Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT20

Nancy Abdallah

Chalmers - Göteborgs Universitet

Probability laws

Let S be the sample space and A and B be two events.
■ Complement: The complement event to A is the event $A^{\prime}=" A$ does not occur." (denoted by A^{\prime} or \bar{A} or A^{c})

$$
p\left(A^{\prime}\right)=1-p(A)
$$

■ Addition rule

$$
p(A \cup B)=p(A)+p(B)-p(A \cap B)
$$

■ If A and B are disjoint then, $\Rightarrow p(A \cap B)=0$ and $p(A \cup B)=p(A)+p(B)$

Example

Let A and B be two events such that $p(A)=0.5, P(B)=0.7$ and $p(A \cap B)=0.4$. Find $p(A \cup B), p\left(A \cap B^{\prime}\right), p\left(A^{\prime} \cap B\right)$ and $p\left(A^{\prime} \cap B^{\prime}\right)$.
Solution
$p(A \cup B)=p(A)+p(B)-p(A \cap B)=0.5+0.7-0.4=0.8$
$p\left(A \cap B^{\prime}\right)=p(A)-p(A \cap B)=0.5-0.4=0.1$
$p\left(A^{\prime} \cap B\right)=p(B)-p(A \cap B)=0.7-0.4=0.3$
$p\left(A^{\prime} \cap B^{\prime}\right)=p\left((A \cup B)^{\prime}\right)=1-p(A \cup B)=1-0.8=0.2$

Conditional probability

Example

300 products in a factory has been chosen randomly for a quality control and they were then classified either as "defected" or "good". Some of the products were produced by an old machine and the others by a new one. The following table gives the result of the experiment.

	Good	Defected	Total
Old machine	170	10	180
New machine	115	5	120
Total	285	15	300

Example

A product is chosen randomly. Let A, B, and C be three events defined as follows $A=$ "The chosen product is good".
$B=$ "The chosen product is produced by an old machine.
C="The chosen product is good knowing that (given that) is was produced by an old machine."
$p(A)=\frac{285}{300}, p(B)=\frac{180}{300}$
The event C invovles both events A and B, and is written as $C=A \mid B$ (A given B, or A knowing B). From the table we can get the probability of C by considering only the row of the old machine, namely,

$$
p(C)=p(A \mid B)=\frac{170}{180}=\frac{p(A \cap B)}{p(B)}
$$

Conditional probability

Given two events A and B with $p(B) \neq 0$. The conditional probability that A occurs given that B has occured is defined by

$$
p(A \mid B)=\frac{p(A \cap B)}{p(B)}
$$

Multiplication rule

Multiplication rule: Suppose that $p(A) \neq 0$ and $p(B) \neq 0$.

$$
p(A \cap B)=p(A \mid B) p(B)=p(B \mid A) p(A) .
$$

The conditional probability can therefore be written as

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)}
$$

Independent events

Independent events: Assume that the information " B has occured" has no influence on the probability that A occur, then $p(A \mid B)=p(A)$, and the multiplication rule can be written as $p(A \cap B)=p(A) p(B)$.

Theorem

A and B are said to be independent if and only if

$$
p(A \cap B)=p(A) p(B)
$$

This is equivalent to say that $p(A \mid B)=p(A)$ if $p(B) \neq 0$ and $p(B \mid A)=p(B)$ if $p(A) \neq 0$.

Example

At the entrance to a casino, there are two slot machines.
Machine A is programmed so that in the long run it will produce a winner in 10% of the plays. Machine B is programmed so that in the long run it will produce a winner in 15% of the plays. The two machines run independently of each other. If we play each machine once, what is the probability that we will win on at least one play?
$p(A \cup B)=p(A)+p(B)-p(A \cap B)=p(A)+p(B)-p(A) p(B)=0.235$

Bayes' theorem

Example

The fire alarm in a certain company seems to be reliable. However, a false alarm can sometimes occur or a fire could be missed. Let $F=$ " A fire has occured" och $A=$ "The alarm starts beeping.", $p(F)=0.05, p(A \mid F)=0.98$, and $p\left(A \mid F^{\prime}\right)=0.10$. Find $p(F \mid A)$.
Lösning:

$$
p(F \mid A)=\frac{p(F \cap A)}{p(A)}=\frac{p(A \mid F) p(F)}{p(A)}
$$

Example

To compute $p(A)$ we can use the formula

$$
A=(A \cap F) \cup\left(A \cap F^{\prime}\right)
$$

Since $L \cap B$ and $L \cap B^{\prime}$ are disjoint, then

$$
\begin{aligned}
p(A) & =p(A \cap F)+p\left(A \cap F^{\prime}\right) \\
& =p(A \mid F) p(F)+p\left(A \mid F^{\prime}\right) p\left(F^{\prime}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
p(F \mid A) & =\frac{p(A \mid F) p(F)}{p(A \mid F) p(F)+p\left(A \mid F^{\prime}\right) p\left(F^{\prime}\right)} \\
& =\frac{0.98 \cdot 0.05}{0.98 \cdot 0.05+0.10(1-0.05)} \\
& =0.34
\end{aligned}
$$

Bayes' theorem

Let $A_{1}, A_{2}, \cdots A_{n}$ be mutually disjoint events such that their union is S and $B \neq \varnothing$ be an event. For all $A_{j}, j=1, \cdots n$

$$
p\left(A_{j} \mid B\right)=\frac{p\left(B \mid A_{j}\right) p\left(A_{j}\right)}{\sum_{i=1}^{n} p(B \mid A i) p\left(A_{i}\right)}
$$

