Financial Time Series – Introduction to time series

Andreas Petersson

TMS088/MSA410 - March 2020

UNIVERSITY OF GOTHENBURG

Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Sweden

A stochastic process X := (X_t, t ∈ T) is a collection of random variables with respect to an index set T.

- A stochastic process X := (X_t, t ∈ T) is a collection of random variables with respect to an index set T.
- stochastic process in continuous time if T is a (possibly unbounded) interval
- a stochastic process in discrete time if $\mathbb T$ is countable

- A stochastic process X := (X_t, t ∈ T) is a collection of random variables with respect to an index set T.
- stochastic process in continuous time if T is a (possibly unbounded) interval
- a stochastic process in discrete time if $\mathbb T$ is countable

Definition

A time series is a real-valued sequence of observations $(x_t, t \in \mathbb{T})$ with respect to an index set $\mathbb{T} \subset \mathbb{R}$. A time series model for the observed data $(x_t, t \in \mathbb{T})$ is a specification of the joint distributions (or possibly only the means and covariances) of a sequence of random variables $(X_t, t \in \mathbb{T})$ of which $(x_t, t \in \mathbb{T})$ postulates to be a realization.

- \bullet Focus on discrete time series: Assume that $\mathbb T$ is a discrete set
- $\mathbb{T} = \{t_n, n \in \mathbb{N}\}$
- $\bullet \ \mathbb{T} = \mathbb{N}$
- $\mathbb{T} = \mathbb{Z}$

- \bullet Focus on discrete time series: Assume that $\mathbb T$ is a discrete set
- $\mathbb{T} = \{t_n, n \in \mathbb{N}\}$
- $\bullet \ \mathbb{T} = \mathbb{N}$
- $\mathbb{T} = \mathbb{Z}$
- Examples:

Quarterly earnings of H&M

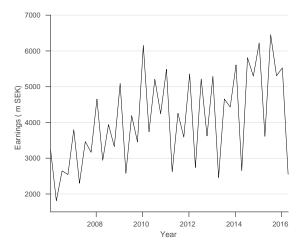


Figure: Quarterly earnings of H&M from January 2006 through April 2016.

Log-returns

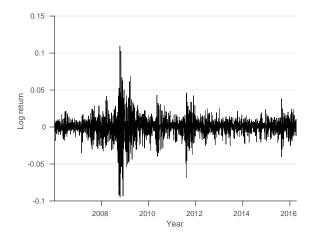


Figure: Daily log-returns of the S&P500 index from January 2006 to April 2016.

Notation and distribution for discrete time series

- For $\{t_n, n \in \mathbb{N}\}$, abbreviate $(X_{t_n}, n \in \mathbb{N})$ by $(X_n, n \in \mathbb{N})$ or $(X_n, n \in \mathbb{Z})$
- Similar for observations: $(x_n, n \in \mathbb{N})$
- For finite observations and models: (x_1, \ldots, x_n) and (X_1, \ldots, X_n)

Notation and distribution for discrete time series

- For $\{t_n, n \in \mathbb{N}\}$, abbreviate $(X_{t_n}, n \in \mathbb{N})$ by $(X_n, n \in \mathbb{N})$ or $(X_n, n \in \mathbb{Z})$
- Similar for observations: $(x_n, n \in \mathbb{N})$
- For finite observations and models: (x_1, \ldots, x_n) and (X_1, \ldots, X_n)

Specification of the joint distributions = knowledge of all probabilities

$$P_{X_{t_1},\dots,X_{t_m}}((-\infty,y_1],\dots,(-\infty,y_m]) = P(X_{t_1} \le y_1,\dots,X_{t_m} \le y_m)$$

for all finite random vectors $(X_{t_1}, \ldots, X_{t_m})$ of any $\{t_1, \ldots, t_m\} \subset \mathbb{N}$ with finite $m \in \mathbb{N}$ and all $y_j \in \mathbb{R}$, $j = 1, \ldots, m$.

Definition

A stochastic process $X = (X_t, t \in \mathbb{T})$ is called *iid noise* with mean μ and variance σ^2 if the sequence of random variables $(X_t, t \in \mathbb{T})$ is independent and identically distributed (abbreviated by *iid*) with $\mathbb{E}(X_t) = \mu$ and $\operatorname{Var}(X_t) = \sigma^2$ for all $t \in \mathbb{T}$.

• Example of IID noise: flipping a fair coin

- Example of IID noise: flipping a fair coin
- $(X_n, n \in \mathbb{Z})$ sequence of IID random variables characterized by:

• Given iid noise $(X_n, n \in \mathbb{N})$, a random walk $(S_n, n \in \mathbb{N}_0)$ is obtained by the cumulative summing of X

Definition

A time series X is said to be a *Gaussian time series* if all finite-dimensional distributions are normal, i.e., all finite-dimensional vectors are multivariate Gaussian distributed.