
tp,=0

tp=1

=TI Aw™n) [T (1 = A(wTx0)
tp=0

th=1

Cross Entropy

The negative log-likelihood is written by

Jw) = —) logh(w'xs) =) log(1—h(w'xn))
tn=1 t,=0
N
= — Z tylog h(w'x,) + (1 — t,) log(1 — h(w'x,))

n=1

Minimization of Cross Entropy

We minimize Cross Entropy to infer the model parameters w;.

N
9 =— Z[t,, - h(wa,,)]x,,J
n=1

w;

We may use Gradient Descent for this purpose:

oA

Wi < W — n—
j j)
ow;

In logistic regression, Cross Entropy is convex.

Multiclass Classification

Data in K classes
(X]_, tl)) e (xNu tN)u

where each t, € {1--- K}

One hot representation

Each label t, € {1--- K} can be represented as a 0/1 K-vector,

with
i 1,if t, =k
ke 0, otherwise

Softmax Regression

exp(—wyXn)

K
Zé:l exp(—wEx,,)
That is, we have K parameter vectors wi, - - - ,Wx with wy used to
compute the probability P(t, x = 1).

P(tn = klxn, {w¢}) =

Cross Entropy: Multiple Classes

The Cross-Entropy loss is written by

SN el wi)
= =23 tnulog

K
n=1 k=1 > r—1 exp(—wex,)

Gradient: Multiple Classes

The gradient can be used in Gradient-Descent optimization, or for
other purposes.

0J ZN: , exp(—wgxp)
= nk — n,j
Owej o 361 exp(—wexy)

Bayesian logistic regression (back to binary setting)

» Recall the Bayesian ideas from few lectures ago....

» In theory, if we place a prior on w and define a likelihood we
can obtain a posterior:

p(tX, w)p(w)

pIWX.t) = =X

Bayesian logistic regression (back to binary setting)

» Recall the Bayesian ideas from few lectures ago....

» In theory, if we place a prior on w and define a likelihood we
can obtain a posterior:

p(EX, w)p(w)
p(tX)
» And we can make predictions by taking expectations
(averaging over w):

p(w|X,t) =

P(tnew = 1|Xnewa th) - Ep(w|X,t) {P(tnew = 1|xneW)W)}

» Sounds good so far....

Defining a prior

» Choose a Gaussian prior:

vy

D
pw) = [[V(0,0
d=1

For simplicity, here we assume wy is zero.
The prior has the parameter o2.

Prior choice is always important from a data analysis point of
view.

Previously, it was also important ‘for the maths’.

This isn't the case today — could choose any prior — no prior

makes the maths easier!

Defining a likelihood

» First assume independence:

N
p(tX, w) = [T p(taixn,w)

n=1

Defining a likelihood

» First assume independence:

N
p(tX, w) = [T p(taixn,w)

n=1

» We have already defined this — it's our squashing function! If

t, = 1.
1

T 1+ exp(—wTx,)

P(tn = 1|xp, W)
» and if t, =0:

P(t,-, = 0|XnaW) =1- P(tn =]_’x)w)

Posterior

_ p(t[X, w)p(w|o?)
p(wiX.t.0%) = == i ony

» Now things start going wrong.
» We can't compute p(w|X,t,c?) analytically.
» Prior is not conjugate to likelihood. No prior is!

> This means we don’t know the form of p(w|X,t,o?)
» And we can’'t compute the marginal likelihood:

pleX, %) = [p(t}X,w)p(wlo?) dw

What can we compute?

t|X, w)p(w|o?)

Xt 2 — p(
p(W‘ 4,0) p(t|X,02)

» We may not be able to compute p(w|X,t,o?)
> Define g(w; X, t,02) = p(t|X, w)p(w|o?)

What can we compute?

p(tIX, w)p(w|o2)
p(tX, o)

p(w|X, t,0?) =

» We may not be able to compute p(w|X,t,o?)
> Define g(w; X, t,02) = p(t|X, w)p(w|o?)
» Armed with this, we have three options:
» Find the most likely value of w — a point estimate.

What can we compute?

p(tIX, w)p(w|o2)
p(tX, o)

p(w|X, t,0?) =

» We may not be able to compute p(w|X,t,o?)
> Define g(w; X, t,02) = p(t|X, w)p(w|o?)
» Armed with this, we have three options:

» Find the most likely value of w — a point estimate.
> Approximate p(w|X, t,o?) with something easier.

What can we compute?

p(tIX, w)p(w|o2)
p(tX, o)

p(w|X, t,0?) =

» We may not be able to compute p(w|X,t,o?)
> Define g(w; X, t,02) = p(t|X, w)p(w|o?)
» Armed with this, we have three options:

» Find the most likely value of w — a point estimate.
> Approximate p(w|X, t,o?) with something easier.
> Sample from p(w|X,t,0?).

What can we compute?

p(tIX, w)p(w|o2)
p(tX, o)

p(w|X, t,0?) =

» We may not be able to compute p(w|X,t,o?)
> Define g(w; X, t,02) = p(t|X, w)p(w|o?)
» Armed with this, we have three options:

» Find the most likely value of w — a point estimate.
> Approximate p(w|X, t,o?) with something easier.
> Sample from p(w|X,t,0?).

> We'll cover examples of each of these in turn....

» These examples aren’t the only ways of
approximating/sampling.

> They are also general techniques not unique to logistic
regression.

MAP estimate

» Our first method is to find the value of w that maximises
p(w|X,t,0?) (call it w).
> g(w;X,t,0%) x p(w|X,t,0?)
> w therefore also maximises g(w; X, t, o2).
» Very similar to maximum likelihood but additional effect of
prior.

» Known as MAP (maximum a posteriori) solution.

MAP estimate

» Our first method is to find the value of w that maximises
p(w|X,t,0?) (call it w).
> g(w;X,t,0%) x p(w|X,t,0?)
> w therefore also maximises g(w; X, t, o2).

» Very similar to maximum likelihood but additional effect of
prior.

» Known as MAP (maximum a posteriori) solution.

» Once we have w, make predictions with:

1
1+ exp(—W T Xpew)

P(tnew = 1|XneWaw)

MAP

» When we met maximum likelihood, we could find w exactly

with some algebra (in logistic regression, Cross Entropy is
convex.).

. 2
» Can't do that here (can't solve W =0)

MAP

When we met maximum likelihood, we could find w exactly

with some algebra (in logistic regression, Cross Entropy is
convex.).

. 2
Can'’t do that here (can't solve W =0)
Resort to numerical optimisation:
1. Guess w

2. Change it a bit in a way that increases g(w; X, t, 0%)
3. Repeat until no further increase is possible.

MAP

» When we met maximum likelihood, we could find w exactly
with some algebra (in logistic regression, Cross Entropy is
convex.).

. 2
» Can't do that here (can't solve W =0)
» Resort to numerical optimisation:
1. Guess w
2. Change it a bit in a way that increases g(w; X, t, 0%)
3. Repeat until no further increase is possible.
» Many algorithms exist that differ in how they do step 2.

> e.g. Gradient Descent and Newton-Raphson (book
Chapter 4)
» You just need to know that sometimes we can't do things
analytically and there are methods to help us!

MAP — numerical optimisation for our data

S

L N
S0 R . un o
. .,‘.'-'. °*
[] []
° L] L]
[)
5 . ;)
» Left: Data.

1.5 w2
w1
4
0.5
0 4 6 8
Iteration

» Right: Evolution of w in numerical optimisation.

> We set 02 = 10.

Decision boundary

» Once we have w, we can classify new examples.

» Decision boundary is a useful visualisation:

o o
o .o
o
u%u
=] suuunu
o
£ o o
. %
o8
¢,
o, o
...‘..
.
-5 0 5

» Line corresponding to P(thew = 1|Xnew, W

1 1
05=-=

W) = 0.5,

2 14 exp(—WTxpew)

So: exp(—w xnew) =1. Or: W Xpew =0

Predictive probabilities

» Contours of P(thew = 1|Xnew, W).
» Do they look sensible?

Roadmap

» Find the most likely value of w — a point estimate.
» Approximate p(w|X,t,o?) with something easier.

» Sample from p(w|X, t, o).

Laplace approximation

» Our second method involves approximating p(w|X, t, 0?)
with another distribution.

» i.e. Find a distribution g(w|X,t,0?) which is similar.

Laplace approximation

» Our second method involves approximating p(w|X, t, 0?)
with another distribution.
» i.e. Find a distribution g(w|X,t,0?) which is similar.
» What is ‘similar’?
» Mode (highest point) in same place.

» Similar shape?
» Might as well choose something that is easy to manipulate!

Laplace approximation

» Approximate p(w|X,t,o?) with a Gaussian:
q(w(X,t) = N(p, X)
> Where:

0? log g(w; X, t,02)

-1 _
» = OwowT w

()

/1,:

> And:
w = argmax log g(w; X, t, 0?%)
w

» We already know w. X is the negative of the inverse Hessian.

Laplace approximation

» Justification?
» Not covered in this course.
» Based on Taylor expansion of log g(w; X, t,?) around mode

().
» Means approximation will be best at mode.
» Expansion up to 2nd order terms ‘looks’ like a Gaussian.

» See book Chapter 4 for details.

Laplace approximation — 1D example

(07

plyla,B) = rfa)ya-lexp(—ﬁy)

Laplace approximation — 1D example

plyla, B) = ﬁy“‘lexrﬁ(—ﬁy)

y =

» Note, | happen to know what the mode is. You're not
expected to be able to work this out!

Laplace approximation — 1D example

p(yle, B) = rfa)y“‘lexr)(—ﬁy)
~ a-— 1
d 3
Ologp() a-1
dy? - y?
0% log p(.) __a-l1
ay? | y?

» Note, | happen to know what the mode is. You're not
expected to be able to work this out!

Laplace approximation — 1D example

plyle, B) = rfa)y“‘lexp(—ﬁy)
-~ a-—1
T T
»logp() = a-1
Tyz - y2
»Plogp()] = a-1
T},Z ; - V2
-1 2
avle.s) = N (55 25)

> Note, | happen to know what the mode is. You're not
expected to be able to work this out!

0.05

0.04

100

» Solid: true density. Dashed: approximation.
> Left: « =20, 5 =0.45

0.05

0.04

80

100 % 0.02 0.04

, 006 008
» Solid: true density. Dashed: approximation.
> Left: « =20, 5 =0.45

> Right: o =2, 8 =100

0.1

0.05

100 0 0.02 0.04 y 0.06 0.08 0.1

» Solid: true density. Dashed: approximation.

> Left: « =20, 5 =0.45

> Right: « =2, =100

» Approximation is best when density looks like a Gaussian
(left).

> Approximation deteriorates as we move away from the mode
(both).

Laplace approximation for logistic regression

> Not going into the details here.

p(w|X,t,0%) = N(p,).

» Find 1 = w (that maximises g(w; X, t,02)) by
Gradient-Descent or Newton-Raphson (already done it —
MAP).

» Find:

v

B 0% log g(w; X, t,02)

5W8WT w

=

» (Details given in book Chapter 4 if you're interested)

» How good an approximation is it?

Laplace approximation for logistic regression

w2
(=]

-5 6 5
w1

» Dark lines — approximation. Light lines — proportional to
p(w|X,t,0?).
» Approximation is OK.

> As expected, it gets worse as we travel away from the mode.

Predictions with the Laplace approximation

» We have N (u, X) as an approximation to p(w|X,t).

» Can we use it to make predictions?

Predictions with the Laplace approximation

» We have N (u, X) as an approximation to p(w|X,t).
» Can we use it to make predictions?
» Need to evaluate:

P(tnew - 1|xnewaxat) - E./\/'(p,,):) {P(tnew - 1|xnewyw)}
1

= /N(Ha Z) 1 + exp(—WTXneW) aw

Predictions with the Laplace approximation

» We have N (u, X) as an approximation to p(w|X,t).
» Can we use it to make predictions?
» Need to evaluate:

P(tnew - 1|xnewaxat) E./\/'(p,,):) {P(tnew - 1|Xnewyw)}

1
_ /N(H,):)1 T exp(—WTx) dw

» Cannot do this! So, what was the point?

Predictions with the Laplace approximation

» We have N (u, X) as an approximation to p(w|X,t).
» Can we use it to make predictions?
» Need to evaluate:

P(tnew - 1|xnewaxat) - E./\/'(p,,):) {P(tnew - 1|Xnewyw)}
1

= /N(Ha Z) 1 + exp(—WTXneW) aw

» Cannot do this! So, what was the point?
Sampling from N (u, X) is easy
» And we can approximate an expectation with samples!

v

Predictions with the Laplace approximation
» Draw S samples wy, ..., ws from N(u, X)

1

s
1
E P(thew = 1|Xnew, ~ = E
(%) {P(tne [Xnew, W)} S po 1+ exp(—w /[Xnew)

Predictions with the Laplace approximation
» Draw S samples wy, ..., ws from N(u, X)

1

S
1
EN(;L,Z) {P(thew = 1|Xnew, W)} = 5 Z 11 exp(— W Xnew)
1 s Xnew

» Contours of P(tpew = 1|Xnew, X, t).
» Better than those from the point prediction?

Point prediction v Laplace approximation

Why the difference?

Point prediction v Laplace approximation

Laplace uses a distribution (N (p, X)) over w (and therefore a
distribution over decision boundaries) and hence has less certainty.

Summary — roadmap

» Defined a squashing function that meant we could model
P(thew = 1[Xnew, W) = h(W T Xpew)

> Wanted to make ‘Bayesian predictions': average over all
posterior values of w.

» Couldn't do it exactly.

» Tried a point estimate (MAP) and an approximate
distribution (via Laplace).

» Laplace probability contours looked more sensible (to me at
least!)

Summary — roadmap

» Defined a squashing function that meant we could model
P(thew = 1[Xnew, W) = h(W T Xpew)

> Wanted to make ‘Bayesian predictions': average over all
posterior values of w.

» Couldn't do it exactly.

» Tried a point estimate (MAP) and an approximate
distribution (via Laplace).

» Laplace probability contours looked more sensible (to me at
least!)
P> Next:
» Find the most likely value of w — a point estimate.
> Approximate p(w|X,t,o2) with something easier.
> Sample from p(w|X,t,o?).

MCMC sampling

» Laplace approximation still didn't let us exactly evaluate the
expectation we need for predictions.

» But....we could easily sample from it and approximate our
approximation.

MCMC sampling

» Laplace approximation still didn't let us exactly evaluate the
expectation we need for predictions.

» But....we could easily sample from it and approximate our
approximation.

» Good news! If we're happy to sample, we can sample directly
from p(w|X, t,c?) even though we can't compute it!

P> i.e. don't need to use an approximation like Laplace.
» Various algorithms exist — we'll use Metropolis-Hastings

Aside — sampling from things we can’'t compute

> At first glance it seems strange — we can roll the die but we
can't make it!

> But — it's pretty common in the world!

Darts
» | want to know the probability that | hit treble 20 when | aim
for treble 20.
» The distribution over where the dart lands when | aim treble
20:
p(x|stuff)

Darts
» | want to know the probability that | hit treble 20 when | aim
for treble 20.
» The distribution over where the dart lands when | aim treble
20:
p(x|stuff)

» Define function f(x) = 1 if x in treble 20 and 0 otherwise.

Darts

» | want to know the probability that | hit treble 20 when | aim
for treble 20.

» The distribution over where the dart lands when | aim treble
20:
p(x|stuff)

» Define function f(x) = 1 if x in treble 20 and 0 otherwise.
» Probability | hit treble twenty is therefore:

/ f(x)p(x|stuff) dx

Darts

| want to know the probability that | hit treble 20 when | aim
for treble 20.

The distribution over where the dart lands when | aim treble
20:
p(x|stuff)

Define function f(x) = 1 if x in treble 20 and 0 otherwise.
Probability | hit treble twenty is therefore:

/ f(x)p(x|stuff) dx

Can't even begin to work out how to write down p(x|stuff).

Darts

v

| want to know the probability that | hit treble 20 when | aim
for treble 20.

The distribution over where the dart lands when | aim treble
20:

p(x|stuff)
Define function f(x) = 1 if x in treble 20 and 0 otherwise.
Probability | hit treble twenty is therefore:

/f(x)p(x|stuff) dx
Can't even begin to work out how to write down p(x|stuff).
But can sample — throw S darts, x1,...,xg!
Compute:

Back to the script: Metropolis-Hastings

» Produces a sequence of samples — wi,wp, ... wq,...

» Imagine we've just produced wg_1

Back to the script: Metropolis-Hastings

» Produces a sequence of samples — wi,wp, ... wq,...
» Imagine we've just produced wg_1

» MH first proposes a possible ws (call it wg) based on ws_j.

Back to the script: Metropolis-Hastings

» Produces a sequence of samples — wi,wp, ... wq,...
» Imagine we've just produced wg_1

» MH first proposes a possible ws (call it wg) based on ws_j.

» MH then decides whether or not to accept wg
» If accepted, wy = w,
> If not, wg = ws_;

Back to the script: Metropolis-Hastings

v

Produces a sequence of samples — wi,wy, ... wq,...

» Imagine we've just produced wg_1

v

MH first proposes a possible ws (call it w;) based on wg_1.

» MH then decides whether or not to accept wg
» If accepted, wy = w,
> If not, wg = ws_;

> Two distinct steps — proposal and acceptance.

MH — proposal

P> Treat w. as a random variable conditioned on ws_1
> i.e. need to define p(ws|ws_1)

» Note that this does not necessarily have to be similar to
posterior we're trying to sample from.
» Can choose whatever we like!

MH — proposal
P> Treat w. as a random variable conditioned on ws_1
> i.e. need to define p(ws|ws_1)
» Note that this does not necessarily have to be similar to
posterior we're trying to sample from.
» Can choose whatever we like!

> e.g. use a Gaussian centered on ws_7 with some covariance:

p(wﬂwsfb zp) = N(stb ZP)

MH — proposal
P> Treat w. as a random variable conditioned on ws_1
> i.e. need to define p(ws|ws_1)
» Note that this does not necessarily have to be similar to
posterior we're trying to sample from.

» Can choose whatever we like!
> e.g. use a Gaussian centered on ws_7 with some covariance:

p(wﬂwsfb zp) = N(stb ZP)

MH — acceptance

» Choice of acceptance based on the following ratio:

p(VAVTS‘X’ t, 02) p(WS—lyw; ZP)

B P(W5_1|X, t, 02) p(WNs’Ws—la zp) '

MH — acceptance

» Choice of acceptance based on the following ratio:

_ p(WlX,t,0%) plws 1|, E,)
P(Ws—1|X7 ta 02) p(WN5’W5_1, zp) .

» Which simplifies to (all of which we can compute):

g(ws; X, t,0%) p(ws—1|ws, Xp)
g(ws—l; X7 t; 02) p(w—;‘ws—lv Zp)

r =

MH — acceptance

» Choice of acceptance based on the following ratio:

_ p(WlX,t,0%) plws 1|, E,)
P(Ws—1|X7 ta 02) p(WN5’W5_1, zp) .

» Which simplifies to (all of which we can compute):

g(Wsi X, t,0%) p(ws_1|wy, Xp)

r = — .
g(ws—l; X, t, ‘72) p(Ws‘Ws—lv Zp)

> We now use the following rules:
> If r > 1, accept: w; = wy.
> If r <1, accept with probability r.

MH — acceptance

» Choice of acceptance based on the following ratio:

_ p(WlX,t,0%) plws 1|, E,)
P(Ws—1|X7 ta 02) p(WN5’W5_1, zp) .

» Which simplifies to (all of which we can compute):

g(ws; X, t,0%) p(ws—1|ws, Xp)
g(ws—l; X7 t; 02) p(w—;‘ws—lv Zp)

r =

> We now use the following rules:
> If r > 1, accept: w; = wy.
> If r <1, accept with probability r.
» If we do this enough, we'll eventually be sampling from
p(w|X,t), no matter where we started!
> j.e. for any w;

MH — flowchart

Yes

s=1

Choose w,

Generate w,

from p(Ws|w, 1)

¥

Compute acceptance

ratio r

Generate u from

U(o,1)

¥

MH — walkthrough 1

wa
o

MH — walkthrough 2

@

5 5
wy
(£o
w1 \
0

What do the samples look like?

» 1000 samples from the posterior using MH.

Predictions with MH

» MH provides us with a set of samples — wy,...,wg.

» These can be used like the samples from the Laplace
approximation:

P(tnew = 1|XneW7 X7 t, 0'2) Ep(w|X,t,02) {'D(tnew|xnewa W)}

s
e
S = 14 exp(—wW{ Xnew)

%

Predictions with MH

» MH provides us with a set of samples — wy,...,wg.

» These can be used like the samples from the Laplace
approximation:

P(tnew = 1|XneW7 X7 t, 0'2) Ep(w|X,t,02) {'D(tnew|xnewa W)}

s
e
S = 14 exp(—wW{ Xnew)

%

» Contours of P(thew = 1|Xnew, X, t,02)

Laplace vs. MH

Laplace vs. MH

2

0 5

Laplace approximation (left) allows some bad boundaries

Laplace vs. MH

Ul

W2
o

-4}

-5
-5

0 5
w1
Approximate posterior allows some values of wy and ws that are
very unlikely in true posterior.

Summary

v

Introduced logistic regression — a probabilistic binary classifier.

v

Saw that we couldn’t compute the posterior.
Introduced examples of three alternatives:

» Point estimate — MAP solution.
» Approximate the density — Laplace.
» Sample — Metropolis-Hastings.

v

v

Each is better than the last (in terms of predictions)....

» ...but each has greater complexity!

To think about:
» What if posterior is multi-modal?

v

	Reference
	Introduction
	Logistic regression
	Multiclass Regression
	Point estimate
	Laplace approximation
	Laplace approximation
	MCMC sampling

