Matematisk Statistik och Disktret Matematik, MVE055/MSG810, VT20

Föreläsning 14

Nancy Abdallah

Chalmers - Göteborgs Universitet

Regression

■ Regression is a technique used for estimating relationship between variables.

- The regression is said to be linear if the relationship is linear.
- Often we want to predict a variable Y (the dependent variable) in terms of another variable X (the independent variable). X is usually not random.
■ For a fixed value x of X, Y may take several values, and hence is a random variable denoted by $Y \mid x$ (Y given that $X=x)$. The mean of $Y \mid x$ is denoted by $\mu_{Y \mid x}$.

Linear Regression

■ The linear curve of regression of Y on X is given by

$$
\mu_{Y \mid X}=\beta_{0}+\beta_{1} X
$$

\square Given a set of data $\left(x_{i}, y_{i}\right)$ where x_{i} is an observed value of X and y_{i} is the value of $Y \mid x_{i}$ for $i=1, \cdots, n$. The simple linear regression model is given by

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

ϵ_{i} are called the residuals.
$\square \epsilon_{i}=y_{i}-\mu_{Y \mid x}$ and $\sum_{i=1}^{n} \epsilon_{i}=0$.
■ The values $\left(x_{i}, y_{i}\right)$ can be illustrated by a scattergram.

- β_{0} and β_{1} are estimated by the method of least-squares which is done by minimizing $S S E=\sum_{i=1}^{n} \epsilon_{i}^{2}$.
\square Let b_{0} and b_{1} be estimates for β_{0} and β_{1} respectively. Then,

$$
b_{1}=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}
$$

and

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

Example

Let X denote the number of lines of executable SAS code, and let Y denote the execution time in seconds. The following is a summary information:

$$
\begin{gathered}
n=10 \quad \sum_{i=1}^{10} x_{i}=16.75 \quad \sum_{i=1}^{10} y_{i}=170 \\
\sum_{i=1}^{10} x_{i}^{2}=28.64 \quad \sum_{i=1}^{10} y_{i}^{2}=2898 \quad \sum_{i=1}^{10} x_{i} y_{i}=285.625
\end{gathered}
$$

Estimate the line of regression.

$$
b_{1}=\frac{10(285.625)-(16.75)(170)}{10(28.64)-(16.75)^{2}}=1.498
$$

and

$$
b_{0}=\frac{170}{10}-1.498 \frac{16.75}{10}=14.491
$$

Properties of least-squares estimators

\square Since b_{0}, b_{1} and ϵ_{i} vary with the data, we can define B_{0}, B_{1} and E_{i} the corresponding random variables. E_{i} is assumed to be normally distributed with mean 0 and variance σ^{2}.

- We assume the following:

■ Y_{i} are independent and normally distributed.
■ The mean of Y_{i} is $\beta_{0}+\beta_{1} x_{i}$.
■ The variance of Y_{i} is σ^{2}.
$■$ We are interested in studying B_{0} and B_{1} (distribution, confidence intervals and hypothesis testing).
(Review properties of summation page 388).

Distribution of B_{0} and B_{1}

■ Using summation properties, we can prove that B_{1} is normally distributed with parameters

$$
E\left[B_{1}\right]=\beta_{1} \quad \text { and } \quad V\left[B_{1}\right]=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

■ B_{0} is also normally distributed with parameters

$$
E\left[B_{0}\right]=\beta_{0} \quad \text { and } \quad V\left[B_{0}\right]=\frac{\sum_{i=1}^{n} x_{i}^{2}}{n \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)} \sigma^{2}
$$

$■$ Since σ^{2} is usually unknown, we use an estimate s^{2}.
\square An unbiased estimator for σ^{2} is given by

$$
S^{2}=\frac{S S E}{n-2}=\frac{\sum_{i=1}^{n} \epsilon_{i}^{2}}{n-2}
$$

Another way of writing the formulas - summary-p. 393

■ Let $S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\left(n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right) / n$,
$S_{y y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\left(n \sum_{i=1}^{n} y_{i}^{2}-\left(\sum_{i=1}^{n} y_{i}\right)^{2}\right) / n$ and
$S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=$
$\left(n \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}\right) / n$.
■ $B_{1}=\frac{S_{x y}}{S_{x x}}$ with variance $V\left[B_{1}\right]=\frac{\sigma^{2}}{S_{x x}}$.
■ $B_{0}=\bar{Y}-B_{1} \bar{X}$ with variance $V\left[B_{0}\right]=\frac{\sum_{i=1}^{n} x_{i}^{2} \sigma^{2}}{n S_{x x}}$.
$\square S S E=\sum_{i=1}^{n} \epsilon_{i}^{2}=S_{y y}-b_{1} S_{x y}$
■ $S^{2}=\frac{S S E}{n-2}$, estimator for σ^{2}.

Inferences on β_{1}

\square Since $B_{1} \sim N\left(\beta_{1}, \sigma^{2} / S_{x x}\right)$, then $\frac{B_{1}-\beta_{1}}{\sigma / \sqrt{S_{x x}}} \sim N(0,1)$.
$■$ Since σ^{2} is usually unknown, we estimate it by S^{2}. In this case, $\frac{B_{1}-\beta_{1}}{S / \sqrt{S_{x x}}}$ follows a T distribution with $n-2$ degrees of freedom.

- A $100(1-\alpha) \%$ confidence interval on β_{1} is given by

$$
B_{1} \pm t_{\alpha / 2} S / \sqrt{S_{x x}}
$$

\square In hypothesis testing $\left(H_{1}: \beta_{1} \neq \beta_{1}^{0}\right.$, or $\beta_{1}<\beta_{1}^{0}$ or $\left.\beta_{1}>\beta_{1}^{0}\right)$, the test statistic is

$$
T=\frac{B_{1}-\beta_{1}^{0}}{S / \sqrt{S_{x x}}}
$$

(Usually we take $\beta_{1}^{0}=0$ if we want to study if there is any significance relation between X and Y)

Example

Consider the previous example and suppose we want to see if there is a relation between X and Y with a significance level $\alpha=5 \%$. There is a relation between X and Y if and only if $\beta_{1} \neq 0$, which is our alternative hypothesis. Let $H_{0}: \beta_{1}=0$. We have a two tailed test $b_{1}=1.498$,
$S_{x x}=\left(n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right) / n=0.584 S_{y y}=8$ and
$S_{x y}=0.875$. Therefore, $S S E=8-1.498(0.875)=6.69$ and $s^{2}=S S E / 8=0.84$ The test statistic is

$$
T=\frac{b_{1}-0}{\sqrt{S^{2} / S_{x x}}}=\frac{1.498}{\sqrt{0.84 / 0.584}}=1.25
$$

$t_{0.025}=2.306$. Hence, we do not reject the hypothesis. We cannot conclude that there is a relation between X and Y.

Inferences on β_{0}

■ Since $B_{0} \sim N\left(\beta_{0}, \sigma^{2} \sum_{i=1}^{n} x_{i}^{2} / n S_{x x}\right)$, then

$$
\frac{B_{0}-\beta_{0}}{\sigma \sqrt{\sum_{i=1}^{n} x_{i}^{2} / n S_{x x}}} \sim N(0,1)
$$

■ After estimate σ^{2} by s^{2}, we get that

$$
\frac{B_{0}-\beta_{0}}{s \sqrt{\sum_{i=1}^{n} x_{i}^{2} / n S_{x x}}}
$$

follows a T distribution with $n-2$ degrees of freedom.

Inferences on β_{0}

■ A $100(1-\alpha) \%$ confidence interval on β_{1} is given by

$$
B_{0} \pm t_{\alpha / 2} S \sqrt{\sum_{i=1}^{n} x_{i}^{2} / n S_{x x}}
$$

■ The test statistic for hypothesis testing is

$$
T=\frac{B_{0}-\beta_{0}^{0}}{S \sqrt{\sum_{i=1}^{n} x_{i}^{2} / n S_{x x}}}
$$

Example

A 95% C.I. on β_{0} in our previous example is given by

$$
\begin{gathered}
14.491 \pm 2.306 \sqrt{0.84(28.64) / 5.84} \\
(14.491-4.68,14.491+4.68) \\
(9.81,19.181)
\end{gathered}
$$

We are 95% sure that the true regression line crosses the y-axis between the points $y=9.81$ and $y=19.81$.

Inferences about estimated mean and single predicted value

■ Given a new value x of X, we want to estimate the values $\mu_{Y \mid X}$ and $Y \mid x$.

- A point estimate for $\mu_{Y \mid X}$ and $Y \mid x$ is given by

$$
\hat{Y} \mid x=\hat{\mu}_{Y \mid x}=b_{0}+b_{1} x
$$

■ A $100(1-\alpha) \%$ C.I. on $\mu_{Y \mid X}$ is given by

$$
\hat{\mu}_{Y \mid x} \pm t_{\alpha / 2} S \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S_{x x}}}
$$

■ A $100(1-\alpha) \%$ C.I. on $Y \mid x$ is given by

$$
\hat{Y} \left\lvert\, x \pm t_{\alpha / 2} S \sqrt{1+\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S_{x x}}}\right.
$$

