Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT20

Föreläsning 11

Nancy Abdallah

Chalmers - Göteborgs Universitet

Comparing two means

In a similar way as for the proportions, we can compare the means of two different populations.

- Suppose we have two populations 1 and 2 with mean μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2} respectively.
■ From each population we take a random sample such that the samples are independent from each other.
■ For each sample we compute the point estimator for the mean: $\hat{\mu}_{1}=\bar{X}_{1}$ and $\hat{\mu}_{2}=\bar{X}_{2}$.
- A point estimator for $\mu_{1}-\mu_{2}$ is $\hat{\mu}_{1}-\hat{\mu}_{2}=\bar{X}_{1}-\bar{X}_{2}$.

■ When sampling from a normal distribution, or if the sample sizes are large enough, $\bar{X}_{1}-\bar{X}_{2}$ is normally distributed with mean $\mu_{1}-\mu_{2}$ and variance $\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}$.

C.I. on the difference between two means

Populations normally distributed (or n large) with known variances

■ A $100(1-\alpha) \%$ C.I. on $\mu_{1}-\mu_{2}$ is given by

$$
\bar{x}_{1}-\bar{x}_{2} \pm z_{\alpha / 2} \sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}
$$

■ If the population variances are equal to each other ($\sigma_{1}^{2}=\sigma_{2}^{2}$) then the C.I. is

$$
\bar{x}_{1}-\bar{x}_{2} \pm z_{\alpha / 2} \sigma \sqrt{1 / n_{1}+1 / n_{2}}
$$

C.I. on the difference between two means

Populations normally distributed with same unknown variance

Suppose $\sigma_{1}=\sigma_{2}=\sigma$, both unknown.
■ Pooled variance

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

\square The pooled variance is an unbiased estimator for σ_{2}^{2}.

- The random variable

$$
\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{p}^{2}\left(1 / n_{1}+1 / n_{2}\right)}}
$$

follows the T-distribution with $n_{1}+n_{2}-2$ degrees of freedom.

C.I. and hypothesis test on $\mu_{1}-\mu_{2}$

Populations normally distributed (or n large), unknown variances, equal variances

- A $100(1-\alpha) \%$ C.I. on $\mu_{1}-\mu_{2}$ when the populations are normally distributed with $\sigma_{1}=\sigma_{2}=\sigma$ unknown is

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{\alpha / 2} \sqrt{S_{p}^{2}\left(1 / n_{1}+1 / n_{2}\right)}
$$

- To compare two means we can also do a hypothesis test. The alternative hypothesis can be one of the following

$$
\mu_{1}>\mu_{2}, \quad \mu_{1}<\mu_{2} \quad \text { or } \mu_{1} \neq \mu_{2}
$$

and we use the same procedure as for hypothesis testing on one parameter.

Example (Exercise 10.14)

To decide whether or not to purchase a new hand-held laser scanner for use in inventorying stock, tests are conducted on the scanner currently in use and on the new scanner. There data are obtained on the number of 7 -inch bar codes that can be scanned per second:

New	Old
$n_{1}=61$	$n_{2}=61$
$\bar{x}_{1}=40$	$\bar{x}_{2}=29$
$s_{1}^{2}=24.9$	$s_{2}^{2}=22.7$

1. Find the pooled variance.
2. Find a 90% confidence interval on $\mu_{1}-\mu_{2}$.
3. Does the new laser appear to read more bar codes per second on the average?

Solution of Exercise 10.14

1. $s_{2}^{p}=\frac{60(24.9)+60(22.7)}{120}=23.8$
2. T-distribution with 120 degrees of freedom.
$t_{(\alpha / 2}=t_{0.05}=1.658$ (note that the table does not give the values for degrees of freedom greater than 100, use then an approximation). A 90\% C.I. is therefore

$$
(40-29 \pm 1.658 \sqrt{23.8(1 / 61+1 / 61)})=(9.54,12.45)
$$

3. Yes, since the interval does not contain 0 and is positive-valued.

Can we find the same result using hypothesis testing? $H_{0}: \mu_{1}-\mu_{2}=0$ and $H_{1}: \mu_{1}-\mu_{2}>0$ The test statistic is

$$
T=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{S_{p}^{2}\left(1 / n_{1}+1 / n_{2}\right)}}
$$

which follows a T-distribution with $n_{1}+n_{2}-2$ degrees of freedom. It is a right-tailed test with critical value $t_{\alpha}=t_{0.1}=1.289$.
$T=\frac{40-29}{\sqrt{23.8(1 / 61+1 / 61)}}=12.45>t_{0.1}$. Hence, we reject the hypothesis and we are 90% confident that H_{1} is true.

