Compiler Construction, Spring 2020

Verified compilers

Magnus Myreen

Mentions joint work with Anthony Fox, Ramana Kumar, Michael Norrish,
Scott Owens, Thomas Sewell,Yong Kiam Tan and many more (incl. local MSc students)

Verified compilers

k What?

- Comes with a machine-checked proof that for any program,
which does not generate a compilation error, the source and
target programs behave identically

(Sometimes called certified compilers, but that’s misleading...)

Your program crashes.

Where do you look for the fault?

—» Do you look at your source code!?

—» Do look at the code for the compiler that you used!?
A

(users want to rely on compilers)

Trusting the compiler

Bugs
When finding a bug, we go to great lengths to find it in our own code.

- Most programmers trust the compiler to generate correct code

- The most important task of the compiler is to generate correct
code

Maybe it is worth the cost!)

Establishing compiler correctness

Cost reduction?

Alternatives

 Proving the correctness of a compiler is prohibitively expensive

- Testing is the only viable option

A

(... but with testing you never know you caught all bugs!)

All (unverified) compilers have bugs

*“ Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input. ”

/

PLDI'11

Finding and Understanding Bugs in C Compilers

John Regehr

Xuejun Yang Yang Chen Eric Eide |

“ [The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code

errors. This is not for lack of trying: we have devoted
about six CPU-years to the task.”

- oohunti _Our first contripution 15 TO aEvErE= = avily patched; the base VEISIUITUES
of our bug‘hun?ngoitrllldﬁ’er testing. Unlike previous tools, Csmith was heaviyp
state of the 11 10 thaIt) cover a large subset of C while avoiding the

. ot . . _ enerator that sup-
generates programs tel ¥t © - L2 hat would destroy 1ts_abﬂ,1ty Wa ~ceated Csmith, a randomized test-case g¢

e emith ocen-

Motivations

Bugs in compilers are not tolerated by users.

Bugs can be hard to find by testing.

Verified compilers must be used in order for
verification of source-level programs to imply
guarantees at the level of verified machine code.

Research question: how easy (cheap) can we
make compiler verification?

This lecture:
Verified compilers

What? Prove that compiler produces good code.

Why? To avoid bugs, to avoid testing.

4)

restof >~ How? By mathematical proof...

this lecture
_ Y,

Proving a compiler correct

like first-order logic, or higher-order logic)

Ingredients:

* a formal logic for the proofs

. — — . A
accurate models of proofs are only about things
* the source language that live within the logic, i.e.
* the target language we need to represent the
* the compiler algorithm g relevant artefacts in the logic y
Tools: (a lot of details... (to get wrong))

* a proof assistant (software)

AN

... hecessary to use mechanised proof A
assistant (think ‘Eclipse for logic’) to
avoid accidentally skipping details

- J

Accurate model of prog. language

Model of programs:

* syntax — what it looks like

* semantics — how it behaves
A

(e.g. an interpreter for the syntax)

Major styles of (operational, relational) semantics:

* big-step this style for structured source semantics)
* small-step this style for unstructured target semantics)

... hext slides provide examples.

Syntax

Source:

exp = Num num
| Var name
| Plus exp exp

Target ‘machine code’:

inst = Const name num
” | Move name name
| Add name name name

CTarget program consists of list of 1nst)

Source semantics (big-step)

Big-step semantics as relation ! defined by rules, e.g.

lookup s in env finds v

(Num n, env) 1 n (Var s, env) 1 v

(x1, env) 1 vl (x2, env) 1 v2

(Add x1 x2, env) 1 vl + v/

|

(called “big-step”: each step ! describes complete evaluation)

Source semantics (...gone wrong)

Real-world semantics are not always clean:

https://www.destroyallsoftware.com/talks/wat

https://www.destroyallsoftware.com/talks/wat

Target semantics (small-step)

“small-step”: transitions describe parts of executions

We model the state as a mapping from names to values here.

step (Const s n) state = state[s ~» n]
step (Move sl s2) state = state[sl » state sZ]
step (Add sl sZ2 s3) state = state[sl —» state sZ2 + state s3]

steps [] state = state
steps (x::xs) state = steps xs (step x state)

Compiler function

-

~

generated code stores
result in register name (n)
given to compiler

compile (Num k) n = [Const A k 4

[Move n Vi——

compile (Var v) n

-

Relies on variable names in

source to match variables
names in target.

~

J

compile (Plus x1 x2) n =

compile x1 n ++ compile x2 (n+l) ++ [Add n n (n+1)]

|

(Uses names above

n as temporaries.)

Correctness statement

Proved using proof assistant — demo!

For every evaluation in the source ...)
vX €nv res. for target state and k, such that ...)
(x, env) | res =
vstate k.
(vi v. (lookup env 1 = SOME v) = (state 1 =v) A 1 < k) =
(let state' = steps (compile x k) state 1n - A
(state’ k = res) a k greater than all var

names and state in sync
with source env ...
\

vi. 1 < k =¢A(state' 1 = state 1))

\

J

4)
... in that case, the result res will be stored at

location k in the target state after execution
_ Y

C ... and lower part of state left untouched.)

Code for the demo:

open HolKernel Parse boollLib bossLib lcsymtacs stringTheory combinTheory
arithmeticTheory finite_mapTheory pairTheory;

val _ = new_theory "demo";

Type name = "~ “:num’ "

(* -- SYNTAX -- *)
(* source *)

Datatype:
exp = Num num
| Var name
| Plus exp exp
End

(* target *)

Datatype:
inst = Const name num
| Move name name
| Add name name name
End

(* -- SEMANTICS -- *)
(* source *)
Inductive eval:

(T

=

eval (Num n, env) n)

A
(CFLOOKUP env s = SOME v)

=
eval (Var s, env) v)

A
(eval (x1,env) vl A eval (x2,env) v2
=

eval (Plus x1 x2, env) (v1+v2))
End

(* target *)

Definition step_def:

step (Const s n) state = (s =+ n) state A

step (Move sl s2) state = (sl =+ state s2) state A

step (Add sl s2 s3) state = (sl =+ state s2 + state s3) state
End

Definition steps_def:

steps [] state = state A

steps (x::xs) state = steps xs (step x state)
End

(* -- COMPILER -- *)

Definition compile_def:
compile (Num k) n = [Const n k] A
compile (Var v) n = [Move n v] A
compile (Plus x1 x2) n =
compile x1 n ++ compile x2 (n+1) ++ [Add n n (n+1)]
End

(* verification proof *)

Theorem steps_append[simp]:

vXxs ys state. steps (xs ++ ys) state = steps ys (steps xs state)
Proof

Induct \\ fs [steps_def]
QED

Theorem eval_ind = eval_ind I> Q.SPEC ‘A(x,y) z. P x y z’
I> SIMP_RULE (srw_ss()) [FORALL_PROD] I> GEN_ALL;

Theorem compile_correct:
VX env res.
eval (x, env) res =
vk state.
(vi v. (FLOOKUP env i = SOME v) = (state i =v) A i1 <k) =
let state' = steps (compile x k) state in
(state' k = res) A
vi. i < k = (state' i = state i)
Proof
ho_match_mp_tac eval_ind \\ rpt strip_tac \\ fs [LET_DEF]
\\ fs [compile_def,steps_def,step_def]
\\ fs [APPLY_UPDATE_THM] \\ res_tac
\\ last_x_assum imp_res_tac \\ fs []
\\ first_x_assum (gspecl_then [k+1", steps (compile x k) state'] mp_tac)
\\ impl_tac \\ rw [] \\ res_tac \\ fs []
QED

val _ = export_theory(Q);

Well, that example was simple enough...

But:

Some people say:
A programming language isn’t real until it has a self-hosting
compiler

Bootstrapping for verified compilers? Yes!

Scaling u
POPL 2014 J TP

A Verified Tmpl

i & Michael No

CakeML:

rrish 2

Cambridge UK
CTA, Austra\ia
f Kent, UK

O. Myreen
University of

Lab NIC
University ©

Ramana Kumar * 1 Magnus

Abstract 1. Introduction
We have Jeveloped and M chanically yerified an ML system called The last decade has seen a strong interest 10 verified compilation;
CakeML, which supports sub (antial subs of Standar ML and there have been sigmﬁeant, hig rofile results, many base
CakeML 18 implememed as an interactivé read—eva\-prmt loop n the CompCert compiler 10 c 1, 14 16, 291 This interest 15
(REPL) 1D x86-64 achine code. Our correctness theorem ensures easy to justt y:1n the context of progr yerification, unverifle
that this REPL implementation prints only those results permitted compiler forms a 1arge and complex P 1t of the trusted computing
by the semantics of CakeML. Our yerification effort touches On pase. Howevel to ou knowledge none of the existing work on
a breadth of topics including lexing, parsing type checking, 11 veriﬁed compﬂers for general—pu ose languages has addressed all
cremental and dyna amic compilation, garbage collection, arbitrary- _ompiler along two d1 ensions: ONe the compilation
p\:ecision arithmetic, and compiler bootstrad apping- = _: oo from @ SOource string to list O
Our contributions are twolo y m oe Fl rst b ~ution of that
ing 2 System that 18 end-t0 end Venﬁed demonstratmg that eaeh ootstra
“r anich A Veﬂﬁcatmn effort can 10 practlce be compose fo rm ” PPl ng Of a
. none of the p1eces rely on any d y ve rlf e d
- novel ap- pracTo™= com PI I er.
e CakeML, and 1H1S & 25 = 0
M and OCaml. BY ¥
o code along-

Dimensions of Compiler Veritication

source code

< how far compiler goes)

abstract syntax
intermediate language

bytecode Our verification covers the full
spectrum of both dimensions.

machine code

compiler implementation implementation machine code as part
algorithm in ML in machine code of a larger system
/\

(the thing that is verified)

|[dea behind in-logic bootstrapping

C input: verified compiler function)

Trusththy code generation:

functions in HOL (shallow embedding)
l proof-producing translation [ICFP’ 12, JFP’ | 4]
CakeML program (deep embedding)

l verified compilation of CakeML [POPL |4,ICFP’| 6]

x86-64 machine code (deep embedding)

A

Coutput: verified implementation of compiler function)

The CakeML at a glance

strict impure functional language)

The CakeML langua
~ Standard ML without functors

A

/i.e. with almost everything else: A

v higher-order functions

mutual recursion and polymorphism
datatypes and (nested) pattern matching
references and (user-defined) exceptions

TR

_ modules, sighatures, abstract types Y,

The verified machine-code implementation:
parsing, type inference, compilation, garbage collection, bighums etc.

implements a read-eval-print loop.

The CakeML compiler verification

How?

Mostly standard verification techniques as presented in this lecture,
but scaled up to large examples. (Four people, two years.)

Version |:

Version 2:)

x8664
o3 I

.. actively developed (want to join? myreen@chalmers.se)

] »»

mailto:myreen@chalmers.se

State of the art

CompCert

CompCert C compiler

Printing to asm Programmed

// N
N\
< Coq Y P
~ - o 4 - >
S /- Other
\\ o \ 2)
Parser, T < languages? ./
typechecker, " mini ML R TSl - =
simplifier (CIL) \C mini- , J/
S J
/
N\ /
— Ry — — — - = = - = = - =
- - -
P o . - , Initial Stack pre- CFG construction;
) Prog,-am { 4 translation allocation instruction recognition
prover)’
[
e - BN
’ N
&= R ot S
N enecker 7 static
\._ analyzer)’ |

Register allocation by

Compiles C source code to assembly.

Has good performance numbers

Proved correct in Cogq.

syntax in Caml

PowerPC
assembly

Programmed and
proved in Coq

Leroy et al. Source: http://compcert.inria.fr/

http://compcert.inria.fr/

http://compcert.inria.fr/

CakeML compiler

Compiles CakeML concrete
syntax to machine code.

Proved correct in HOLA4.

Has mostly good performance
numbers (later lecture)

Known as the first verified compiler

to be bootstrapped.

I’'m one of the six developers behind
version 2 (diagram to the right).

larger at https://cakeml.org

Values Languages

source syntax

l source AST
)

FlatLang:

a language for
compiling away
high-level
lang. features

ClosLang:
last language
with closures
(has multi-arg

closures)

abstract values incl. closures and ref pointers

[———/

BVL:
functional
language
without

closures

BVI:

one global
variable
—
)
DatalLang:
imperative
language
1 . J
o

abstract values incl.
ref and code pointers

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

~—————/

StackLang:
imperative
language
with array-like
stack and
optional GC

LabLang:
assembly lang.

machine words and code labels

~—
D
)

Compiler transformations

Parse concrete syntax

<
> Infer types, exit if fail
o

Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

> Make patterns exhaustive
Global dead code elim.
Turn tuples into construtors

Move nullary constructor
> patterns upwards

D Compile pattern matches
to nested Ifs and Lets

Implement bounds checks

> Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow; annotate program

D Introduce C-style fast
calls wherever possible

Remove deadcode
Prepare for closure conv.
Perform closure conv.
Inline small functions

\VAVAVAVAV;

Fold constants and
shrink Lets

> Split over-sized functions
into many small functions

D Compile global vars into a
dynamically resized array

> Optimise Let-expressions

Make some functions tail-
recursive using an acc.

> Switch to imperative style
Reduce caller-saved vars

> Combine adjacent
memory allocations

> Remove data abstraction
> Simplify program

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode
Allocate register names

Concretise stack

\VAVAVAVAVAVAV

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match

D arch registers/conventions
D Flatten code
> Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

=0 T

2% | (ARmve

™ ; g

-0

5% (ARMV8) Cx86-64) (MIPS-64) (RISC-V)
3=z
I

Silver CPU
. as HOL functions
Proof-producing <

Verilog generator

Implements

Silver CPU
in Verilog

https://cakeml.org

[robust, inflexible more flexible,

v j A Spec-trum kbut can be fragile)
[proved to always j \

work correctly (produces a proof for each run)

V

Verified compilers Proof-producing compilers

Pilsner Fiat

Cogent
CompCert C compiler

Translation validation for

CakeML compiler a verified OS kernel

CompCertTSO

summary

Ingredients:

* a formal logic for the proofs
* accurate models of

* the source language
* the target language
* the compiler algorithm

Tools:
* a proof assistant (software)

Method:
* (interactively) prove a simulation relation

Questions? — for projects on this, email myreen@chalmers.se

mailto:myreen@chalmers.se

