(Gaussian) Mixture Models and the
 Expectation Maximization Algorithm

Morteza Chehreghani
Chalmers University of Technology

May 19, 2020

Review of the Last Week

K-means objective corresponds to optimizing the following problem

$$
\begin{aligned}
\min _{\boldsymbol{\mu}, \mathbf{Z}} R(\boldsymbol{\mu}, \mathbf{Z} ; \mathbf{X}) & =\min _{\boldsymbol{\mu}, \mathbf{Z}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{n k}\left\|\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2} \\
\text { s.t. } & z_{n k} \in\{0,1\} \text { and } \sum_{k=1}^{K} z_{n k}=1 \forall n .
\end{aligned}
$$

Where,

$$
\begin{aligned}
& \mathbf{X}=\left[\mathbf{x}_{1} ; \cdots ; \mathbf{x}_{N}\right] \in \mathbb{R}^{N \times D}, \\
& \boldsymbol{\mu}=\left[\boldsymbol{\mu}_{1} ; \cdots ; \boldsymbol{\mu}_{K}\right] \in \mathbb{R}^{K \times D} \text { and } \\
& \mathbf{Z} \in\{0,1\}^{N \times K} .
\end{aligned}
$$

From Hard to Soft Clustering

- Relax the 'hard' constraint given by

$$
z_{n k} \in\{0,1\}, \sum_{k=1}^{K} z_{n k}=1
$$

- and replace it by a 'soft' constraint:

$$
z_{n k} \in[0,1], \sum_{k=1}^{K} z_{n k}=1
$$

- The centroids are the weighted mean of the data points.

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n=1}^{N} z_{n k} \mathbf{x}_{\mathbf{n}}}{\sum_{n=1}^{N} z_{n k}}
$$

From Single to Mixture Models

Old Faithful data set includes 272 measurements of eruptions of the Old Faithful geyser at Yellowstone National Park. Each measurement consists of

- the duration of the eruption in minutes;
- the time in minutes to the next eruption.

From Single to Mixture Models

Plots of the 'old faithful' data

- Horizontal axis: the duration of the eruption in minutes.
- Vertical axis: the time in minutes to the next eruption.

(a) Modeling data with a single Gaussian distribution fitted by maximum likelihood

(b) Modeling data by a linear combination of two Gaussians fitted by maximum likelihood

Gaussian Distrbution (1-dim)

- Sample space $\mathcal{X}=\mathbb{R}$
- Definition:

$$
p(x \mid \mu, \sigma):=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- Statistics:

$$
\mathrm{E}[X]:=\mu, \operatorname{Var}[X]:=\sigma^{2}
$$

Gaussian Distrbution (D-dim)

- Sample space $\mathcal{X}=\mathbb{R}^{D}, \mathbf{x}=\left(x_{1}, . ., x_{D}\right)^{\top}$
- Definition:
$p(\mathbf{x} \mid \mu, \Sigma):=\frac{1}{(\sqrt{2 \pi})^{D}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu)\right)$
where Σ is the covariance matrix and $|\Sigma|$ is its determinant

Introduction to Mixture Models

- Mixture of K probability densities is defined as

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} p\left(\mathbf{x} \mid \boldsymbol{\theta}_{k}\right)
$$

Each probability distribution $p\left(\mathbf{x} \mid \boldsymbol{\theta}_{k}\right)$ is a component of the mixture and has its own parameters $\boldsymbol{\theta}_{k}$.

- For a Gaussian component distribution the parameters $\boldsymbol{\theta}_{k}$ are given by the mean $\boldsymbol{\mu}_{k}$ and the covariance $\boldsymbol{\Sigma}_{k}$.

Elements of Mixture Models

Mixture models are constructed from:

- Component distributions of the form $p\left(\mathbf{x} \mid \boldsymbol{\theta}_{k}\right)$.
- Mixing coefficients π_{k} that give the probability of each component.

In order for $p(\mathbf{x})$ to be a proper distribution, we have to ensure that

$$
\sum_{k=1}^{K} \pi_{k}=1 \quad \text { and } \quad \pi_{k} \geq 0,1 \leq k \leq K
$$

Therefore, the parameters $\pi_{k}, 1 \leq k \leq K$ define a categorical distribution representing the probability of each component.

Gaussian Mixture Model

The Gaussian Mixture Model (GMM) uses Gaussians as the component distributions.

The distribution (of a particular point \mathbf{x}) is witten as

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- Given data points $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$, the goal is to learn (estimate) the unknown parameters $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$, and π_{k} such that we approximate the data as good as possible.
- This is equivalent to finding the parameters that maximize the likelihood of the given data.

GMM: Generative Viewpoint

We assume that the the model parameters $\boldsymbol{\Sigma}, \boldsymbol{\mu}, \boldsymbol{\pi}$ are given.
Then, given those parameters, we sample the data \mathbf{x}_{n} as follows:

1. Sample a component (cluster) index k according to the probabilities π_{k}.
2. Sample a data point \mathbf{x}_{n} from the distribution $p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$.

Parameter estimation based on maximizing likelihood:
Revert this process: data is given, but the parameters are unknown and should be estimated.

Full Data Likelihood

We assume that the data points \mathbf{x}_{n} are independent and identically distributed (i.i.d.). The probability or likelihood of the observed data \mathbf{X}, given the parameters is then otained by

$$
p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\prod_{n=1}^{N} p\left(\mathbf{x}_{n}\right)=\prod_{n=1}^{N} \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k}\right)
$$

Maximum Log-Likelihood Formulation

Goal. find the parameters that maximize the likelihood of the data:

$$
(\widehat{\boldsymbol{\pi}}, \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}}) \in \underset{\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}}{\operatorname{argmax}} p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

To simplify the calculation we take the logarithm, such that the product becomes a sum:

$$
(\widehat{\boldsymbol{\pi}}, \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}}) \in \underset{\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\} .
$$

Maximum Log-Likelihood Estimation

- Want to solve:

$$
(\widehat{\boldsymbol{\pi}}, \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}}) \in \underset{\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

- Due to the presence of the summation over k inside the logarithm, the maximum likelihood solution for the parameters no longer has a closed-form analytic solution.

Maximum Log-Likelihood Estimation

- Want to solve:

$$
(\widehat{\boldsymbol{\pi}}, \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}}) \in \underset{\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\} .
$$

- Due to the presence of the summation over k inside the logarithm, the maximum likelihood solution for the parameters no longer has a closed-form analytic solution.
- We employ an elegant powerful algorithmic technique, called Expectation Maximization.

Maximum Log-Likelihood Estimation

- We want to solve:

$$
(\widehat{\boldsymbol{\pi}}, \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}}) \in \underset{\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\} .
$$

- Due to the presence of the summation over k inside the logarithm, the maximum likelihood solution for the parameters no longer has a closed-form analytic solution.
- We employ an elegant powerful algorithmic technique, called Expectation Maximization.
- Intuition: if we know to which clusters the data points are assigned, then computing the maximum likelihood estimate becomes straightforward.
- Hence: we introduce a latent (or hidden) variable for the assignment of data points to clusters.

Latent Variables

- Define K-dimensional binary random variable \mathbf{z} with a 1 -of- K representation.
- Only one element of \mathbf{z} is equal to 1 and all other elements are 0 , i.e.,

$$
z_{k} \in\{0,1\}, \quad \sum_{k} z_{k}=1
$$

Latent Variables

- Define K-dimensional binary random variable \mathbf{z} with a 1 -of- K representation.
- Only one element of \mathbf{z} is equal to 1 and all other elements are 0 , i.e.,

$$
z_{k} \in\{0,1\}, \quad \sum_{k} z_{k}=1
$$

- The marginal (prior) distribution over \mathbf{z} is specified in terms of the mixing coefficients π_{k}, i.e.,

$$
p\left(z_{k}=1\right)=\pi_{k} .
$$

Latent Variables and Likelihood

- z uses a 1-of- K representation. Thus, we write this distribution in the form of:

$$
p(\mathbf{z})=\prod_{k=1}^{K} \pi_{k}^{z_{k}}
$$

- Also, the conditional distribution (likelihood) of x given a particular instantiation (value) of \mathbf{z} is a Gaussian distribution

$$
p\left(\mathbf{x} \mid z_{k}=1\right)=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- Therefore, we have:

$$
p(\mathbf{x} \mid \mathbf{z})=\prod_{k=1}^{K} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)^{z_{k}}
$$

Latent Variables and Likelihood

The distribution of x can be obtained by summing the joint distribution over all possible states of \mathbf{z} to yield:

$$
p(\mathbf{x})=\sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

For the full data log-likelihood we have:

$$
\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

In the following, for the simplicity of prsentation, we assume that the covariances Σ are given (we do not need to estimate them).

Responsibilities

- $\gamma\left(z_{n k}\right)$: probability of assigning a data point to a cluster

$$
\gamma\left(z_{n k}\right):=p\left(z_{n k}=1 \mid \mathbf{x}_{n}\right)
$$

- Remember the generative viewpoint!
- We shall view π_{k} as the prior probability of $z_{n k}=1$, and the quantity $\gamma\left(z_{n k}\right)$ as the corresponding posterior probability once we have observed \mathbf{x}_{n}.

Overview of Expectation-Maximization

- We want to solve:

$$
(\widehat{\boldsymbol{\pi}}, \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}}) \in \underset{\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\} .
$$

- Due to the presence of the summation over k inside the logarithm, the maximum likelihood solution for the parameters no longer has a closed-form analytic solution.
- We employ an elegant powerful algorithmic technique, called Expectation Maximization.

Overview of Expectation-Maximization

- We employ an elegant powerful algorithmic technique, called Expectation Maximization.
- First, we select some initial values for the means and mixing coefficients. Then, we alternate between the following two updates called the E (expectation) step and the M (maximization) step:

1. In the expectation step, the current values for the model parameters are used to compute the posterior probabilities (responsibilities) $\gamma\left(z_{n k}\right)$.
2. In the maximization step, the responsibilities are used to estimate the model parameters (e.g., means and mixing coefficients).

Expectation Step (E Step)

- $\gamma\left(z_{n k}\right)$: probability of assigning \mathbf{x}_{n} to the k 's cluster

$$
\gamma\left(z_{n k}\right):=p\left(z_{n k}=1 \mid \mathbf{x}_{n}\right)
$$

Bayes' rule
The conditional probability of A given B (posterior) can be obtained by:

$$
p(A \mid B)=\frac{p(A) p(B \mid A)}{p(B)}
$$

We call $p(A)$ prior, $p(B \mid A)$ likelihood and $p(B)$ evidence.

Expectation Step (E Step)

Bayes' rule
The conditional probability of A given B (posterior) can be obtained by:

$$
p(A \mid B)=\frac{p(A) p(B \mid A)}{p(B)}
$$

We call $p(A)$ prior, $p(B \mid A)$ likelihood and $p(B)$ evidence.
$\gamma\left(z_{n k}\right):=p\left(z_{n k}=1 \mid \mathbf{x}_{n}\right)=?$
We use the Bayes' rule to get

$$
\begin{aligned}
\gamma\left(z_{n k}\right):=p\left(z_{n k}=1 \mid \mathbf{x}_{n}\right) & =\frac{p\left(z_{n k}=1\right) p\left(\mathbf{x}_{n} \mid z_{n k}=1\right)}{\sum_{j=1}^{K} p\left(z_{n j}=1\right) p\left(\mathbf{x}_{n} \mid z_{n j}=1\right)} \\
& =\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
\end{aligned}
$$

Estimating the Means (M Step)

- We set the derivatives of $\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with respect to the means $\boldsymbol{\mu}_{k}$ to zero, and obtain:

$$
0=\sum_{n=1}^{N} \underbrace{\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}}_{\gamma\left(z_{n k}\right)} \boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

- Assume that $\boldsymbol{\Sigma}_{k}$ is not signular. Multiplying by $\boldsymbol{\Sigma}_{k}$ we obtain

$$
\boldsymbol{\mu}_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(z_{n k}\right) \mathbf{x}_{n}, \quad N_{k}=\sum_{n=1}^{N} \gamma\left(z_{n k}\right)
$$

- The mean $\boldsymbol{\mu}_{k}$ is obtained by taking a weighted mean of all the points in the data set.

Estimating the Variances (M Step)

- If we set the derivative of $\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with respect to $\boldsymbol{\Sigma}_{k}$ to zero we obtain

$$
\boldsymbol{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(z_{n k}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
$$

Estimating the Coefficients (M Step)

- Maximizing $\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with respect to the mixing coefficients π_{k} and taking account of the constraint which requires the mixing coefficients to sum to one, leads to the following Lagrangian

$$
\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})+\lambda\left(\sum_{k=1}^{K} \pi_{k}-1\right)
$$

which gives

$$
\begin{aligned}
0 & =\sum_{n=1}^{N} \frac{\mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}+\lambda . \\
\Rightarrow & 0=\sum_{n=1}^{N} \gamma\left(z_{n k}\right)+\pi_{k} \lambda=N_{k}+\pi_{k} \lambda .
\end{aligned}
$$

Then, $\sum_{k=1}^{K} \pi_{k}=1$ leads to $\lambda=-N$. Thus,

$$
\pi_{k}=\frac{N_{k}}{N}
$$

Description of EM

Given a GMM, the goal is to maximize the likelihood function with respect to the parameters.

1. Initialize the means $\boldsymbol{\mu}_{k}$, and mixing coefficients π_{k}. Set the $\boldsymbol{\Sigma}_{k}$ to the given covariances.
2. E-step. Evaluate the responsibilities using the current parameter values

$$
\gamma\left(z_{n k}\right)=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
$$

3. M-step. Re-estimate the parameters using the current responsibilities

$$
\begin{aligned}
\boldsymbol{\mu}_{k} & =\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(z_{n k}\right) \mathbf{x}_{n} \\
\pi_{k} & =\frac{N_{k}}{N} \quad \text { where } \quad N_{k}=\sum_{n=1}^{N} \gamma\left(z_{n k}\right)
\end{aligned}
$$

4. Compute the log-likelihood and check for the convergence of either the parameters or the log-likelihood.

Example of EM for Gaussian Mixture Models

Illustration of the EM algorithm using the Old Faithful data set.

Figure: EM algorithm for mixture of two Gaussians. Note that here the covariance is also estimated (illustrated by the two ellipsoids).

EM and K-means Algorithm

- The K-means algorithm yileds a hard assignment of data points to clusters, but the EM algorithm performs a soft assignment based on the posterior probabilities.
- The K-means algorithm does not estimate the covariances of the clusters but only the cluster means.

EM and K-means Algorithm

- The EM algorithm takes many more iterations to reach convergence compared with the K-means algorithm, and each cycle requires significantly more computation.
- The K-means algorithm can be used to find a suitable initialization for a Gaussian mixture model.
- The covariance matrices can be initialized to the sample covariances of the clusters found by the K-means algorithm.
- The mixing coefficients can be set to the fractions of data points assigned to the respective clusters.
- There will generally be multiple local maxima of the log likelihood function, and EM is not guaranteed to find the largest of these maxima.

Model Order Selection: General Principle

Trade-off between two conflicting goals:
Data fit: We want to predict the data accurately, e.g., maximize the likelihood. The likelihood usually improves by increasing the number of clusters.

Complexity: Choose a model that is not very complex which is often measured by the number of free parameters.

Find a trade-off between these two goals!

Decreasing the data fit costs when increasing K

Negative Log-Likelihood of data for K mixture Gaussians:

$$
-\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

The smaller the negative log-likelihood, the better the fit.

AIC and BIC

Trade-off

Achieve balance between data fit (measured by likelihood $p(\mathbf{X} \mid$.$))$ and model complexity. Complexity can be measured by the number of free parameters c_{K}.

Different principles to choose K

- Akaike Information Criterion (AIC)

$$
A I C_{K}=-\ln p(\mathbf{X} \mid .)+c_{K}
$$

AIC and BIC

Trade-off

Obtain a balance between data fit (measured by likelihood $p(\mathbf{X} \mid$.$))$ and model complexity. Complexity can be measured by the number of free (unknown) parameters c_{K}.

Different principles to choose K

- Akaike Information Criterion (AIC)

$$
A I C_{K}=-\ln p(\mathbf{X} \mid \cdot)+c_{K}
$$

- Bayesian Information Criterion (BIC).

$$
B I C_{K}=-\ln p(\mathbf{X} \mid .)+\frac{1}{2} c_{K} \ln N
$$

AIC and BIC

Which one is more strict on the model complexity?

AIC and BIC

Which one is more strict on the model complexity?

- Usually (on a large anough dataset), the BIC criterion penalizes complexity more than AIC.

AIC and BIC: Remarks and Example

Analysis
A single AIC (BIC) result is meaningless. One has to repeat the analysis for different K s and compare the differences: the most suitable number of clusters corresponds to the smallest AIC (BIC) value.

Example (Mixture of Gaussians with full covariance matrices)
Number of free parameters c_{K} is (?)

AIC and BIC: Remarks and Example

Analysis

A single AIC (BIC) result is meaningless. One has to repeat the analysis for different K s and compare the differences: the most suitable number of clusters corresponds to the smallest AIC (BIC) value.

Example (Mixture of Gaussians)

Number of free parameters c_{K} is:

$$
c_{K}=K \cdot D+(K-1)+K \cdot D \cdot(D+1) / 2 .
$$

- K is the number of estimated clusters,
- D is the number of dimensions of the data

AIC and BIC: Remarks and Example

Example (Mixture of Gaussians)
What about if the covariance matrices are all known in advance?

AIC and BIC: Remarks and Example

Example (Mixture of Gaussians)
What about if the covariance matrices are all known in advance?

Number of free parameters is:

$$
c_{K}=K \cdot D+(K-1)
$$

AIC and BIC example: 3 clusters

Figure: Model order selection on synthetic datasets with 3 clusters. Synthetic data has smaller variance on the left than on the right.

AIC and BIC example: 5 clusters

Figure: Model order selection on a synthetic dataset with 5 clusters.

Reference

Christopher M. Bishop, Pattern Recognition and Machine Learning, Chapter 9.

