
Compiler construction
Lecture 3: LLVM language and tools

Thomas Sewell
Spring 2020

Chalmers University of Technology — Gothenburg University

Today

Introduction to the LLVM language

• Instructions
• Variables
• Tools

Introduction to LLVM

The LLVM project

The LLVM Infrastructure

• A collection of (C++) so�ware libraries and tools to help in
building compilers, debuggers, program analysers, etc.

• Easy to install these days, see llvm.org
• Tools also available on Studat Linux machines

History

• Started as academic project at University of Illinois in 2002
• Now a large open source project with many contributors and a
growing user base

Related projects

Clang C/C++ front end; aims to replace GCC
CLI MicroSo� Common Language Interface
GHC has a LLVM backend

http://www.llvm.org

ACM So�ware System Award

LLVM was the 2012 winner of the ACM So�ware System Award.

Previous winners include:

• VMware
• Make
• Java
• Spin
• Coq
• Apache

• WWW
• TCP/IP
• Postscript
• TEX
• Unix
• ...

What is LLVM code?

Part B of the assignment requires creating LLVM code.

LLVM = Low Level Virtual Machine

• low level
• a bit like machine code, only “virtual”
• a lot like a language invented by C compiler people

What is a Machine?

Contents of a Simple CPU

• Registers
• e.g. r0, r1 . . .r15
• stores e.g. 32-bit integers
• much faster to access than memory

• Arithmetic/Logic unit (ALU)
• computes e.g. 32-bit addition

• Instruction decoder
• links registers→ ALU→ registers

Instruction
Fetcher

Memory
Interface

Instruction
Decoder

Registers
to

memory

ALU

Note: in a modern CPU core, registers are �ctional, there are many
ALUs, and pipelining & speculation keep the units busy in parallel.

Machine code looks like ...

Machine Code

> objdump -d /bin/grep

/bin/grep: file format elf64-x86-64

...

Disassembly of section .text:

0000000000003b50 <ftsopen@0x23ac0>:

3b50: push %rbx

3b51: lea 0x28ba0(%rip),%rsi # 2c6f8 <used@+0x458>

3b58: mov %rdi,%rbx

3b5b: mov 0x5,%edx

3b60: xor %edi,%edi

3b62: callq 3630 <dcgettext@plt>

3b67: lea 0x2882f(%rip),%rdx # 2c39d <used@+0xfd>

3b6e: mov %rax,%r8

3b71: mov %rbx,%rcx

3b74: xor %esi,%esi

...

LLVM Code

LLVM code looks like:
• labels and
instructions like
machine code

• jumps and
branches like
machine code

• ∞ registers
• blocks and
functions like C

define i32 @sum (i32 %n) {

entry: %sum = alloca i32

store i32 0, i32* %sum

%i = alloca i32

store i32 0, i32* %i

br label %lab1

lab1: %t1 = load i32, i32* %i

%t2 = add i32 %t1, 1

%t3 = load i32, i32* %sum

%t4 = add i32 %t2, %t3

store i32 %t2, i32* %i

...

end: ret i32 %t4

}

The LLVM language

Characteristic features

• Three adress-code: most instructions have two source registers
and one destination register:
%t2 = add i32 %t0, %t1

• A source can be a value:
%t5 = add i32 %t3, 42

• Instructions are typed:
%t8 = fadd double %t6, %t7

store i32 %t5 , i32* %r

• New register for each result, i.e., Static Single Assignment form

Hello world in LLVM

@hw = internal constant [13 x i8] c"hello world\0A\00"

declare i32 @puts(i8*)

define i32 @main () {

entry: %t1 = bitcast [13 x i8]* @hw to i8*

%t2 = call i32 @puts(i8* %t1)

ret i32 %t2

}

Comments

• The string @hw is a global constant (global names start with an
@-sign); note escape sequences!

• The library function @puts is declared, we provide its type
signature

• @hw is cast to type of argument to @puts, better (type-safe)
solution later

An illegal LLVM program

declare void @printInt(i32 %n)

define i32 @main() {

entry: %t1 = call i32 @sum(i32 100)

call void @printInt(i32 %t1)

ret i32 0

}

define i32 @sum (i32 %n) {

entry: %sum = i32 0

%i = i32 0

br label %lab1

lab1: %i = add i32 %i, 1

%sum = add i32 %sum, %i

%t = icmp eq i32 %i, %n

br i1 %t, label %end, label %lab1

end: ret i32 %sum

}

Reasons

• Not SSA form:
Two assignments
to %i and %sum

• There is no
%reg = val

instruction
• LLVM 6= C

An illegal LLVM program

declare void @printInt(i32 %n)

define i32 @main() {

entry: %t1 = call i32 @sum(i32 100)

call void @printInt(i32 %t1)

ret i32 0

}

define i32 @sum (i32 %n) {

entry: %sum = i32 0

%i = i32 0

br label %lab1

lab1: %i = add i32 %i, 1

%sum = add i32 %sum, %i

%t = icmp eq i32 %i, %n

br i1 %t, label %end, label %lab1

end: ret i32 %sum

}

Reasons

• Not SSA form:
Two assignments
to %i and %sum

• There is no
%reg = val

instruction
• LLVM 6= C

Corrected program

define i32 @sum (i32 %n) {

entry: %sum = alloca i32

store i32 0, i32* %sum

%i = alloca i32

store i32 0, i32* %i

br label %lab1

lab1: %t1 = load i32, i32* %i

%t2 = add i32 %t1, 1

%t3 = load i32, i32* %sum

%t4 = add i32 %t2, %t3

store i32 %t2, i32* %i

store i32 %t4, i32* %sum

%t5 = icmp eq i32 %t2, %n

br i1 %t5, label %end,

label %lab1

end: ret i32 %t4

}

Comments

• %i and %sum are now
pointers to memory
locations

• Only one
assignment to any
register

Problem
This program has a lot
more memory tra�c!

What can LLVM’s
optimizer do about
that?

Corrected program

define i32 @sum (i32 %n) {

entry: %sum = alloca i32

store i32 0, i32* %sum

%i = alloca i32

store i32 0, i32* %i

br label %lab1

lab1: %t1 = load i32, i32* %i

%t2 = add i32 %t1, 1

%t3 = load i32, i32* %sum

%t4 = add i32 %t2, %t3

store i32 %t2, i32* %i

store i32 %t4, i32* %sum

%t5 = icmp eq i32 %t2, %n

br i1 %t5, label %end,

label %lab1

end: ret i32 %t4

}

Comments

• %i and %sum are now
pointers to memory
locations

• Only one
assignment to any
register

Problem
This program has a lot
more memory tra�c!

What can LLVM’s
optimizer do about
that?

Optimizing @sum

> opt -mem2reg sum.ll -o sumreg.bc

> llvm-dis sumreg.bc

> cat sumreg.ll

define i32 @sum(i32 %n) {

entry:

br label %lab1

lab1:

%i.0 = phi i32 [0, %entry], [%t2, %lab1]

%sum.0 = phi i32 [0, %entry], [%t4, %lab1]

%t2 = add i32 %i.0, 1

%t4 = add i32 %t2, %sum.0

%t5 = icmp eq i32 %t2, %n

br i1 %t5, label %end, label %lab1

end:

ret i32 %t4

}

Φ ‘functions’

Single Static Assignment (SSA) form

• Only one assignment in the program text to each variable
• But dynamically, this assignment can be executed many times
• Many stores to a memory location are allowed
• Also, Φ (phi) instructions can be used, in the beginning of a
basic block

• Value is one of the arguments, depending on from which block
control came to this block

• Register allocation tries to keep these variables in same real
register

Quck aside on SSA form

Why SSA form?

• Many code optimizations can be done more e�ciently

It’s also a philosophical/generational change in compilers. GCC
switched to “tree SSA” form also.

Old understanding:

• a C variable behaves like a register or memory location.
• try to reuse variables so the compiler knows what to do.

New understanding:

• both variables and registers are names, not real things
• there is a many-to-many relationship
• more complex compilers will target more complex hardware

Optimizing @sum further

Result a�er opt -O3 (2/2)

define i32 @sum(i32 %n) nounwind readnone {

entry:

%0 = shl i32 %n, 1

%1 = add i32 %n, -1

%2 = zext i32 %1 to i33

%3 = add i32 %n, -2

%4 = zext i32 %3 to i33

%5 = mul i33 %2, %4

%6 = lshr i33 %5, 1

%7 = trunc i33 %6 to i32

%8 = add i32 %0, %7

%9 = add i32 %8, -1

ret i32 %9

}

Optimizing even further

Many optimization passes
The LLVM optimizer opt implements many code analysis and
improvement methods.

To get a default selection, give command line argument:

-O3 (previously known as -std-compile-opts)

Result a�er opt -O3 (1/2)

declare void @printInt(i32)

define i32 @main() {

entry:

tail call void @printInt(i32 5050)

ret i32 0

}

Optimizing @sum further

Result a�er opt -O3 (2/2)

define i32 @sum(i32 %n) nounwind readnone {

entry:

%0 = shl i32 %n, 1

%1 = add i32 %n, -1

%2 = zext i32 %1 to i33

%3 = add i32 %n, -2

%4 = zext i32 %3 to i33

%5 = mul i33 %2, %4

%6 = lshr i33 %5, 1

%7 = trunc i33 %6 to i32

%8 = add i32 %0, %7

%9 = add i32 %8, -1

ret i32 %9

}

Analysis of optimized code for @sum

Observations

• Previous loop with execution time O(n) has been optimized to
code without loop, running in constant time

• Recall 1+ 2+ . . . + n = n(n+1)
2 , check that optimized code

computes this
• Why extensions/truncations to and from 33 bits?
• What happens when n is negative?

Optimization

• opt -O3 includes many optimization passes
• Use -time-passes for an overview
• We will discuss some of these algorithms later

@printInt and other IO functions

Part of runtime.ll

@dnl = internal constant [4 x i8] c"%d\0A\00"

declare i32 @printf(i8*, ...)

define void @printInt(i32 %x) {

entry: %t0 = getelementptr [4 x i8], [4 x i8]* @dnl, i32 0

, i32 0

call i32 (i8*, ...)* @printf(i8* %t0, i32 %x)

ret void

}

We provide this �le on the course web site; you just have to make
sure that it is available for linking.

Linking and running the program

Linking is done by llvm-link

> llvm-link sumopt.bc runtime.bc -o a.out.bc

> llc --filetype=obj a.out.bc

> gcc a.out.o

> ./a.out

5050

When creating an executable �le:

• Link the bitcode �les with llvm-link.
• Compile the bitcode �le to a native object �le using llc
• Use a C compiler to link with libc and produce an executable

What is in a.out.bc

Disassemble it1!

> cat a.out.bc | llvm-dis -

; ModuleID = 'a.out.bc'

@dnl = internal constant [4 x i8] c"%d\0A\00"

define i32 @main() {

entry:

%t0 = getelementptr [4 x i8]* @dnl, i32 0, i32 0

call i32 (i8*, ...)* @printf(i8* %t0, i32 5050)

ret i32 0

}

declare i32 @printf(i8*, ...)

1Result slightly edited

LLVM language and tools

Types in LLVM

An incomplete list
Below t and ti are types and n an integer literal.

• n bit integers: in
• float and double

• Labels: label
• The void type: void
• Functions: t (t1, t2, . . . , tn)

• Pointer types: t∗
• Structures: {t1, t2, . . . , tn}
• Arrays: [n× t]

Named types and type equality

Named types
We can give names to types, for example:

%length = type i32

%list = type %Node*

%Node = type { i32, %Node* }

%tree = type %Node2*

%Node2 = type { %tree, i32, %tree }

%matrix = type [100 x [100 x double]]

Type equality
LLVM uses structural equality for types.

When disassembling bitcode �les that contain several structurally
equal types with di�erent names, this may give confusing results.

Identi�ers

Local identi�ers
Registers and named types have local names and start with a %-sign.

Global identi�ers
Functions and global variables have global names and start with an
@-sign.

JavaLette does not have global variables, but you will need to
de�ne global names for string literals, as in

@hw = internal constant [13 x i8] c"hello world\0A\00"

A�er this de�nition, @hw has type [13 x i8]*.

Constants

Literals

• Integer and �oating-point literals are as expected
• true and false are literals of type i1
• null is a literal of any pointer type

Aggregates
Constant expressions of structure and array types can be formed;
not needed by JavaLette.

Function de�nitions

Function de�nition form

define t @name(t1 x1, t2 x2, ..., tn xn) {

l1: block1

l2: block2

...

lm: blockm

}

where @name is a global name (the name of the function), the xi are
local names (the parameters) and the blocki are labeled basic
blocks.

Basic blocks
A basic block is a label (li) followed by a colon and a sequence of
LLVM instructions, each on a separate line. The last instruction must
be a terminator instruction.

Function declarations

Type-checking
The LLVM assembler does type-checking. Hence it must know the
types of all external functions, i.e., functions used but not de�ned
in the compiled unit.

Simple function declaration
The basic form is: declare t @name(t1, t2, ..., tn)

For JavaLette, this is necessary for IO functions. The compiler would
typically insert in each �le:

declare void @printInt(i32)

declare void @printDouble(double)

declare void @printString(i8*)

declare i32 @readInt()

declare double @readDouble()

LLVM tools

llvm-as An assembler that translates llvm code to bitcode
(prog.ll to prog.bc)

llvm-dis A disassembler that translates in the opposite
direction

lli An interpreter/JIT compiler that executes a bitcode
�le containing a @main function

llvm-link A linker that links together several bitcode �les
llc A compiler that translates a bitcode to native

assembler or object �les
opt An optimizer that optimizes bitcode; many options to

decide on which optimizations to run; use -O3 to get a
default selection

clang Drop-in replacement for GCC

Use of LLVM in your compiler

Default mode
Your code generator produces an assembler �le (.ll). Then your
main program uses system calls to �rst assemble this with llvm-as,
optimize with opt and then link together with runtime.bc.

Other modes
More advanced and we do not recommend these for this project.

• C++ programmers can use the LLVM libraries to build in-memory
representation and then output bitcode �le

• Haskell programmers can access C++ libraries via Hackage
package LLVM - however we have had compatibility issues with
this in the past

If you want to use non-standard libraries that you haven’t written
yourselves, make sure you get approval from us �rst.

LLVM instructions

Basic collection
Basic JavaLette will only need the following instructions:

• Terminator instructions: ret and br

• Arithmetic operations:
• For integers add, sub, mul, sdiv and srem

• For doubles fadd, fsub, fmul and fdiv

• Memory access: alloca, load, getelementptr and store

• Other: icmp, fcmp and call

Some of the extensions will need more instructions.

Next time
Code generation for LLVM.

	Introduction to LLVM
	LLVM language and tools

