Financial Time Series - Trend and seasonality

Andreas Petersson TMS088/MSA410 – April 2020

Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Sweden

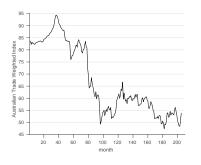
Classical decomposition model

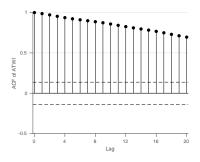
• Data is a time series $X=(X_t,t\in\mathbb{Z})$ with

$$X_t = m_t + s_t + Y_t, t \in \mathbb{Z}$$

- Assume we have observed $X^n = (X_1, \dots, X_n)$
- ullet the trend component $m:\mathbb{Z} \to \mathbb{R}$ is a slowly changing function
- ullet the seasonal component $s:\mathbb{Z} o \mathbb{R}$ is a function with period d, i.e., $s_{t+d}=s_t$
- ullet $Y=(Y_t,t\in\mathbb{Z})$ is a zero mean stationary time series

Let $x=(x_t)_{t=1}^{205}$ be the monthly observations of the Australian Trade Weighted Index (ATWI).

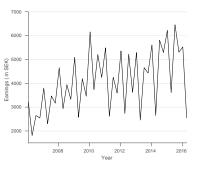




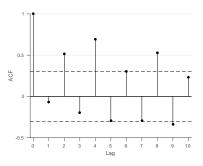
(a) Monthly observations of the ATWI.

(b) ACF of raw ATWI data.

Let the set $(x_t)_{t=1}^{42}$ be the quarterly earnings of H&M.



(a) Quarterly earnings of H&M from January 2006 through April 2016.



(b) Sample autocorrelation function for the H&M data.

Estimation of trend by a moving average filter

- trend only: $s_t = 0 \, \forall t \in \mathbb{Z}$
- $\bullet \ \ q \in \mathbb{N} \ \text{with} \ 2q < n \ \text{fixed}$
- two-sided moving average: $W_t := (2q+1)^{-1} \sum_{j=-q}^q X_{t-j}$ for all $t=q+1,\ldots,n-q$
- $W_t = (2q+1)^{-1} \sum_{j=-q}^q m_{t-j} + (2q+1)^{-1} \sum_{j=-q}^q Y_{t-j} \approx m_t$
- $\hat{m}_t := (2q+1)^{-1} \sum_{j=-q}^q X_{t-j} \text{ for } q+1 \le t \le n-q$

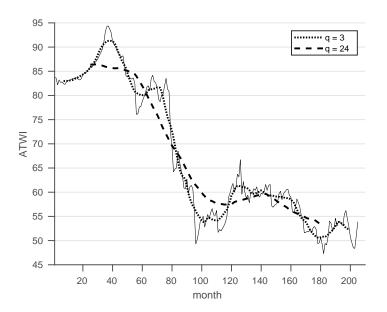


Figure: Moving average trends.

Estimation of trend by exponential smoothing

- trend only: $s_t = 0 \, \forall t \in \mathbb{Z}$
- for $\alpha \in [0,1]$ define one-sided moving averages $(\hat{m}_t, t=1,\dots,n)$ by

$$\hat{m}_t := \alpha X_t + (1 - \alpha)\hat{m}_{t-1}$$

for $t=2,\ldots,n$ and

$$\hat{m}_1 := X_1.$$

• for $t \geq 2$:

$$\hat{m}_t = \sum_{j=0}^{t-2} \alpha (1-\alpha)^j X_{t-j} + (1-\alpha)^{t-1} X_1,$$

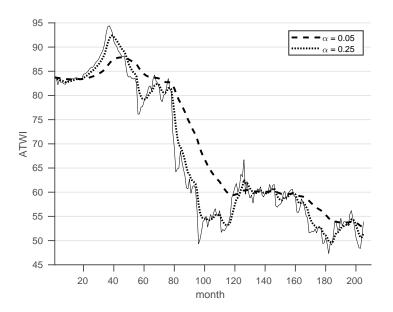


Figure: Exponential smoothing trends.

Let m be given by $m_t := \sum_{j=0}^q a_j t^j$ for $t \in \mathbb{Z}, q \in \mathbb{N}$. Let s with known period d be given by $s_t := \sum_{k=0}^p b_k \cos(2\pi \lambda_k t/d) + c_k \sin(2\pi \lambda_k t/d)$ for $t \in \mathbb{Z}, p \in \mathbb{N}$ and some known coefficients $(\lambda_j)_{j=1}^p \subset \mathbb{N}$.

Let m be given by $m_t := \sum_{j=0}^q a_j t^j$ for $t \in \mathbb{Z}, q \in \mathbb{N}$. Let s with known period d be given by $s_t := \sum_{k=0}^p b_k \cos(2\pi \lambda_k t/d) + c_k \sin(2\pi \lambda_k t/d)$ for $t \in \mathbb{Z}, p \in \mathbb{N}$ and some known coefficients $(\lambda_j)_{j=1}^p \subset \mathbb{N}$. $(a_j)_{j=1}^q$, $(b_j)_{j=1}^p$ and $(c_j)_{j=1}^p$ are obtained by

$$\underset{a_j,b_k,c_k}{\arg\min} \sum_{t=1}^n (X_t - m_t - s_t)^2,$$

Let m be given by $m_t:=\sum_{j=0}^q a_j t^j$ for $t\in\mathbb{Z}, q\in\mathbb{N}$. Let s with known period d be given by $s_t := \sum_{k=0}^p b_k \cos(2\pi \lambda_k t/d) + c_k \sin(2\pi \lambda_k t/d)$ for $t \in \mathbb{Z}, p \in \mathbb{N}$ and some *known* coefficients $(\lambda_j)_{i=1}^p \subset \mathbb{N}$. $(a_i)_{i=1}^q$, $(b_j)_{i=1}^p$ and $(c_j)_{i=1}^p$ are obtained by

$$\underset{a_j, b_k, c_k}{\text{arg min}} \sum_{t=1}^{n} (X_t - m_t - s_t)^2,$$

The design matrix:

The design matrix:
$$C := \begin{pmatrix} 1 & \cdots & 1^q & \cos(2\pi\lambda_1/d) & \cdots & \cos(2\pi\lambda_p/d) & \sin(2\pi\lambda_1/d) & \cdots & \sin(2\pi\lambda_p/d) \\ & & & & \vdots & & & \\ 1 & \cdots & t^q & \cos(2\pi\lambda_1t/d) & \cdots & \cos(2\pi\lambda_pt/d) & \sin(2\pi\lambda_1t/d) & \cdots & \sin(2\pi\lambda_pt/d) \\ & & & & \vdots & & & \\ 1 & \cdots & n^q & \cos(2\pi\lambda_1n/d) & \cdots & \cos(2\pi\lambda_pn/d) & \sin(2\pi\lambda_1n/d) & \cdots & \sin(2\pi\lambda_pn/d) \end{pmatrix}$$

Let m be given by $m_t := \sum_{i=0}^q a_j t^j$ for $t \in \mathbb{Z}, q \in \mathbb{N}$. Let s with known period d be given by $s_t := \sum_{k=0}^p b_k \cos(2\pi \lambda_k t/d) + c_k \sin(2\pi \lambda_k t/d)$ for $t \in \mathbb{Z}, p \in \mathbb{N}$ and some *known* coefficients $(\lambda_j)_{j=1}^p \subset \mathbb{N}$. $(a_j)_{i=1}^q$, $(b_j)_{i=1}^p$ and $(c_j)_{j=1}^p$ are obtained by

$$\underset{a_j, b_k, c_k}{\text{arg min}} \sum_{t=1}^{n} (X_t - m_t - s_t)^2,$$

The design matrix:

The design matrix:
$$C := \begin{pmatrix} 1 & \cdots & 1^q & \cos(2\pi\lambda_1/d) & \cdots & \cos(2\pi\lambda_p/d) & \sin(2\pi\lambda_1/d) & \cdots & \sin(2\pi\lambda_p/d) \\ & & & & \vdots & & & \\ 1 & \cdots & t^q & \cos(2\pi\lambda_1t/d) & \cdots & \cos(2\pi\lambda_pt/d) & \sin(2\pi\lambda_1t/d) & \cdots & \sin(2\pi\lambda_pt/d) \\ & & & & \vdots & & & \\ 1 & \cdots & n^q & \cos(2\pi\lambda_1n/d) & \cdots & \cos(2\pi\lambda_pn/d) & \sin(2\pi\lambda_1n/d) & \cdots & \sin(2\pi\lambda_pn/d) \end{pmatrix}$$

If C'C is non-singular, then the minimum is given by $(\hat{a}_0, \hat{a}_1, \dots, \hat{a}_g, \hat{b}_1, \dots, \hat{b}_p, \hat{c}_1, \dots, \hat{c}_p)' = (C'C)^{-1}C'X$, where $X = (X_1, X_2, \dots, X_n)'.$

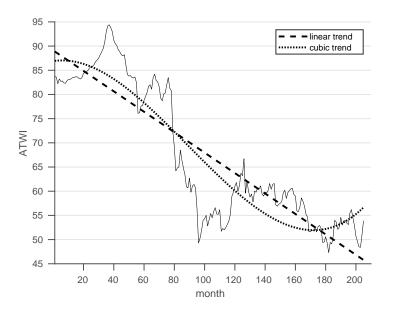


Figure: Trend estimation by linear least squares.

Estimation of trend and seasonality by moving averages

- Assume $n/d \in \mathbb{N}$
- $\bullet \ \ \text{For even} \ d = 2q \ \text{and} \ q < t \leq n-q$

$$\hat{m}_t := d^{-1}(2^{-1}x_{t-q} + x_{t-q+1} + \dots + x_{t+q-1} + 2^{-1}x_{t+q})$$

 \bullet For an odd period d=2q+1 and $q < t \leq n-q$

$$\hat{m}_t := d^{-1} \sum_{j=-q}^{q} x_{t-j}.$$

ullet for $k=1,\ldots,d$ and $q < k+jd \le n-q$

$$w_k := |\{j \in \mathbb{N}_0, q < k + jd \le n - q\}|^{-1} \sum_{q < k + jd \le n - q} (x_{k+jd} - \hat{m}_{k+jd}),$$

• $\hat{s}_k := w_k - d^{-1} \sum_{j=1}^d w_j$, extend it and reestimate trend on $(x_t - \hat{s}_t, t = 1, \dots, n)$

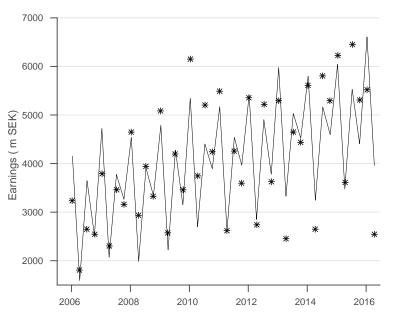
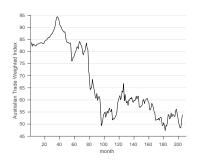
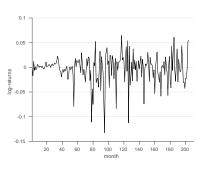


Figure: The H&M data (stars) with an estimated linear trend and seasonal component with period 4, $\hat{m}_t + \hat{s}_t$ (line).

Elimination of trend and seasonality by differencing

- Recall: $X_t = m_t + s_t + Y_t, t \in \mathbb{Z}$
- ullet $BX_t := X_{t-1}$ and $B^j X_t := B^{j-1} BX_t = B^{j-1} X_{t-1} = \cdots = X_{t-j}$
- $\nabla X_t := X_t X_{t-1} = (1 B)X_t$
- Trend:
 - If $m_t := \sum_{j=0}^q a_j t^j$ then $\nabla^q m_t = q! a_q$
 - For s=0, $\overset{\circ}{\nabla}^q X_t=q!\,a_q+\nabla^q Y_t$
- $\nabla_d X_t := X_t X_{t-d} = (1 B^d) X_t$
- Seasonality:
 - $\nabla_d X_t = m_t m_{t-d} + s_t s_{t-d} + Y_t Y_{t-d} = \nabla_d m_t + \nabla_d Y_t$





(a) Monthly observations of the ATWI.

(b) Log-returns of the ATWI.

Forecasting a differenced time series

 \bullet Suppose $\nabla^N \nabla^M_d X_t = \tilde{Y}_t$ where $\tilde{Y} = (\tilde{Y}_t, t \in \mathbb{Z})$ is stationary so

$$\tilde{Y}_t = \nabla^N \nabla_d^M X_t = (1 - B)^N (1 - B^d)^M X_t$$
$$= \sum_{k=0}^{N+Md} b_k B^k X_t = \sum_{k=0}^{N+Md} b_k X_{t-k}$$

- $X_{n+h} = \tilde{Y}_{n+h} \sum_{k=1}^{N+Md} b_k X_{n+h-k}$
- Observations $X^{n+N+Md}:=(X_{-N-Md+1},\dots,X_n)$ and $\tilde{Y}^n:=(\tilde{Y}_1,\dots,\tilde{Y}_n)$
- ullet If $X_{-N-Md+1},\dots,X_0$ are uncorrelated with $ilde{Y}^n$ then

$$b_{n+h}^{\ell}(X^{n+N+Md}) = b_{n+h}^{\ell}(\tilde{Y}^n) - \sum_{k=1}^{N+Md} b_k b_{n+h-k}^{\ell}(X^{n+N+Md}).$$

$$\bullet \ b_{n+h-k}^\ell(X^{n+N+Md}) = X_{n+h-k} \ \text{if} \ h \leq k$$