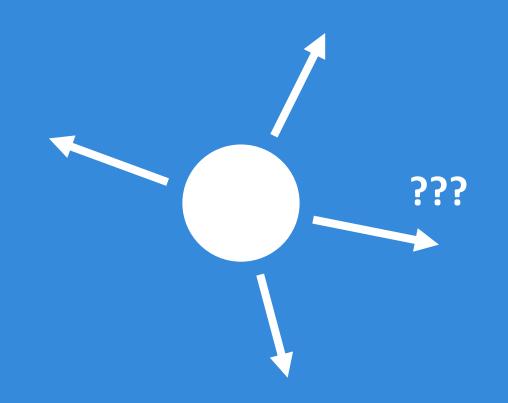
## Sequence Modeling by RNNs

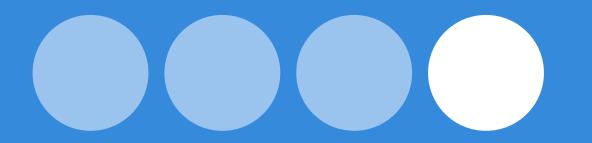
textbook: Deep Learning, An MIT Press book http://www.deeplearningbook.org/

slides by: Ava Soleimany, MIT











### Sequences in the wild



#### Audio



### Sequences in the wild

### Introduction to Deep Learning

Text



A Sequence Modeling Problem: Predict the Next Word

### A sequence modeling problem: predict the next word

"This morning I took my cat for a walk."



### A sequence modeling problem: predict the next word

"This morning I took my cat for a walk."

given these words



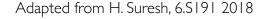
Adapted from H. Suresh, 6.5191 2018

### A sequence modeling problem: predict the next word

"This morning I took my cat for a walk."

given these words predict the

next word





### Idea #I: use a fixed window

"'This morning I took my cat for a walk."

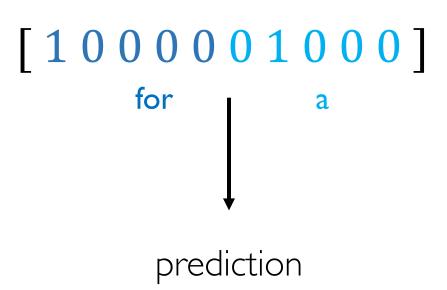
given thesepredict thetwo wordsnext word



### Idea #I: use a fixed window

"This morning I took my cat for a walk." given these predict the two words next word

One-hot feature encoding: tells us what each word is



Adapted from H. Suresh, 6.S191 2018

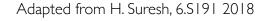


### Problem #1: can't model long-term dependencies

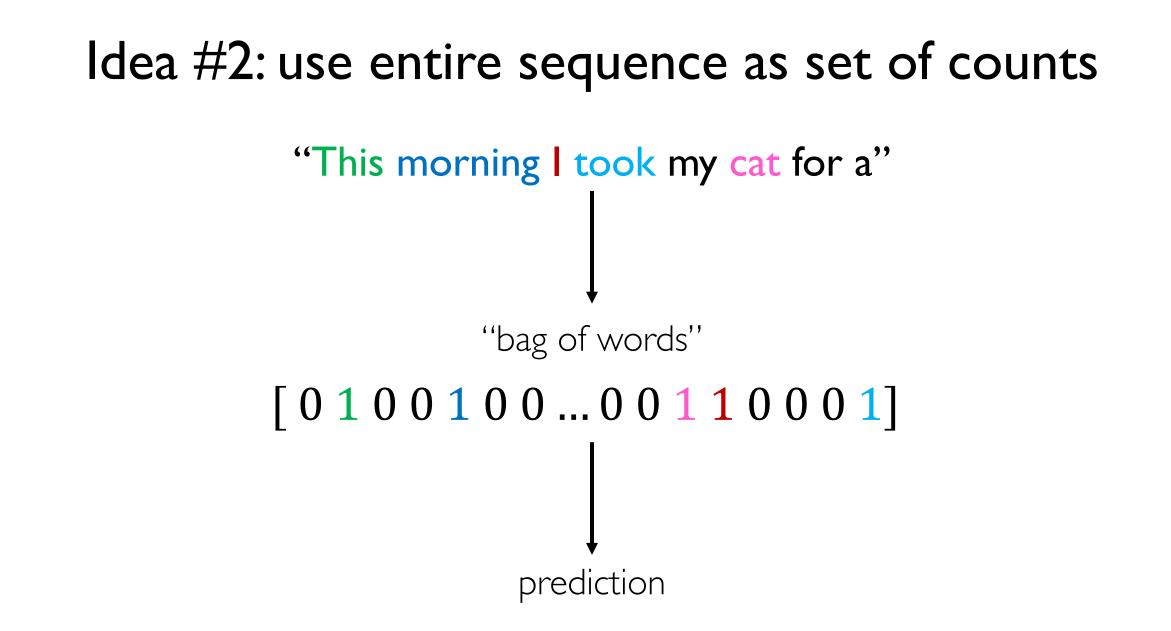
"Sweden is where I grew up, but I now live in Berlin. I speak fluent \_\_\_\_."



# We need information from **the distant past** to accurately predict the correct word.







### Problem #2: counts don't preserve order

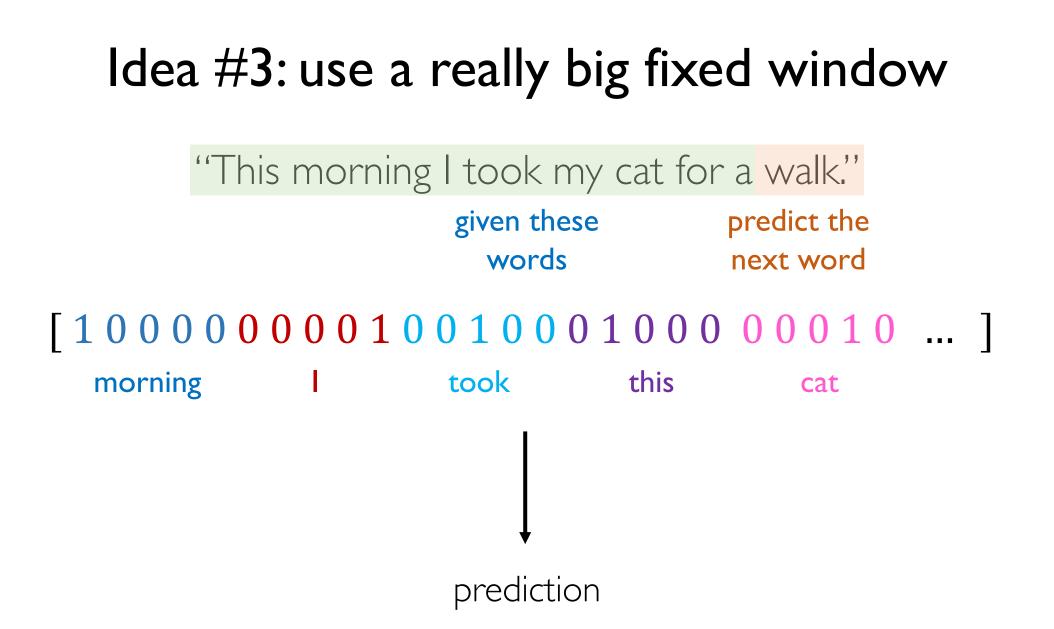


# The food was bad, not good at all.



Adapted from H. Suresh, 6.S191 2018







Adapted from H. Suresh, 6.5191 2018

### Problem #3: no parameter sharing

#### 

Each of these inputs has a **separate parameter**:



### Problem #3: no parameter sharing

Each of these inputs has a **separate parameter**:

#### 

Adapted from H. Suresh, 6.S191 2018



### Problem #3: no parameter sharing

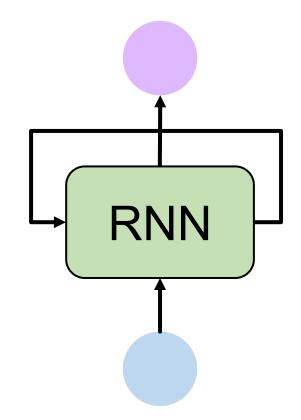
Each of these inputs has a **separate parameter**:



### Sequence modeling: design criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about **order**
- 4. Share parameters across the sequence



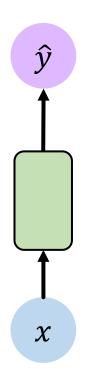
#### Today: **Recurrent Neural Networks (RNNs)** as an approach to sequence modeling problems





### Recurrent Neural Networks (RNNs)

### Standard feed-forward neural network

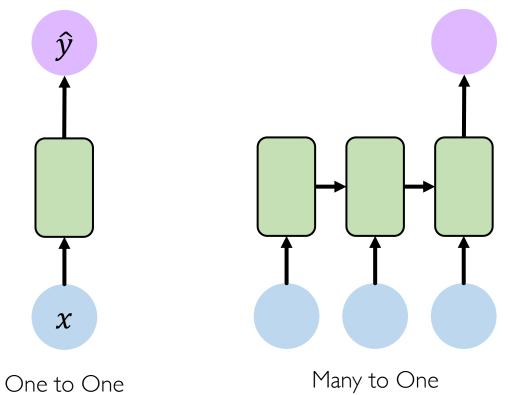


One to One ''Vanilla'' neural network



[1]

### Recurrent neural networks: sequence modeling



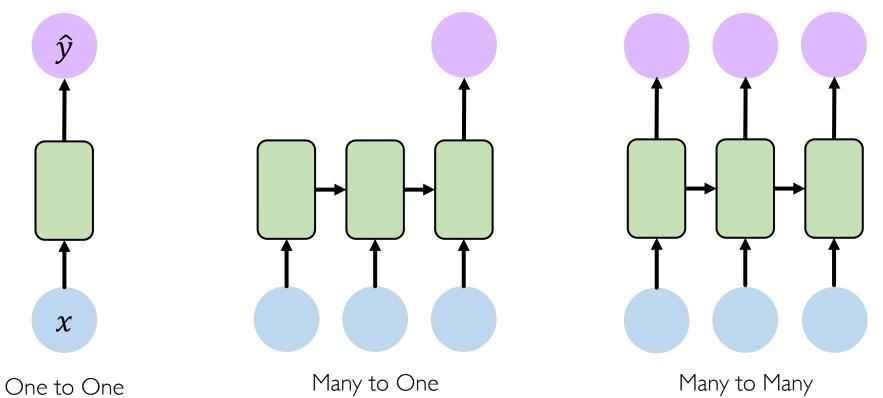
"Vanilla" neural network

Many to One Sentiment Classification



[|]

### Recurrent neural networks: sequence modeling



Sentiment Classification

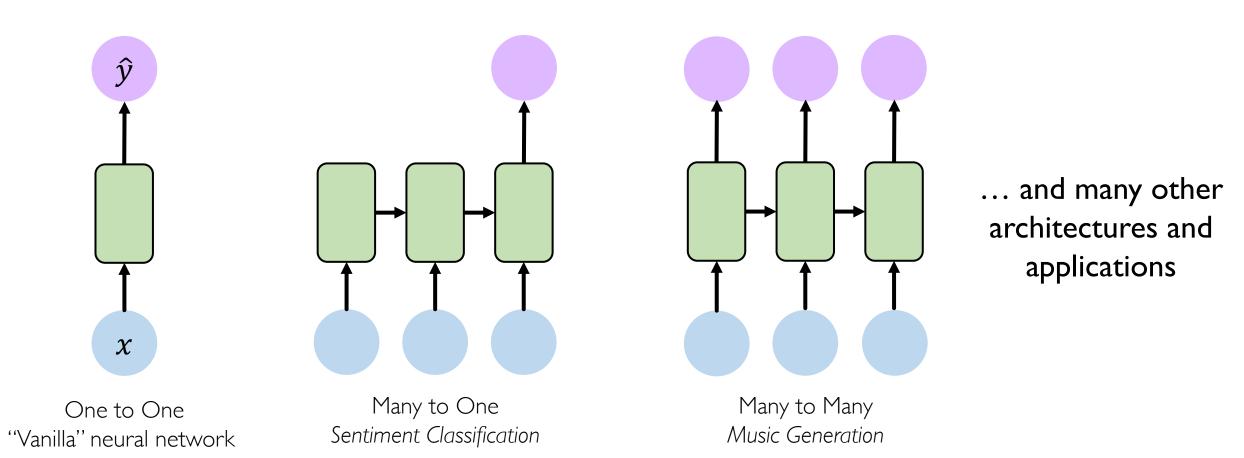
Music Generation



"Vanilla" neural network

[|]

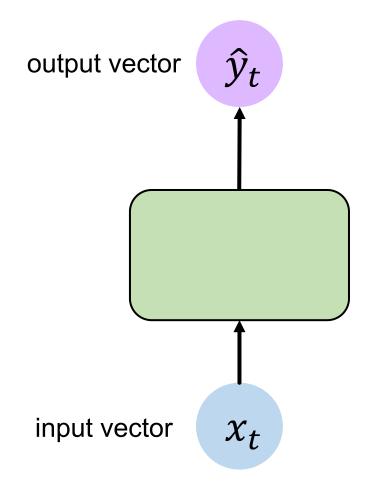
### Recurrent neural networks: sequence modeling



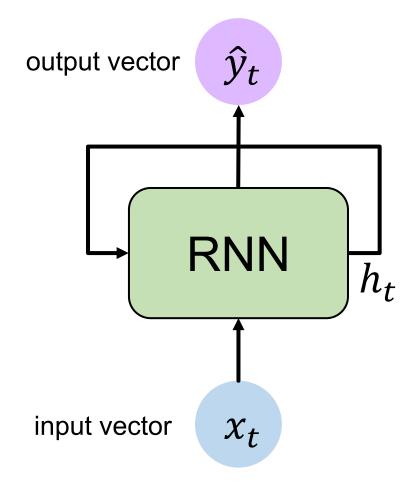


[|]

### A standard "vanilla" neural network

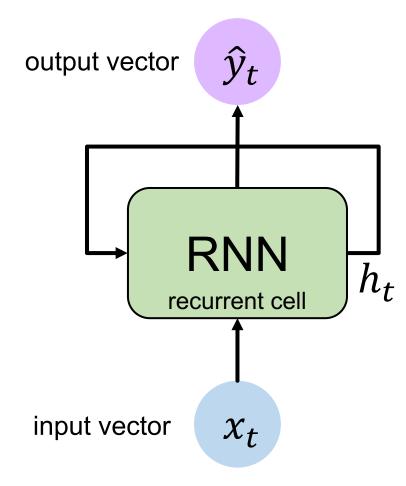




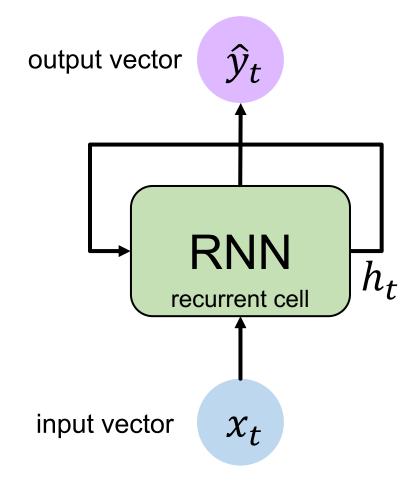




[2]

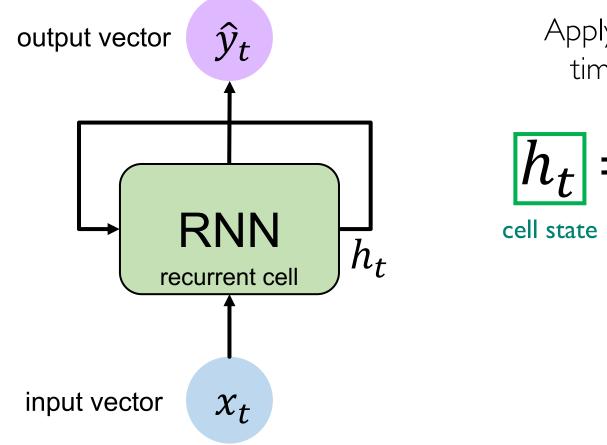




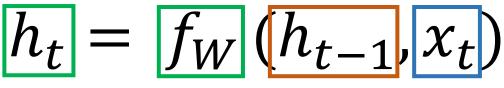


Apply a **recurrence relation** at every time step to process a sequence:

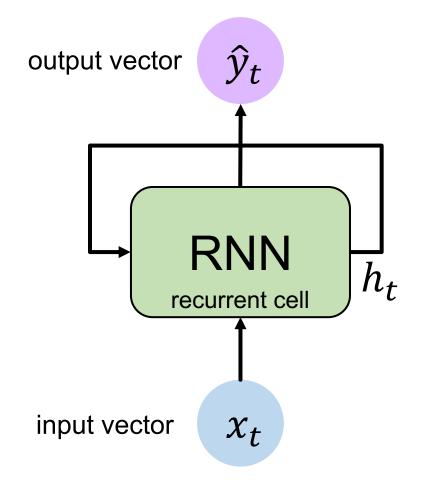




Apply a **recurrence relation** at every time step to process a sequence:



state function old state input vector at parameterized time step t by W

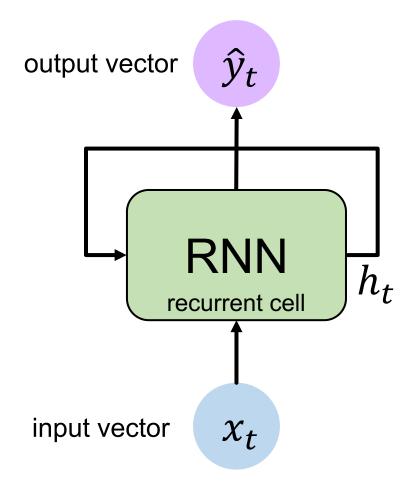


Apply a **recurrence relation** at every time step to process a sequence:

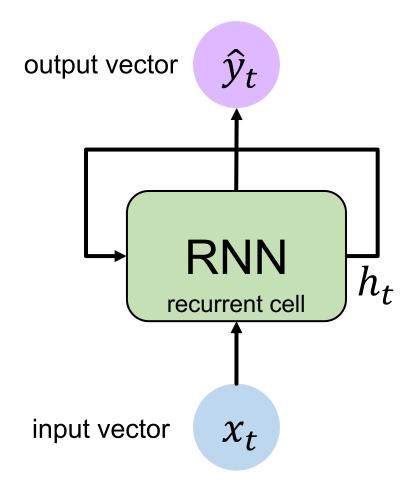
$$h_t = f_W(h_{t-1}, x_t)$$

new state function old state input vector at parameterized time step t by W

Note: the same function and set of parameters are used at every time step

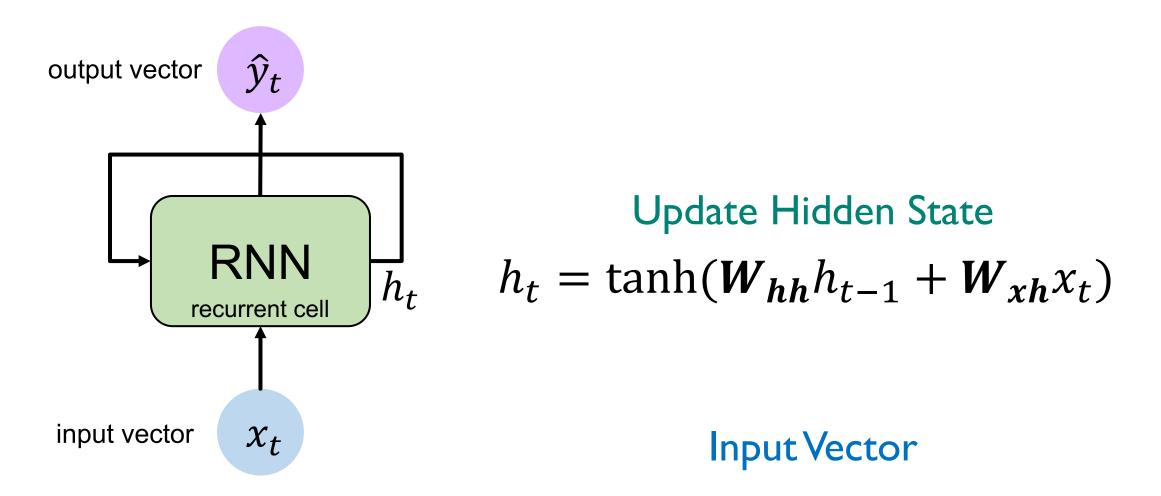




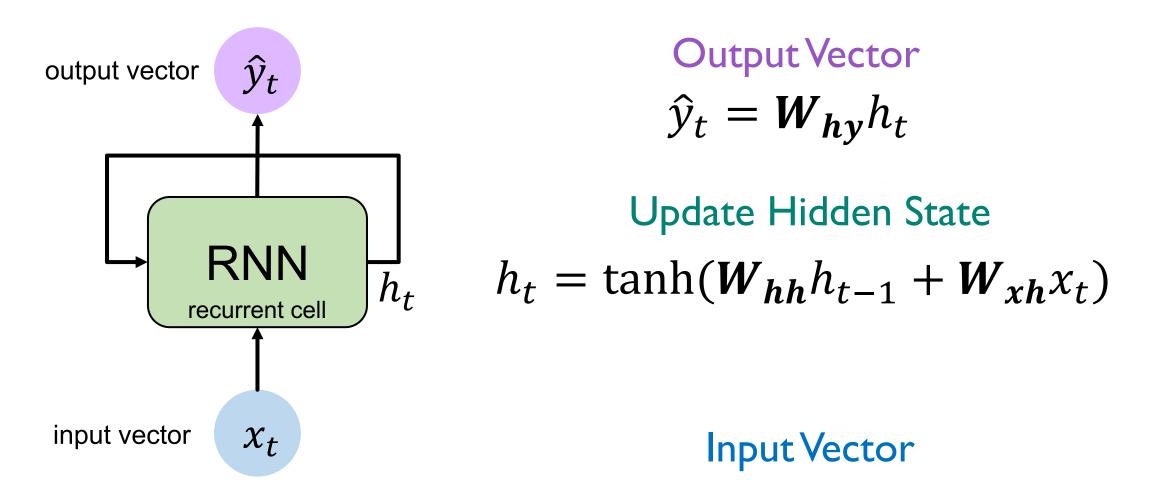






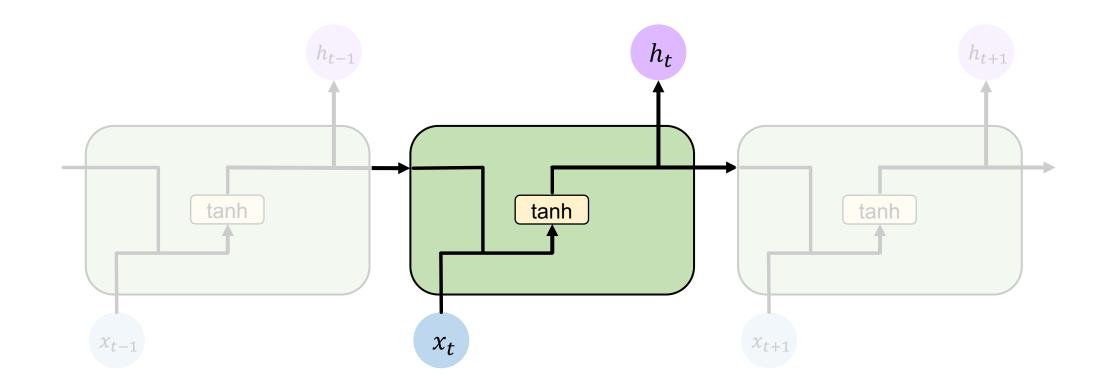






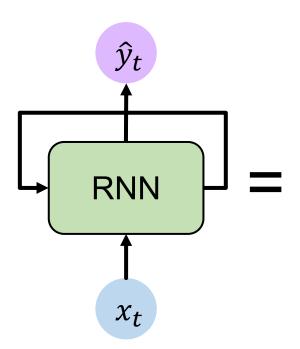


#### RNN state update and output



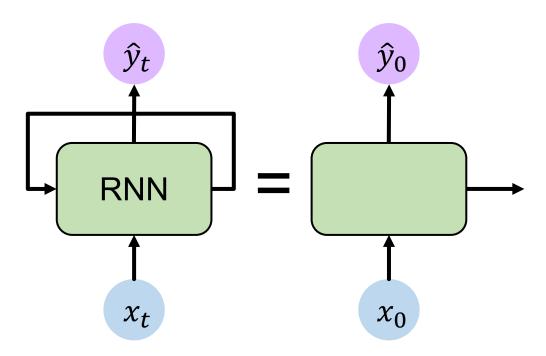


[2]

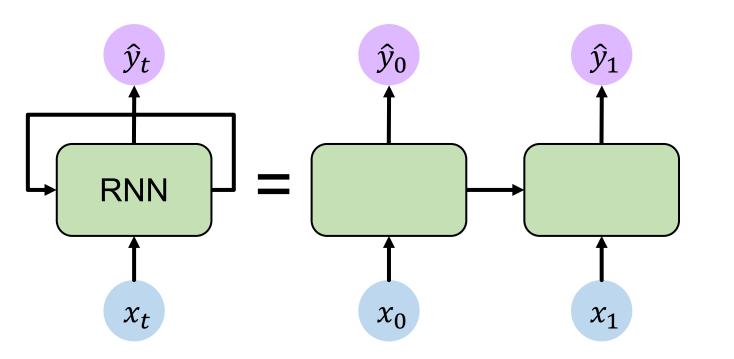


Represent as computational graph unrolled across time

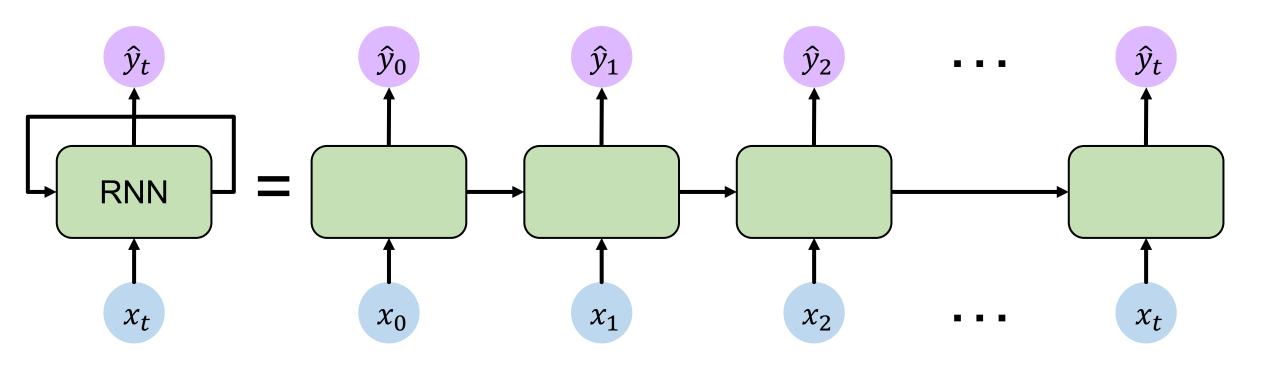






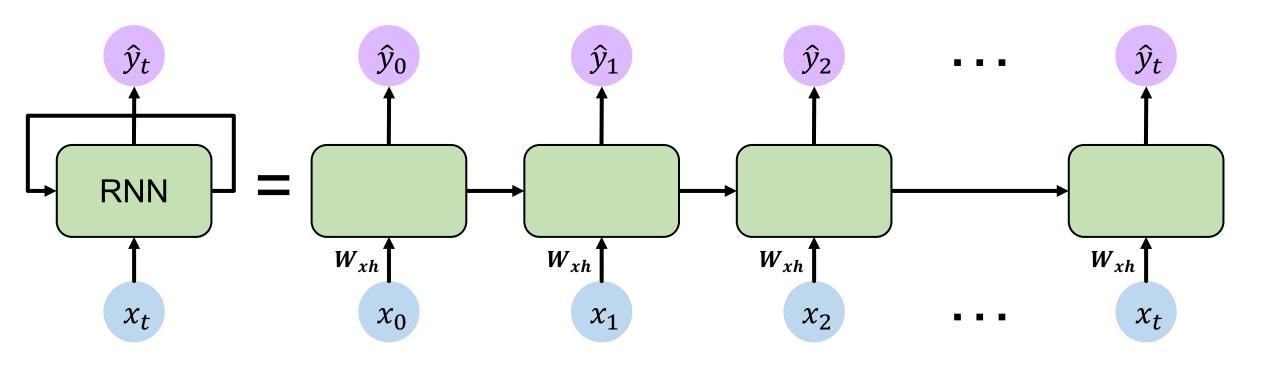






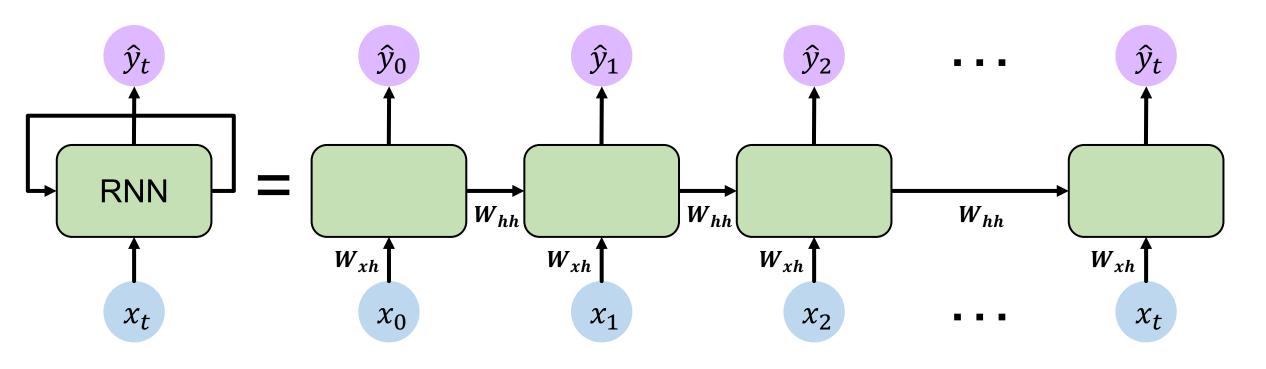


6.5191 Introduction to Deep Learning introtodeeplearning.com



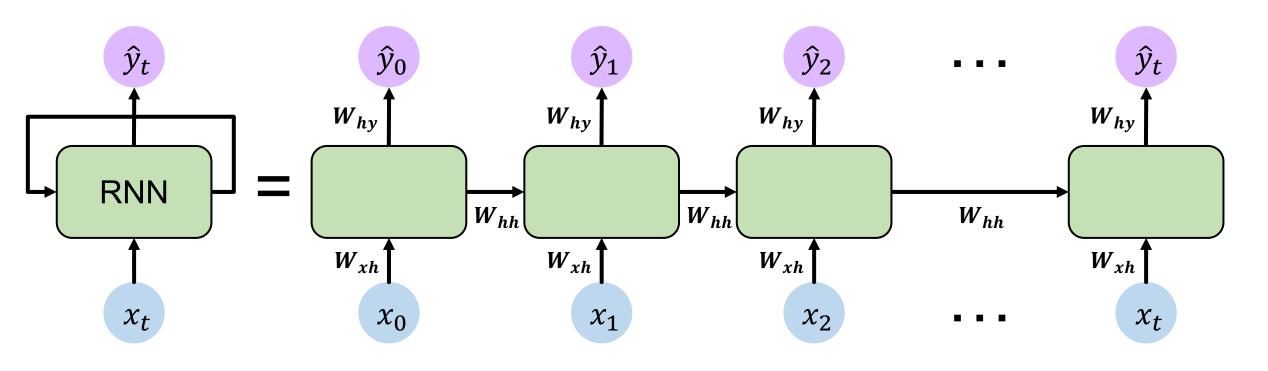


6.S191 Introduction to Deep Learning





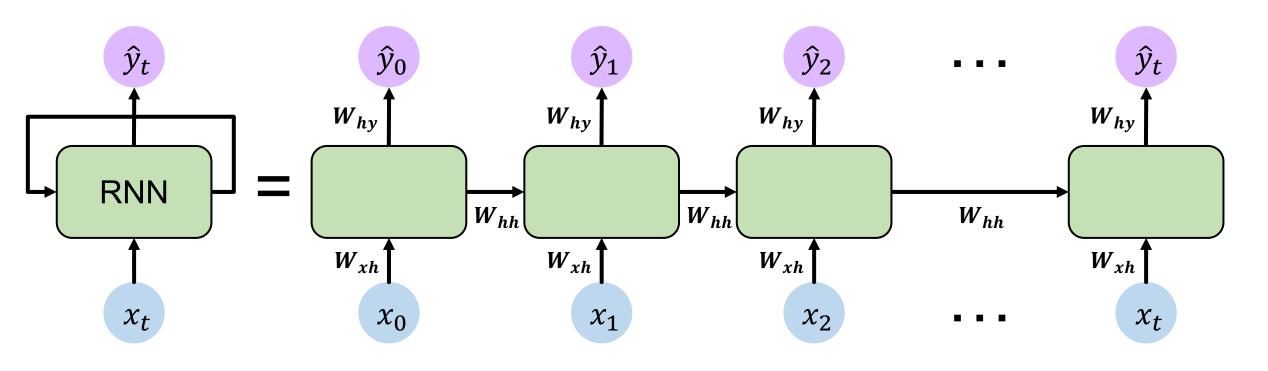
6.5191 Introduction to Deep Learning





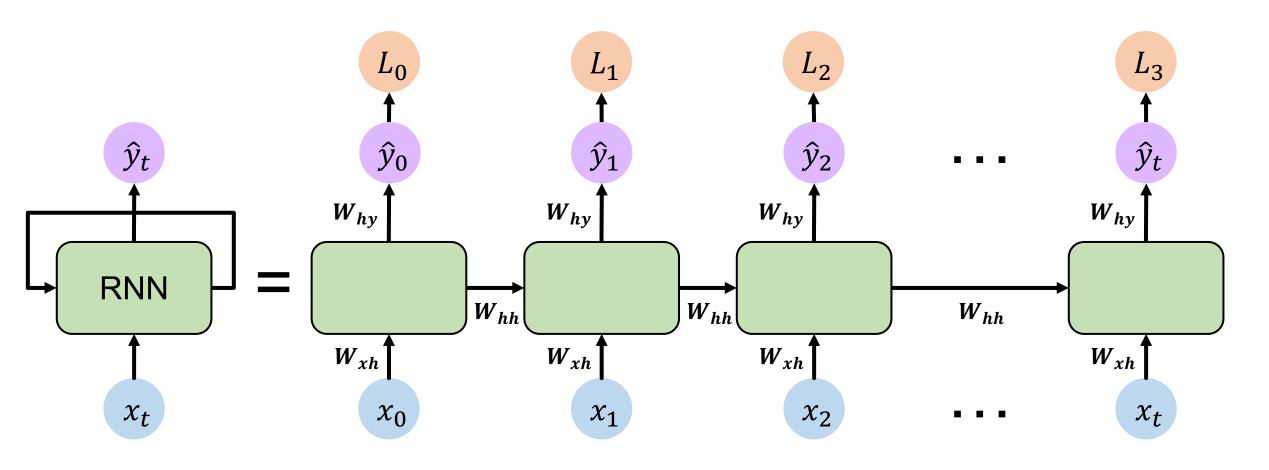
6.5191 Introduction to Deep Learning

Re-use the same weight matrices at every time step



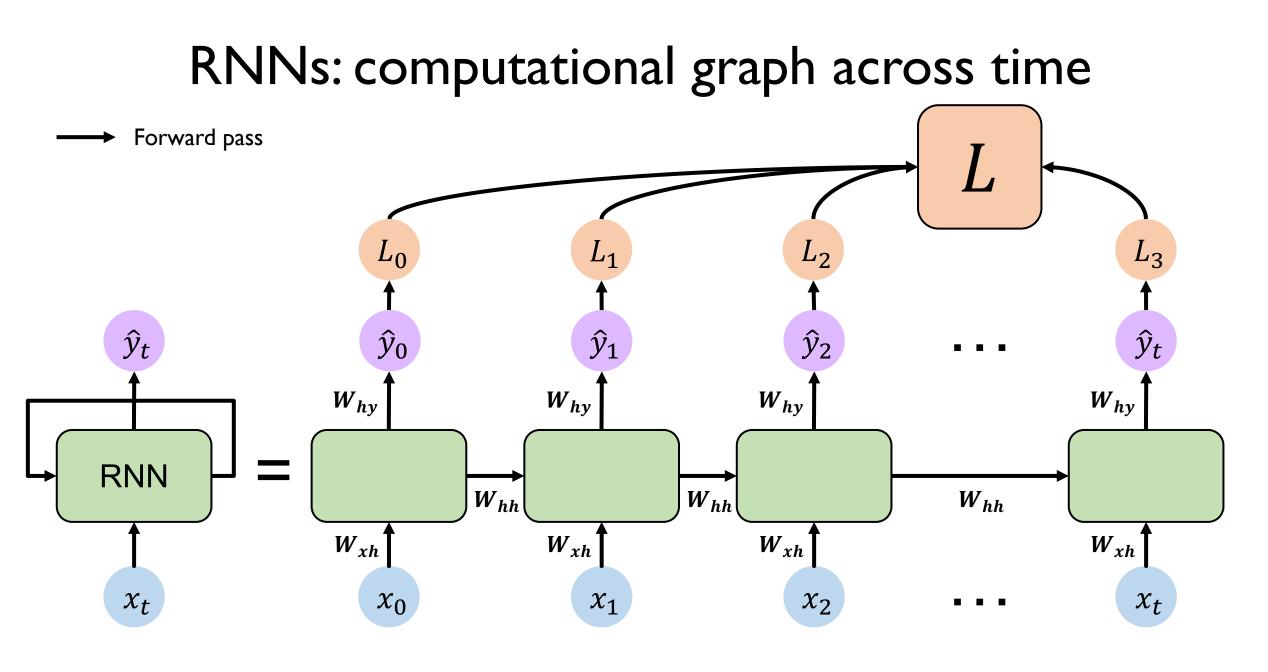
6.5191 Introduction to Deep Learning introtodeeplearning.com

Forward pass





6.5191 Introduction to Deep Learning

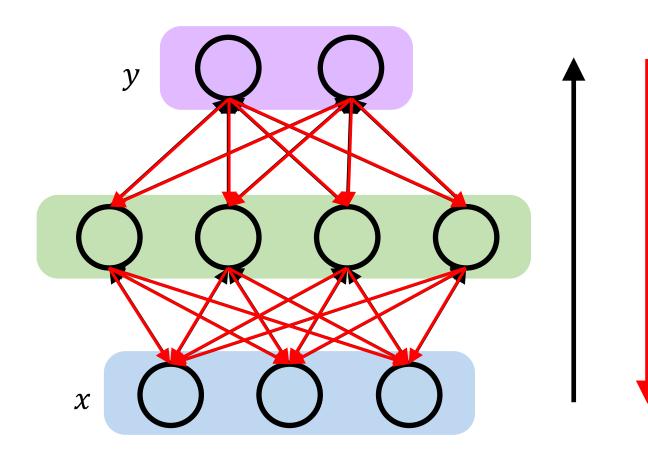




6.5191 Introduction to Deep Learning

# Backpropagation Through Time (BPTT)

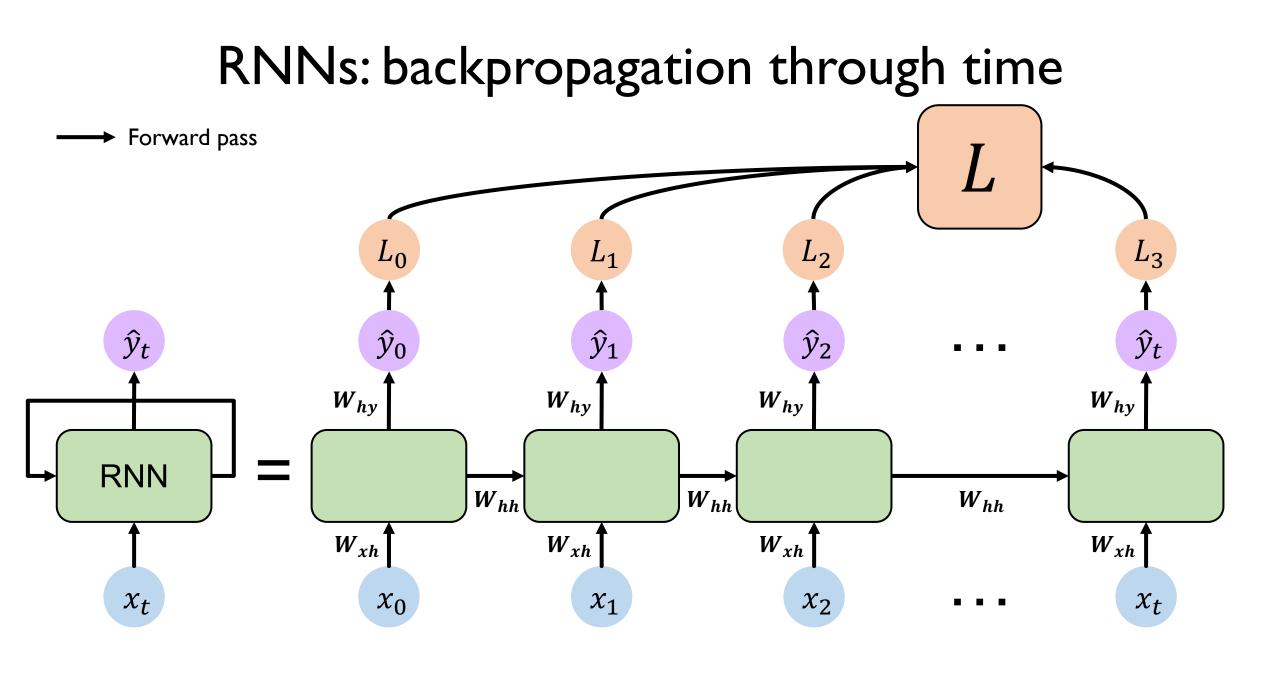
# Recall: backpropagation in feed forward models



#### Backpropagation algorithm:

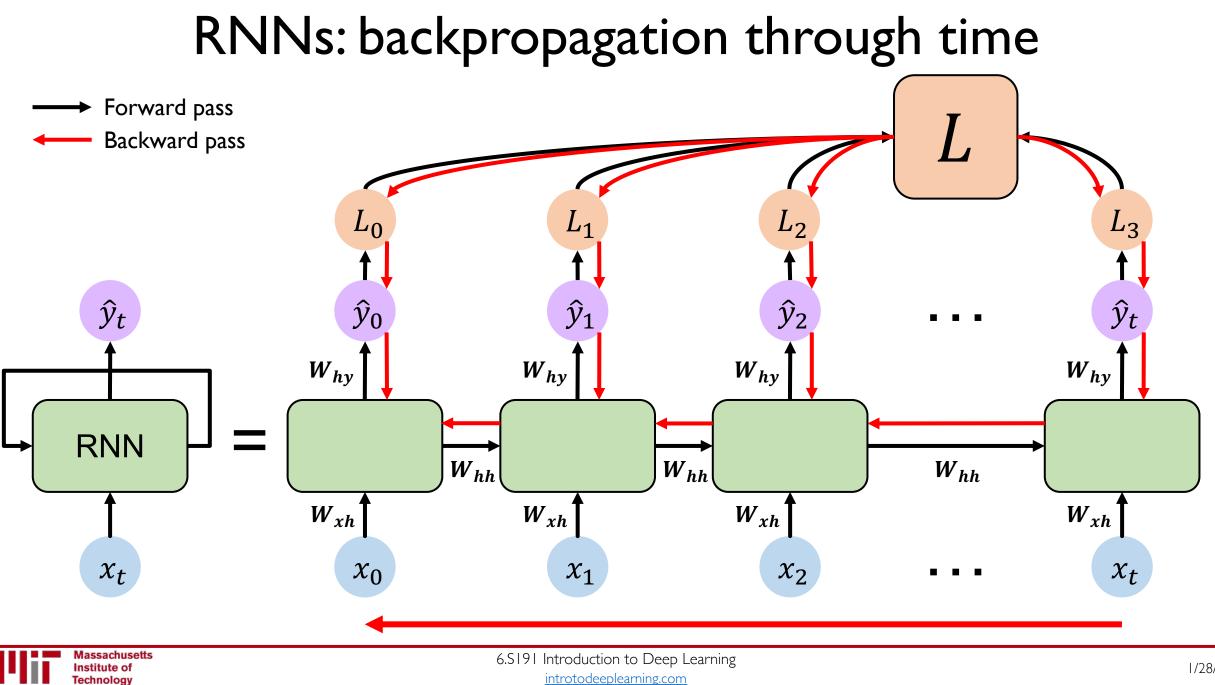
- I. Take the derivative (gradient) of the loss with respect to each parameter
- 2. Shift parameters in order to minimize loss

[3]





6.5191 Introduction to Deep Learning

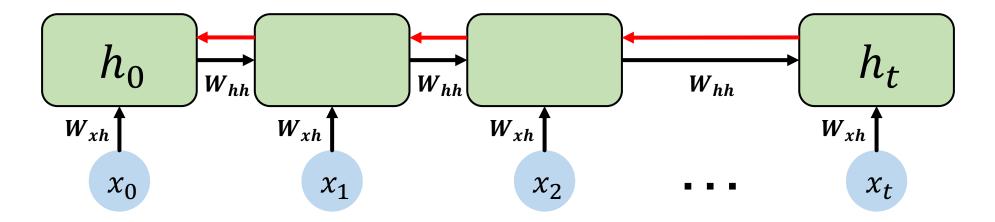


introtodeeplearning.com

1/28/19

[4]

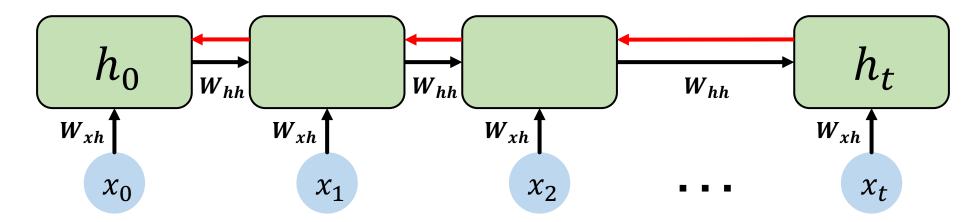
# Standard RNN gradient flow





[|]

# Standard RNN gradient flow

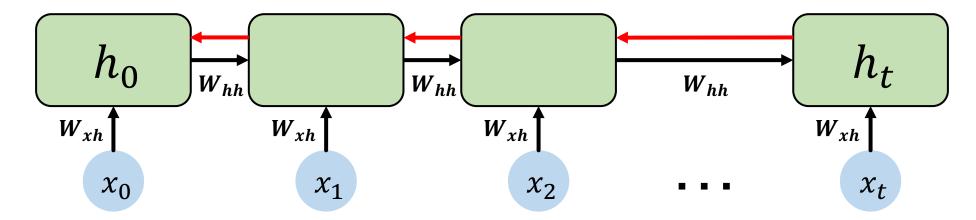


Computing the gradient wrt  $h_0$  involves many factors of  $W_{hh}$  (and repeated f'!)



[1]

# Standard RNN gradient flow: exploding gradients

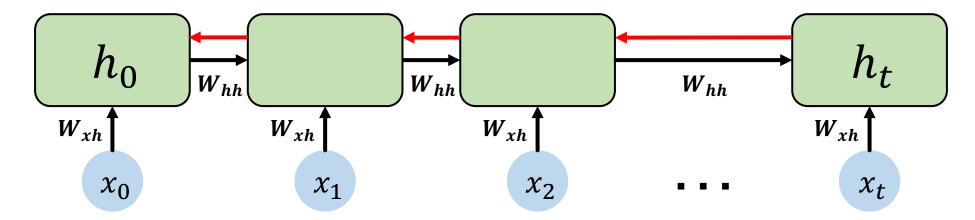


Computing the gradient wrt  $h_0$  involves many factors of  $W_{hh}$  (and repeated f'!)

| Many values > 1:<br><b>exploding gradients</b> |
|------------------------------------------------|
|                                                |



# Standard RNN gradient flow: exploding gradients

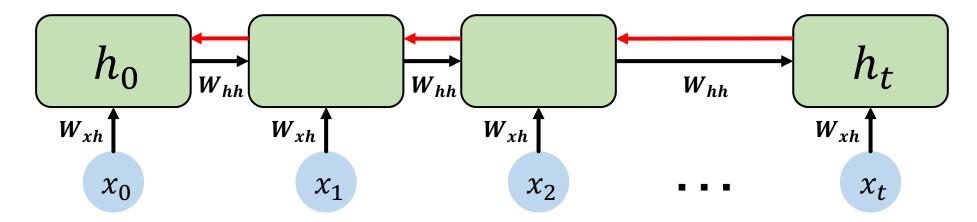


Computing the gradient wrt  $h_0$  involves many factors of  $W_{hh}$  (and repeated f'!)

| Many values > 1:<br><b>exploding gradients</b>  |
|-------------------------------------------------|
| <b>Gradient clipping</b> to scale big gradients |

[1]

# Standard RNN gradient flow: vanishing gradients



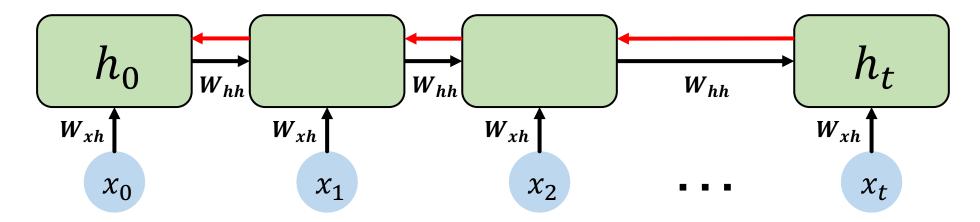
Computing the gradient wrt  $h_0$  involves many factors of  $W_{hh}$  (and repeated f'!)

| Many values > 1:<br><b>exploding gradients</b>  |  |
|-------------------------------------------------|--|
| <b>Gradient clipping</b> to scale big gradients |  |

Many values < 1: vanishing gradients

[|]

# Standard RNN gradient flow: vanishing gradients



Computing the gradient wrt  $h_0$  involves many factors of  $W_{hh}$  (and repeated f'!)

| Many values > 1:<br>exploding gradients         |  |
|-------------------------------------------------|--|
| <b>Gradient clipping</b> to scale big gradients |  |

Many values < 1: vanishing gradients

- I. Activation function
- 2. Weight initialization
- 3. Network architecture

[1]

Why are vanishing gradients a problem?



Why are vanishing gradients a problem?

Multiply many small numbers together



Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients



Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias network to capture short-term dependencies



". "The clouds are in the \_\_\_\_"

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias network to capture short-term dependencies

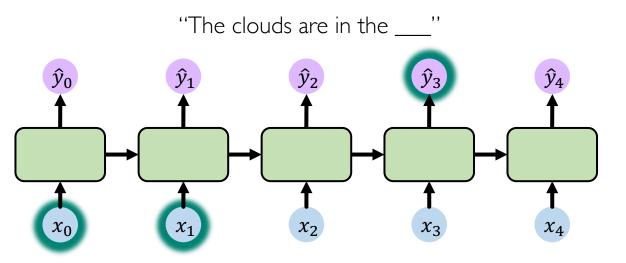


Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies



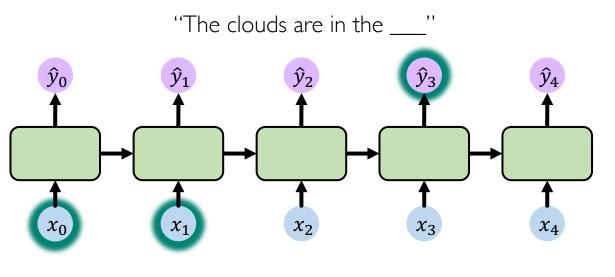


Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies



"' "I grew up in France, ... and I I speak fluent\_\_\_\_"

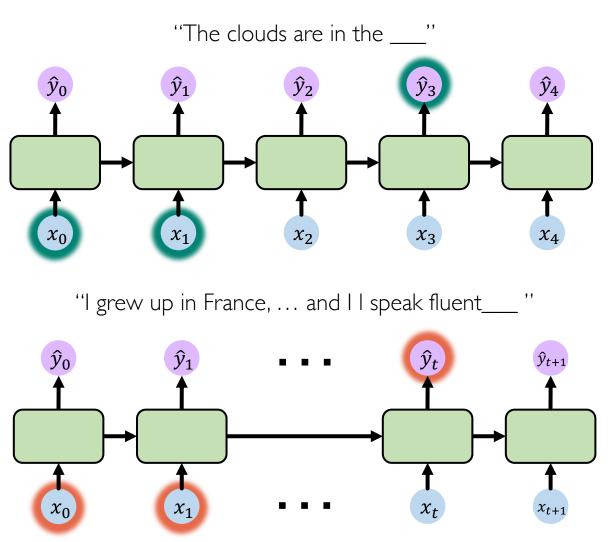


Why are vanishing gradients a problem?

Multiply many small numbers together

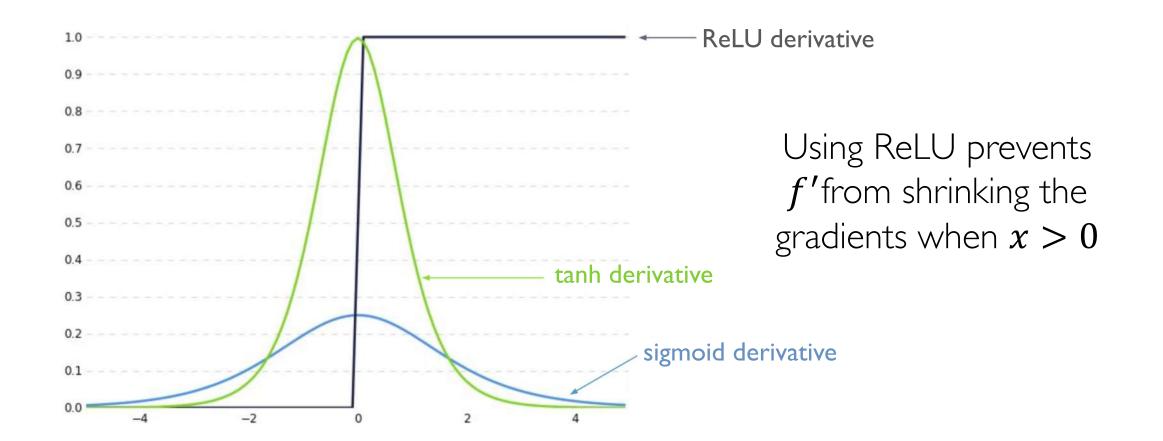
Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

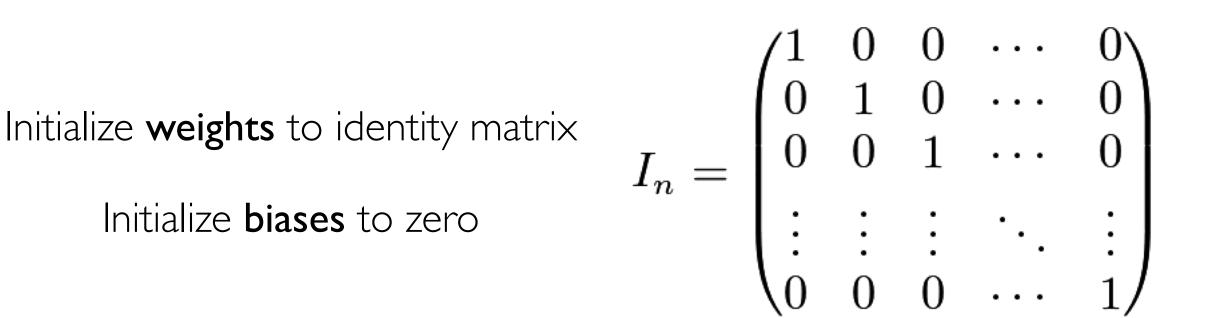




#### Trick #1: activation functions



#### Trick #2: parameter initialization

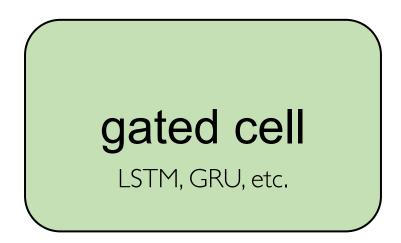


#### This helps prevent the weights from shrinking to zero.



# Solution #3: gated cells

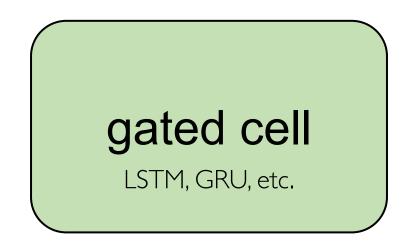
Idea: use a more **complex recurrent unit with gates** to control what information is passed through





# Solution #3: gated cells

Idea: use a more **complex recurrent unit with gates** to control what information is passed through

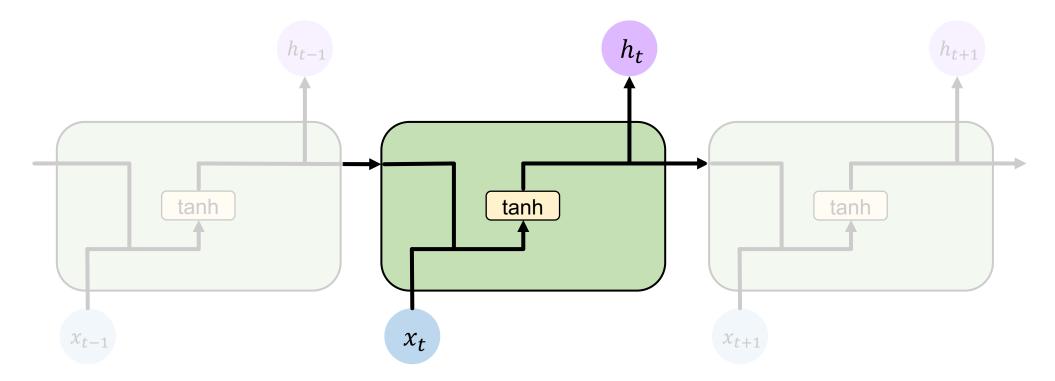


Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.



# Standard RNN

In a standard RNN, repeating modules contain a **simple computation node** 

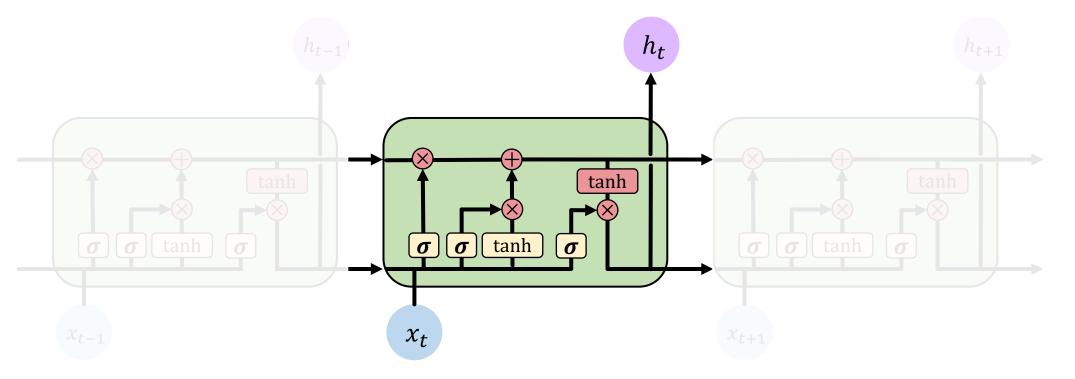




[2]

# Long Short Term Memory (LSTMs)

LSTM repeating modules contain **interacting layers** that **control information flow** 



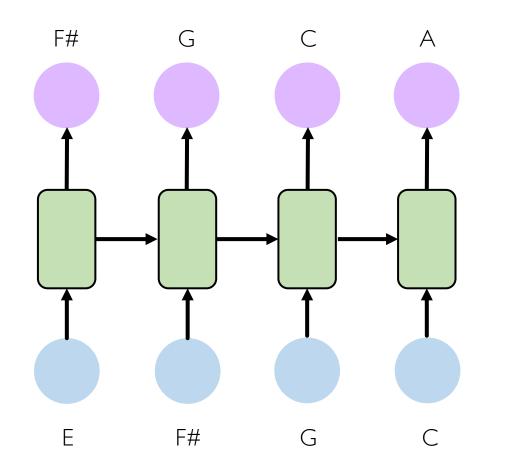
LSTM cells are able to track information throughout many timesteps



Hochreiter & Schmidhuber, 1997 [2, 5]

**RNN** Applications

#### Example task: music generation



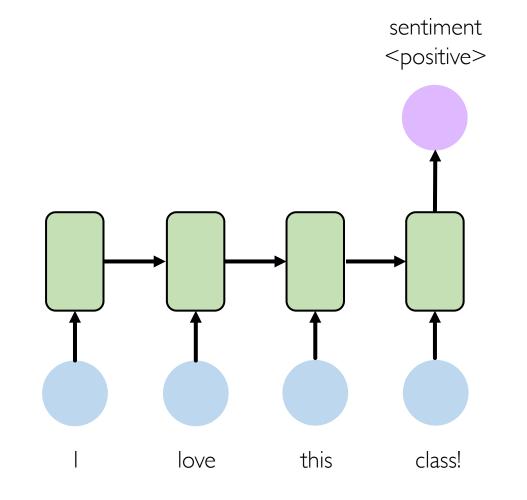
**Input:** sheet music

**Output:** next character in sheet music





# Example task: sentiment classification



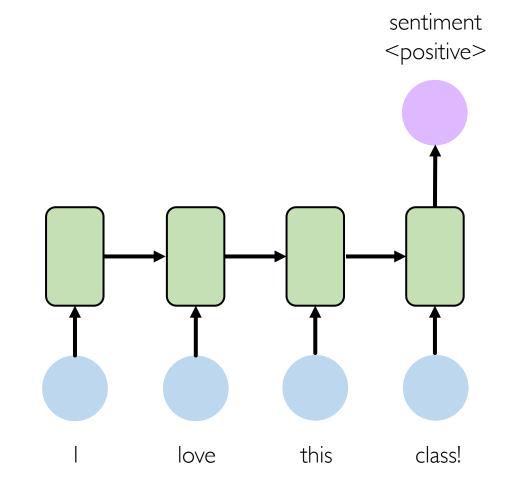
| Input:  | sequence of words                        |
|---------|------------------------------------------|
| Output: | probability of having positive sentiment |

Adapted from H. Suresh, 6.5191 2018



[7]

# Example task: sentiment classification



#### **Tweet sentiment classification**



Follow

The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online introtodeeplearning.com

12:45 PM - 12 Feb 2018





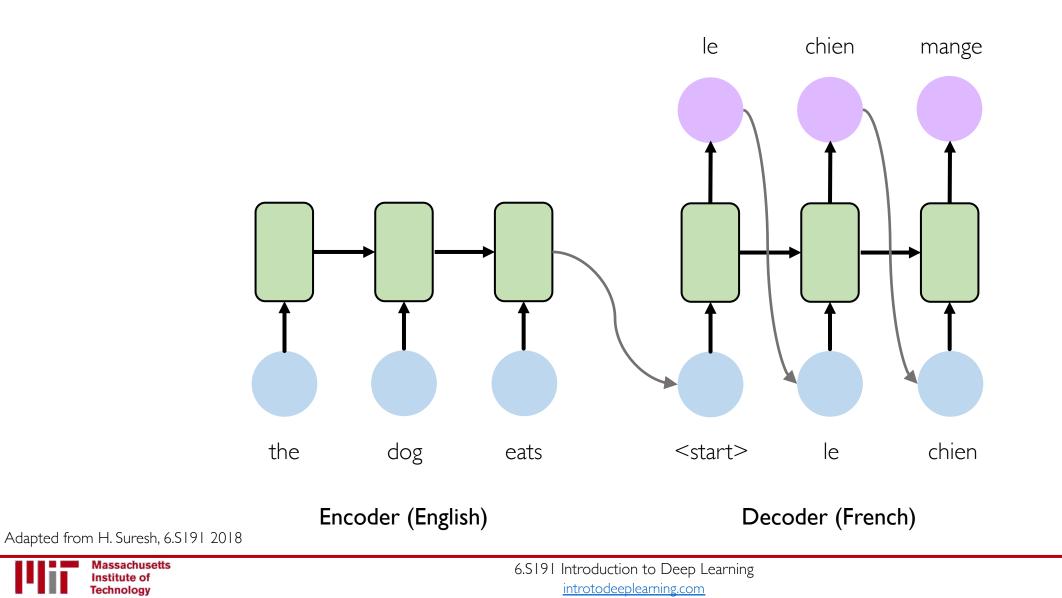
Replying to @Kazuki2048

I wouldn't mind a bit of snow right now. We haven't had any in my bit of the Midlands this winter! :(

2:19 AM - 25 Jan 2019



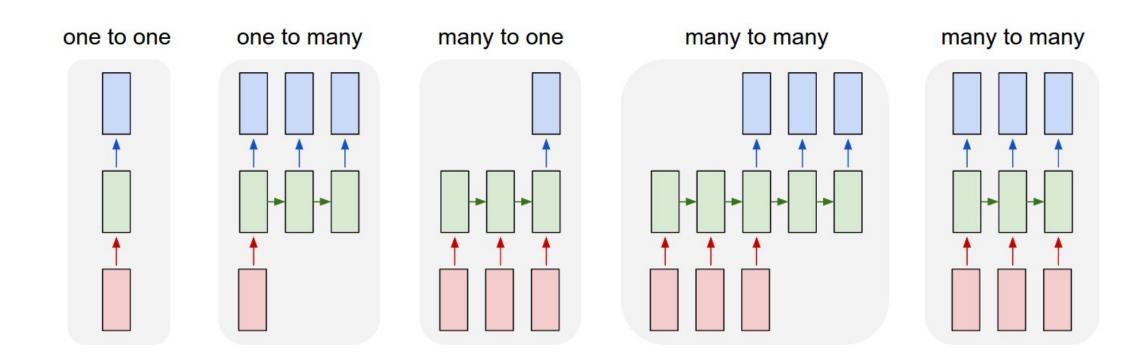
#### Example task: machine translation



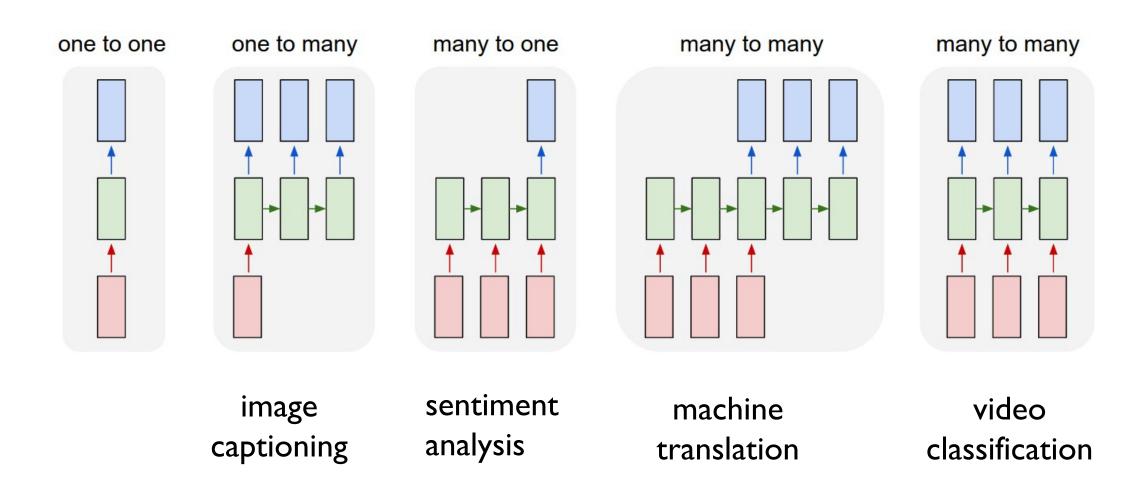
1/28/19

[8,9]

# Different designs



# Different designs



res: Andrej Karpathy

# Recurrent neural networks (RNNs)

- RNNs are well suited for sequence modeling tasks
- 2. Model sequences via a recurrence relation
- Training RNNs with backpropagation through time 3.
- 4. Models for caption generation, classification, machine translation

