K-means Clustering

Morteza H. Chehreghani
morteza. chehreghani@chalmers.se
Department of Computer Science and Engineering Chalmers University

May 14, 2020

Unsupervised learning

- Everything we've seen so far has been supervised
- We were given a set of \mathbf{x}_{n} and associated label/target variable t_{n} (sometimes shown by y_{n}).

Unsupervised learning

- Everything we've seen so far has been supervised
- We were given a set of \mathbf{x}_{n} and associated label/target variable t_{n} (sometimes shown by y_{n}).
- What if we just have \mathbf{x}_{n} ?
- For example:
- \mathbf{x}_{n} is a binary vector indicating products customer n has bought.
- Can group customers that buy similar products.
- Can group products bought together.

Unsupervised learning

- Everything we've seen so far has been supervised
- We were given a set of \mathbf{x}_{n} and associated label/target variable t_{n} (sometimes shown by y_{n}).
- What if we just have \mathbf{x}_{n} ?
- For example:
- x_{n} is a binary vector indicating products customer n has bought.
- Can group customers that buy similar products.
- Can group products bought together.
- Known as Clustering
- And is an example of unsupervised learning.

Unsupervised learning

- Everything we've seen so far has been supervised
- We were given a set of \mathbf{x}_{n} and associated label/target variable t_{n} (sometimes shown by y_{n}).
- What if we just have \mathbf{x}_{n} ?
- For example:
- \mathbf{x}_{n} is a binary vector indicating products customer n has bought.
- Can group customers that buy similar products.
- Can group products bought together.
- Known as Clustering
- And is an example of unsupervised learning. Supervised Learning is just the icing on the cake which is unsupervised learning. Yann Le Cun, NIPS 2016

Clustering

- In this example each object has two attributes:

$$
\mathbf{x}_{n}=\left[x_{n 1}, x_{n 2}\right]^{\top}
$$

- Left: data.
- Right: data after clustering (points coloured according to cluster membership).

What we'll cover

- 2 algorithms:
- K-means
- Mixture models
- The two are somewhat related.
- We'll also see how K-means can be kernelised.

What we'll cover

- 2 algorithms:
- K-means
- Mixture models
- The two are somewhat related.
- We'll also see how K-means can be kernelised.

K-means

- Assume that there are K clusters.
- Each cluster is defined by a position in the input space:

$$
\boldsymbol{\mu}_{k}=\left[\mu_{k 1}, \mu_{k 2}\right]^{\top}
$$

K-means

- Assume that there are K clusters.
- Each cluster is defined by a position in the input space:

$$
\boldsymbol{\mu}_{k}=\left[\mu_{k 1}, \mu_{k 2}\right]^{\top}
$$

- Each \mathbf{x}_{n} is assigned to its closest cluster:

K-means

- Assume that there are K clusters.
- Each cluster is defined by a position in the input space:

$$
\boldsymbol{\mu}_{k}=\left[\mu_{k 1}, \mu_{k 2}\right]^{\top}
$$

- Each \mathbf{x}_{n} is assigned to its closest cluster:

- Distance is normally Euclidean distance:

$$
d_{n k}=\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

How do we find $\boldsymbol{\mu}_{k}$?

- No analytical solution - we can't write down $\boldsymbol{\mu}_{k}$ as a function of \mathbf{X}.
- Use an iterative algorithm:

How do we find $\boldsymbol{\mu}_{k}$?

- No analytical solution - we can't write down $\boldsymbol{\mu}_{k}$ as a function of \mathbf{X}.
- Use an iterative algorithm:

1. Guess $\mu_{1}, \mu_{2}, \ldots, \mu_{K}$

How do we find $\boldsymbol{\mu}_{k}$?

- No analytical solution - we can't write down $\boldsymbol{\mu}_{k}$ as a function of \mathbf{X}.
- Use an iterative algorithm:

1. Guess $\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{K}$
2. Assign each \mathbf{x}_{n} to its closest $\boldsymbol{\mu}_{k}$

How do we find $\boldsymbol{\mu}_{k}$?

- No analytical solution - we can't write down $\boldsymbol{\mu}_{k}$ as a function of \mathbf{X}.
- Use an iterative algorithm:

1. Guess $\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{K}$
2. Assign each \mathbf{x}_{n} to its closest $\boldsymbol{\mu}_{k}$
3. $z_{n k}=1$ if \mathbf{x}_{n} assigned to $\boldsymbol{\mu}_{k}$ (0 otherwise)

How do we find $\boldsymbol{\mu}_{k}$?

- No analytical solution - we can't write down $\boldsymbol{\mu}_{k}$ as a function of \mathbf{X}.
- Use an iterative algorithm:

1. Guess $\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{K}$
2. Assign each \mathbf{x}_{n} to its closest $\boldsymbol{\mu}_{k}$
3. $z_{n k}=1$ if \mathbf{x}_{n} assigned to $\boldsymbol{\mu}_{k}$ (0 otherwise)
4. Update $\boldsymbol{\mu}_{k}$ to average of $\mathbf{x}_{n} \mathrm{~s}$ assigned to $\boldsymbol{\mu}_{k}$:

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n=1}^{N} z_{n k} \mathbf{x}_{n}}{\sum_{n=1}^{N} z_{n k}}
$$

How do we find $\boldsymbol{\mu}_{k}$?

- No analytical solution - we can't write down $\boldsymbol{\mu}_{k}$ as a function of \mathbf{X}.
- Use an iterative algorithm:

1. Guess $\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{K}$
2. Assign each \mathbf{x}_{n} to its closest $\boldsymbol{\mu}_{k}$
3. $z_{n k}=1$ if \mathbf{x}_{n} assigned to $\boldsymbol{\mu}_{k}$ (0 otherwise)
4. Update $\boldsymbol{\mu}_{k}$ to average of $\mathbf{x}_{n} s$ assigned to $\boldsymbol{\mu}_{k}$:

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n=1}^{N} z_{n k} \mathbf{x}_{n}}{\sum_{n=1}^{N} z_{n k}}
$$

5. Return to 2 until assignments do not change.

How do we find $\boldsymbol{\mu}_{k}$?

- No analytical solution - we can't write down $\boldsymbol{\mu}_{k}$ as a function of \mathbf{X}.
- Use an iterative algorithm:

1. Guess $\mu_{1}, \mu_{2}, \ldots, \mu_{K}$
2. Assign each \mathbf{x}_{n} to its closest $\boldsymbol{\mu}_{k}$
3. $z_{n k}=1$ if \mathbf{x}_{n} assigned to μ_{k} (0 otherwise)
4. Update $\boldsymbol{\mu}_{k}$ to average of $\mathbf{x}_{n} \mathrm{~s}$ assigned to $\boldsymbol{\mu}_{k}$:

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n=1}^{N} z_{n k} \mathbf{x}_{n}}{\sum_{n=1}^{N} z_{n k}}
$$

5. Return to 2 until assignments do not change.

- Algorithm will converge....it will reach a point where the assignments don't change.

K-means - example

- Cluster means randomly assigned (top left).
- Points assigned to their closest mean.

K-means - example

- Cluster means updated to mean of assigned points.

K-means - example

- Points re-assigned to closest mean.

K-means - example

- Cluster means updated to mean of assigned points.

K-means - example

- Assign point to closest mean.

K-means - example

- Update mean.

K-means - example

- Assign point to closest mean.

K-means - example

- Update mean.

K-means - example

- Assign point to closest mean.

K-means - example

- Update mean.

K-means - example

- Assign point to closest mean.

K-means - example

- Update mean.

K-means - example

- Assign point to closest mean.

K-means - example

- Update mean.

K-means - example

- Solution at convergence.

K-means - Cost Function

- Simple (and effective) clustering strategy.
- Converges to (local) minima of:

$$
\sum_{n} \sum_{k} z_{n k}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

- under which conditions?

K-means - Cost Function

- Simple (and effective) clustering strategy.
- Converges to (local) minima of:

$$
\sum_{n} \sum_{k} z_{n k}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

such that: $z_{n k} \in\{0,1\}$,

$$
\sum_{k} z_{n k}=1, \forall n .
$$

Two Issues with K-Means

Two Issues with K-Means

- What value of K should we use?

Two Issues with K-Means

- What value of K should we use?
- How should we pick the initial centers?

Two Issues with K-Means

- What value of K should we use?
- How should we pick the initial centers?
- Both these significantly affect resulting clustering.

Initializing Centers

Initializing Centers

- Pick K random points.

Initializing Centers

- Pick K random points.
- Pick K points at random from input points.

Initializing Centers

- Pick K random points.
- Pick K points at random from input points.
- Assign points at random to K groups and then take centers of these groups.

Initializing Centers

- Pick K random points.
- Pick K points at random from input points.
- Assign points at random to K groups and then take centers of these groups.
- Pick a random input point for first center, next center at a point as far away from this as possible, next as far away from first two ...

k-Means++ (D. Arthur and S. Vassilvitskii (2007)

- Start with $C_{1}:=\{\mathbf{x}\}$ where \mathbf{x} is chosen at random from input points.
- For $i \geq 2$, pick a new point \mathbf{x} according to a probability distribution ν_{i} :

$$
\nu_{i}(\mathbf{x})=\frac{d^{2}\left(\mathbf{x}, C_{i-1}\right)}{\sum_{\mathbf{x}^{\prime}} d^{2}\left(\mathbf{x}^{\prime}, C_{i-1}\right)}
$$

$$
\text { and set } C_{i}:=C_{i-1} \cup\{\mathbf{x}\} .
$$

Gives a provably good $O(\log n)$ approximation to optimal clustering.

Choosing k

- Intra-cluster variance:

$$
W_{k}:=\frac{1}{\left|C_{k}\right|} \sum_{\mathbf{x} \in C_{k}}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{2}
$$

- $W:=\sum_{k} W_{k}$.
- Pick k to minimize W_{k}
- Elbow heuristic, Gap Statistic ...

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

$$
\min _{\mu} \sum_{i}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}(i)\right\|^{2}+\lambda \sum_{p, q: p<q}\left\|\mu_{p}-\mu_{q}\right\|_{2} .
$$

where $\boldsymbol{\mu}(i)$ indicates the centroid of the cluster that \mathbf{x}_{i} is assigned to.

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

$$
\min _{\boldsymbol{\mu}} \sum_{i}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}(i)\right\|^{2}+\lambda \sum_{p, q: p<q}\left\|\boldsymbol{\mu}_{p}-\boldsymbol{\mu}_{q}\right\|_{2}
$$

where $\boldsymbol{\mu}(i)$ indicates the centroid of the cluster that \mathbf{x}_{i} is assigned to.

- If you take only first term ...

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

$$
\min _{\boldsymbol{\mu}} \sum_{i}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}(i)\right\|^{2}+\lambda \sum_{p, q: p<q}\left\|\boldsymbol{\mu}_{p}-\boldsymbol{\mu}_{q}\right\|_{2}
$$

where $\boldsymbol{\mu}(i)$ indicates the centroid of the cluster that \mathbf{x}_{i} is assigned to.

- If you take only first term ...
- $\ldots \boldsymbol{\mu}(i)=\mathbf{x}_{i}$ for all i (thus, $K=N$).

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

$$
\min _{\boldsymbol{\mu}} \sum_{i}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}(i)\right\|^{2}+\lambda \sum_{p, q: p<q}\left\|\boldsymbol{\mu}_{p}-\boldsymbol{\mu}_{q}\right\|_{2}
$$

where $\boldsymbol{\mu}(i)$ indicates the centroid of the cluster that \mathbf{x}_{i} is assigned to.

- If you take only first term ...
- $\ldots \boldsymbol{\mu}(i)=\mathbf{x}_{i}$ for all i (thus, $K=N$).
- If you take only second term ...

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

$$
\min _{\boldsymbol{\mu}} \sum_{i}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}(i)\right\|^{2}+\lambda \sum_{p, q: p<q}\left\|\boldsymbol{\mu}_{p}-\boldsymbol{\mu}_{q}\right\|_{2}
$$

where $\boldsymbol{\mu}(i)$ indicates the centroid of the cluster that \mathbf{x}_{i} is assigned to.

- If you take only first term ...
- $\ldots \boldsymbol{\mu}(i)=\mathbf{x}_{i}$ for all i (thus, $K=N$).
- If you take only second term ...
- $\ldots \boldsymbol{\mu}_{p}=\boldsymbol{\mu}_{q}$ for all p, q (thus, $K=1$).

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

$$
\min _{\mu} \sum_{i}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}(i)\right\|^{2}+\lambda \sum_{p, q: p<q}\left\|\mu_{p}-\mu_{q}\right\|_{2} .
$$

where $\boldsymbol{\mu}(i)$ indicates the centroid of the cluster that \mathbf{x}_{i} is assigned to.

- If you take only first term ...
- $\ldots \boldsymbol{\mu}(i)=\mathbf{x}_{i}$ for all i (thus, $K=N$).
- If you take only second term ...
- $\ldots \boldsymbol{\mu}_{p}=\boldsymbol{\mu}_{q}$ for all p, q (thus, $K=1$).
- By varying λ, we steer between these two extremes.

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

$$
\min _{\mu} \sum_{i}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}(i)\right\|^{2}+\lambda \sum_{p, q: p<q}\left\|\mu_{p}-\mu_{q}\right\|_{2} .
$$

where $\boldsymbol{\mu}(i)$ indicates the centroid of the cluster that \mathbf{x}_{i} is assigned to.

- If you take only first term ...
- $\ldots \boldsymbol{\mu}(i)=\mathbf{x}_{i}$ for all i (thus, $K=N$).
- If you take only second term ...
- $\ldots \boldsymbol{\mu}_{p}=\boldsymbol{\mu}_{q}$ for all p, q (thus, $K=1$).
- By varying λ, we steer between these two extremes.
- Do not need to know K in advance and do not need to do careful initialization.

When does K-means break?

- Data has clear cluster structure.
- Outer cluster can not be represented as a single point.

When does K-means break?

- Data has clear cluster structure.
- Outer cluster can not be represented as a single point.

Kernelising K-means

- Maybe we can kernelise K-means?
- Distances:

$$
\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

Kernelising K-means

- Maybe we can kernelise K-means?
- Distances:

$$
\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

- Cluster means:

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{m=1}^{N} z_{m k} \mathbf{x}_{m}}{\sum_{m=1}^{N} z_{m k}}
$$

Kernelising K-means

- Maybe we can kernelise K-means?
- Distances:

$$
\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

- Cluster means:

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{m=1}^{N} z_{m k} \mathbf{x}_{m}}{\sum_{m=1}^{N} z_{m k}}
$$

- Distances can be written as (defining $N_{k}=\sum_{n} z_{n k}$):

$$
\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)=\left(\mathbf{x}_{n}-N_{k}^{-1} \sum_{m=1}^{N} z_{m k} \mathbf{x}_{m}\right)^{\top}\left(\mathbf{x}_{n}-N_{k}^{-1} \sum_{m=1}^{N} z_{m k} \mathbf{x}_{m}\right)
$$

Kernelising K-means

- Multiply out:

$$
\mathbf{x}_{n}^{\top} \mathbf{x}_{n}-2 N_{k}^{-1} \sum_{m=1}^{N} z_{m k} \mathbf{x}_{m}^{\top} \mathbf{x}_{n}+N_{k}^{-2} \sum_{m, l} z_{m k} z_{l k} \mathbf{x}_{m}^{\top} \mathbf{x}_{l}
$$

Kernelising K-means

- Multiply out:

$$
\mathbf{x}_{n}^{\top} \mathbf{x}_{n}-2 N_{k}^{-1} \sum_{m=1}^{N} z_{m k} \mathbf{x}_{m}^{\top} \mathbf{x}_{n}+N_{k}^{-2} \sum_{m, l} z_{m k} z_{l k} \mathbf{x}_{m}^{\top} \mathbf{x}_{l}
$$

- Kernel substitution:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)-2 N_{k}^{-1} \sum_{m=1}^{N} z_{m k} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)+N_{k}^{-2} \sum_{m, l=1}^{N} z_{m k} z_{l k} k\left(\mathbf{x}_{m}, \mathbf{x}_{l}\right)
$$

Kernel K-means

- Algorithm:

1. Choose a kernel and any necessary parameters.

Kernel K-means

- Algorithm:

1. Choose a kernel and any necessary parameters.
2. Start with random assignments $z_{n k}$.

Kernel K-means

- Algorithm:

1. Choose a kernel and any necessary parameters.
2. Start with random assignments $z_{n k}$.
3. For each \mathbf{x}_{n} assign it to the nearest 'center' where distance is defined as:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)-2 N_{k}^{-1} \sum_{m=1}^{N} z_{m k} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)+N_{k}^{-2} \sum_{m, l=1}^{N} z_{m k} z_{l k} k\left(\mathbf{x}_{m}, \mathbf{x}_{l}\right)
$$

Kernel K-means

- Algorithm:

1. Choose a kernel and any necessary parameters.
2. Start with random assignments $z_{n k}$.
3. For each \mathbf{x}_{n} assign it to the nearest 'center' where distance is defined as:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)-2 N_{k}^{-1} \sum_{m=1}^{N} z_{m k} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)+N_{k}^{-2} \sum_{m, l=1}^{N} z_{m k} z_{l k} k\left(\mathbf{x}_{m}, \mathbf{x}_{l}\right)
$$

4. If assignments have changed, return to 3 .

Kernel K-means

- Algorithm:

1. Choose a kernel and any necessary parameters.
2. Start with random assignments $z_{n k}$.
3. For each \mathbf{x}_{n} assign it to the nearest 'center' where distance is defined as:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)-2 N_{k}^{-1} \sum_{m=1}^{N} z_{m k} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)+N_{k}^{-2} \sum_{m, l=1}^{N} z_{m k} z_{l k} k\left(\mathbf{x}_{m}, \mathbf{x}_{l}\right)
$$

4. If assignments have changed, return to 3 .

- Note - no μ_{k}. This would be $N_{k}^{-1} \sum_{n} z_{n k} \phi\left(\mathbf{x}_{n}\right)$ but we don't know $\phi\left(\mathbf{x}_{n}\right)$ for kernels. We only know $\phi\left(\mathbf{x}_{n}\right)^{\top} \phi\left(\mathbf{x}_{m}\right) \ldots$

Kernel K-means - example

- Solution at convergence.

Kernel K-means

- Makes simple K-means algorithm more flexible.
- But, have to now set additional parameters.
- Very sensitive to initial conditions - lots of local optima.

K-means - summary

- Simple (and effective) clustering strategy.

K-means - summary

- Simple (and effective) clustering strategy.
- Converges to (local) minima of:

$$
\sum_{n} \sum_{k} z_{n k}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

K-means - summary

- Simple (and effective) clustering strategy.
- Converges to (local) minima of:

$$
\sum_{n} \sum_{k} z_{n k}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

- Sensitive to initialisation.

K-means - summary

- Simple (and effective) clustering strategy.
- Converges to (local) minima of:

$$
\sum_{n} \sum_{k} z_{n k}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

- Sensitive to initialisation.
- How do we choose K?
- Tricky, several heuristics have been proposed.
- Can we use CV (Cross-Validation)?
- The Sum of Norms method.

Mixture models - thinking generatively

- Could we hypothesis a model that could have created this data?

Mixture models - thinking generatively

- Could we hypothesis a model that could have created this data?
- Each x_{n} seems to have come from one of three distributions.

