
Compiler construction
Lecture 2: So�ware Engineering for Compilers

Thomas Sewell
Spring 2020

Chalmers University of Technology — Gothenburg University



Today

Good so�ware engineering for this course and “real life”

• Structuring the project
• Is the compiler correct?
• Compiler bootstrapping
• Writing Make�les
• Managing state in compilers
• Using the assignment testsuite



Structuring the project



Compiler structure

Passes

• Lexer
• Parser
• Type checker
• Return checking1

• Code generator

Structuring passes

• In functional languages, a pass correspond to a function
• In OO style, a pass corresponds to a visitor method

• OO languages can also use functional style!

1Can be done as a separate pass or as part of the type checker



What you have to do

• Generate a lexer and parser using BNFC, you will have to
change the BNFC �le for JavaLette that we provide for you

• https://bnfc.digitalgrammars.com/

• Write typechecker
• Write code generator (parts B & C)
• Write a main function which connects the above pieces
together, and executes LLVM (parts B & C)

 https://bnfc.digitalgrammars.com/ 


Version control

• It is highly recommended that you use version control so�ware;
using version control so�ware is an essential practice when
developing code

• For example: git, darcs, subversion, mecurial, ...
• However, do not put your code in a public repository, where
others can see your code

• Use educational account for GitHub or BitBucket
• Alternative: use a Dropbox folder as a git remote (create a bare
repo)



Is the compiler correct?



Trusting the compiler

Bugs

When something goes wrong with our program, we go to great
lengths to �nd bugs in our own code.

• It’s extremely disappointing if the problem is with the compiler.

• Programmers trust the compiler to generate correct code
• The most important task of the compiler is to generate correct
code



Establishing compiler correctness

Options

• Proving the correctness of a compiler (too complicated?)
• Testing

Testing compilers

• Most compilers use unit testing
• They have a big collection of example programs which are used
for testing the compiler

• For each program the expected output is stored in the test suite
• Whenever a new bug is found, a new example program is added
to the test suite; this is known as regression testing

• (not the same as statisical regression testing)



Random testing & Fuzz testing

Instead of hand-writing all tests, we can use random values.

Challenge: we don’t know the correct output.

A/B testing: Compare similar things

• Test program A against known good program B
• e.g. during a major upgrade

Fuzz testing

• Simple random testing with nonsense “fuzz”
• Check that the program succeeds
• e.g. for a compiler, check the compiler terminates

• Reporting an error is OK
• Crashing, looping or raising an exception is not OK



More random testing

Property-based testing

• Specify (semi-formal) properties that so�ware should have
• Generate random inputs and check the properties

Example

propReverse :: [Int] -> [Int] -> Bool

propReverse xs ys =

reverse (xs ++ ys) == reverse ys ++ reverse xs

Prelude Test.QuickCheck> quickCheck propReverse

+++ OK, passed 100 tests.



Random testing for compilers

• Writing good random generators for a source language is very
di�cult

• Di�erent parts of the compiler might need di�erent generators
• The parser needs random strings, but they need to be skewed
towards syntactically correct programs in order to be useful

• The type checker needs a generator which can generate type
correct programs (with high probablity)

• How do we evaluate an output program? Run it? What if it takes
a very long time?

• Using random testing for compilers is di�cult and a lot of work
• This is an active research area



Testing your JavaLette compiler

Remember to test your compiler!

• Use the provided test suite!
• Write your own tests!



Compiler veri�cation

Hmm . . .

If systematic testing of compilers is so di�cult, why not look at the
other option:

Proving the correctness of compilers!

There will be a lecture on this topic later in the course.

Can’t wait? Talk to us:
Compiler veri�cation is our research topic, in particular for
non-pure functional programming languages.
Check out: https://cakeml.org MSc thesis topic?

https://cakeml.org


Compiler Bootstrapping



A real language

Some people say:

A programming language isn’t real until it has a self-hosting
compiler.

Why a self-hosting compiler?

If you’ve designed an awesome programming language, surely you
want to program in it.

In particular, you would want to write the compiler in this language.



The chicken and egg problem

If we want to write a compiler for the language X in the language X,
how does the �rst compiler get written?

Solutions

• Write an interpreter for language X in language Y
• Write another compiler for language X in language Y
• Write the compiler in a subset of X which is possible to compile
with an existing compiler

• Hand-compile the �rst compiler



Related Problems

Building on a new architecture

How to �rst build a compiler on a new hardware architecture?

Solution: cross-compilation

• The compiler can emit code for architecture A while running on
architecture B.

Tricky build processes

GCC, for example, builds and then rebuilds itself

• Necessary because many optional components are written
using GCC-speci�c C extensions.



Writing Make�les



Make

The build automation tool make is handy for compiling large
projects. It keeps track of which �les need to be recompiled.

A Make�le consists of rules which specify:

• Which target �le will be generated
• How these �les are generated

General structure of rules

target : dependencies ...

shell commands specifying how to generate target

Concrete example

compiler : parser.o typechecker.o

gcc -o compiler parser.o typechecker.o

parser.o : parser.c

gcc -c parser.c -o parser.o



Using make

Pattern rules

• Build rules tend to be repetitive
• e.g. each source �le builds an object �le

• Then pattern rules come in handy

%.o : %.c

gcc -c $< -o $@

Warning

• The space before the shell commands needs to be a tab stop!
• If you just use spaces then the commands will not execute



Using make

Invoking make

• make with no arguments will make the �rst target in the Make�le
• make X will try to build X and all of its dependencies as needed

Using PHONY rules

• Sometimes it is convenient to have targets which do not
produce �les

• A common example is clean which removes all generated �les
• These targets should be declared as PHONY

.PHONY clean

clean:

rm -f *.o



Summary of Make

• There are many more features to make, but these basics will get
you fairly far

• make (and the shell) have been with us a long time. They have
many �aws, but it is (still) good to know how to use them well

Project

• You are expected to use make in the project
• In the project you automatically get a Make�le from the BNFC
tool

• Don’t forget to make clean before packaging your solution for
submission

• It can be very convenient to have a target which automatically
makes a package for submission



Managing state in the compiler



OO vs functional implementation language

• When writing the type checker and code generator, the
compiler needs to store symbol tables with information about
e.g. the type of a variable

• This is handled di�erently when implementing the compiler in
an object-oriented language or a functional language

Object-oriented
In OO languages it is easy to manage state, simply by using a local
variable which is updated, or an object �eld.

Functional
In pure functional languages it can be tiresome to carry around
state. Here a state monad can conveniently deal with state.



The state monad

The state monad provides a convenient way to carrying around
state in Haskell.

data CompileState = ...

type CompileMonad a = State CompileState a



State transformer

For debugging purposes it is o�en convenient to use the state
monad transformer on top of the IO monad.

This allows for easily printing debug-information.

data CompileState = ...

type CompileMonad a = StateT CompileState IO a



Submission Guidelines



The Test Suite

Oskar (our course TA) kindly implemented a test suite last year.

Get the teststuite from the course repo:
https://github.com/myreen/tda283/tree/master/tester

The test suite is still fairly new, so please report bugs or issues. We
may accept pull requests on github.

https://github.com/myreen/tda283/tree/master/tester


Test Suite: testing.py

The �rst component of the test suite: testing.py

This checks that your submission tarball has the correct format and
contents, and passes some simple tests for each assignment
component.

The README.md explains the submission format.

Make sure your submission passes these tests.



Test Suite: Docker

The test suite also contains a docker image. We will test your
assignments within that environment.

Use the image to check your submission builds and runs in our
environment.

We can add more packages to the environment if you have a good
reason to use them and they’re easy to install.

Instruction on docker in the repo and at http://www.docker.com/

Hint: Windows users etc might want to run docker within a VM.

Submission will be on Fire, which will be set up by next lecture.

 http://www.docker.com/ 


Test Suite: Environment

Check your submission runs in the Docker environment.

BNFC 2.8.3 is installed in the image.

Haskell users: stack is installed.

• includes various default packages
• we recommend you don’t use the Haskell LLVM package (not
compatible with recent LLVM)

Java users: OpenJDK 11.0.6 is installed, also JLEX and CUP.

• includes the JDK standard library

C++ users: �ex, bison and the STL will be available.

• we recommend you only attempt the course in C++ if you have
good experience with C++ already

• contact us and tell us what other packages you need



All the best!

It looks like most people have found a lab partner by now.

Part A is due next week. Get started soon!

The Fire submission system will be set up soon.

Good luck with it! Contact us if you’re having trouble with any of the
tools.


	Structuring the project
	Is the compiler correct?
	Compiler Bootstrapping
	Writing Makefiles
	Managing state in the compiler
	Submission Guidelines

