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Forecasting

Predict (X, 4n,h > 0) in terms of (X;,t =1,...,n). What is a good
prediction?

Definition

Let X and Y be random variables and let Y be an approximation of X.
The mean squared error of Y is defined by

MSE(Y, X) :=E((Y — X)?).



The best predictor

Definition
Let (X¢,t € Z) be a time series with Var(X;) < oo for all t € Z and
X" := (X4,,...,X;,) a collection of random variables of the time

series at n different times. Then the function of X™ denoted by b, (X™)
is called a best predictor of X; for some t € 7Z, if it minimizes the mean

squared error, i.e.,

b (X™) := argmin MSE(g(X™), X;) = argmin E((g(X") — X;)?),
g(X™) g(X™)

where the minimum is taken over all measurable functions g : R™ — R.



The best predictor is the conditional expectation
Proposition

Let (X,t € Z) be a time series with Var(X;) < oo for all t € Z and

X" :=(Xy,,...,Xy,) a collection of random variables of the time series at n
different times. Then the best predictor of X; for some t € Z is the conditional
expectation of X; given X™, i.e.,

by(X™) = B(X,|X™).

Proof.
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Juin E((9(X") - X0)*) = min (E((9(X") - E(X|X™)") + E(E(X:|X") - X0)*))

= E((B(X:|X™) — X2)%) + g Iol(@ 9(X™) — E(X:|X™))?).



The best linear predictor

Definition
Let (X;,t € Z) be a time series with Var(X;) < oo for all t € Z and
X" :=(X4,,...,X;,) a collection of random variables of the time

series at n different times. Then the linear function of 1 and X"
denoted by bl (X™) is called a best linear predictor of X; for some t € Z
if it minimizes the mean squared error, i.e.,

bL(X™) := arg min MSE(g(X"), X;) = argmin E((¢(X") — X;)?),
g(XxX™) g(Xx™)

where the minimum is taken over all linear functions g of 1 and X",
i.e., for all functions g such that there exist ag, ..., a, € R such that
g(X") i=ag+ a1 Xy, + Xy, |+ -+ an Xy,

Note: In BD, when X™ := (X1,...,X,), b, ,(X™) is denoted by
P, Xp4p and bl (X™) is denoted by Xt



e There exists a minimum a = (ag, ay, ..., a,) € R"*! to S, where
S(a) :=E((ag + a1 Xy, + -+ + an Xy, — X4)?)



Existence of bl(X™)

e There exists a minimum a = (ag, ai, . ..,a,) € R"! to S, where
S(a) :=E((ap + a1 Xy, + -+ + an Xy, — X4)?)
e The prediction equations:
o E(X;—bi(X™)=0
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Existence of bl(X™)

e There exists a minimum a = (ag, ai, . ..,a,) € R"! to S, where
S(a) :=E((ap + a1 Xy, + -+ + an Xy, — X4)?)
e The prediction equations:
o E(X;—bi(X™)=0
o E((X:—bi(X™) X,

wi1_;) =0forj=1,...,n

e The predictor is unique: Let a(*) and a(® be two minima with
corresponding predictors bgl’l)(X") and bgl’z)(X"). Set
L) vn 1,2) [ vn
7= bV () = (xm)



Prediction proposition

Proposition

Let (X;,t € Z) be a time series with Var(X,) < oo for all t € Z and
X" :=(Xy,,...,Xy,) a collection of random variables of the time
series at n different times. Then the best linear predictor of X is given

by
bLUX™) = ao + a1 Xy, + a2 Xy, , + -+ an Xy,

where the coefficients (a;,i =0, ...,n) are determined by the linear

equations

L E(X; —b(X™) =0,
2. E(Xy, (X, —bi(X™))=0forall j=1,...,n.



Prediction of stationary time series

Corollary

Let X = (X¢,t € Z) and X™ be as in Proposition 7 and assume in addition
that X is stationary with mean p and autocovariance function . Then the
coefficients (a;,i = 0,...,n) of b.(X™) are determined by the linear

equations
ap = K <1 — Zaz>
i=1
and
Lu(a,...,an)" = (Yt = tn),...,7(t = t1))’
with
Tn = (Y(tn+1-5 = tnt1-))irj=1-

Moreover,

MSE(bL(X™), X;) = v(0) — (a1, ..., an)(v(t — tn), ..., y(t —t1)) .






Prediction of stationary time series

Note 1: When X™ := (X,...,X,,) the equations to derive the
coefficients (ag, ..., ay) for bl , (X™) simplify to

ag = <1 — i(h)
i=1

and
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(Vi = )y (@rs s @) = (3(A),o A4 = 1)),

Note 2: Changing p affects ag only — p =0 w.l.o.g.



Prediction of stationary time series

Note 1: When X™ := (X,...,X,,) the equations to derive the
coefficients (ag, ..., ay) for bl , (X™) simplify to

ag = <1 — i(h)
i=1

and

(Vi = )y (@rs s @) = (3(A),o A4 = 1)),

Note 2: Changing p affects ag only — p =0 w.l.o.g.
Note 3: The coefficients of bl , (X™) are the same as those of

b in(Xes1,.. ., Xpyn)) forall t € Z



Example: An AR(1) process
Let a stationary time series model be given by
Xy — 01 Xy1 = Zy,

where (Z;,t € Z) ~ WN(0,0?). Let |¢1] <1 = existence and that
]E[ZtXt,j} =0 fOI'j > 0.
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Example: An MA(1) process
Let a stationary time series model be given by
Xt =2y + 01721,

where (Z;,t € Z) ~ WN(0, 0?).
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Example: An MA(1) process

Let a stationary time series model be given by
Xt =2+ 601241,

where (Z;,t € Z) ~ WN(0,02). b, (X") =" | a;Xn41-; and
E((Xn+1 — Z::l aiX,H_l_i)Xj) =0 for j = 1, N
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Example: AR(1) with a missing value

Let a stationary time series model be given by
Xt — 91 Xeo1 = Zt,

where (Z;,t € Z) ~ WN(0,02) and |¢;1| < 1. We observe X; and X3
but miss X5. Compute b5 ((X1, X3)) = a1 X3 + as X;.
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