Financial Time Series – GARCH processes

Andreas Petersson TMS088/MSA410 – May 2020

Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Sweden

$$dP_t = \mu P_t dt + \sigma P_t dB_t, P(0) = P_0$$

Figure: Path of a Brownian motion.

$$dP_t = \mu P_t dt + \sigma P_t dB_t, P(0) = P_0$$

$$P_t = P_0 \exp((\mu - 2^{-1}\sigma^2)t + \sigma B_t).$$

Figure: Path of a geometric Brownian motion.

• Log-returns $x = (X_t, t \in Z)$ fulfills

$$X_t = \log(P_{t+1}) - \log(P_t) = \mu - \frac{\sigma^2}{2} + \sigma(B_{t+1} - B_t).$$

- ullet Assume mean has been removed (or that $\mu=rac{\sigma^2}{2}$)
- $X_t = \sigma Z_t$, where $Z = (Z_t, t \in \mathbb{Z}) \sim \operatorname{IID} \mathcal{N}(0,1)$

Figure: Observations from the model $X_t = \sigma Z_t$.

Problems when X is meant to be real-world data!

- 1. X_t and X_s seem only uncorrelated, not independent.
- 2. σ does not appear to be constant in time.
- 3. X_t has fait tails, i.e., the kurtosis $\frac{\mathbb{E}(X_t^4)}{\mathbb{E}(X_t^2)^2} > 3$.

Figure: Returns of the S&P500 index.

Random variance models

Definition

A stochastic process $X=(X_t,t\in\mathbb{Z})$ is said to follow a random variance model if

$$X_t = \sigma_t Z_t \tag{1}$$

for all $t\in\mathbb{Z}$, where $Z=(Z_t,t\in\mathbb{Z})$ is $\mathrm{IID}(0,1)$ and $\sigma=(\sigma_t,t\in\mathbb{Z})$ is an unspecified stochastic process called the *volatility*. If X_t can be written as a deterministic function of $(Z_s,s\leq t)$ for all $t\in\mathbb{Z}$, then X is said to be *causal*.

Random variance models

Definition

A stochastic process $X=(X_t,t\in\mathbb{Z})$ is said to follow a *random* variance model if

$$X_t = \sigma_t Z_t \tag{1}$$

for all $t\in\mathbb{Z}$, where $Z=(Z_t,t\in\mathbb{Z})$ is $\mathrm{IID}(0,1)$ and $\sigma=(\sigma_t,t\in\mathbb{Z})$ is an unspecified stochastic process called the *volatility*. If X_t can be written as a deterministic function of $(Z_s,s\leq t)$ for all $t\in\mathbb{Z}$, then X is said to be *causal*.

The realized volatility:

$$\hat{\sigma}_t^2 := (\tau - 1)^{-1} \sum_{j=t-\tau}^t (x_j - \bar{x}_t)^2$$

for observed data (x_1, \ldots, x_n) , fixed $\tau < n$, and $\tau < t \le n$, where

$$\bar{x}_t := \tau^{-1} \sum_{j=t-\tau}^t x_j.$$

Conditional heteroscedasticity:

$$\mathsf{Var}(X_t|X_{t-1},X_{t-2},\ldots) = \mathbb{E}((X_t - \mathbb{E}(X_t))^2|X_{t-1},X_{t-2},\ldots) \neq \text{ constant }$$

Conditional heteroscedasticity:

$${\sf Var}(X_t|X_{t-1},X_{t-2},\ldots) = \mathbb{E}((X_t-\mathbb{E}(X_t))^2|X_{t-1},X_{t-2},\ldots)
eq {\sf constant}$$

Autoregressive conditional heteroscedasticity:

Definition

A stochastic process $X=(X_t,t\in\mathbb{Z})$ is called an $\mathrm{ARCH}(p)$ process if it is stationary and if it satisfies the ARCH equations

$$X_t = \sigma_t Z_t,$$

where $Z \sim \text{IID}(0, 1)$,

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_j X_{t-j}^2,$$

$$\alpha_0 > 0$$
, $\alpha_j \geq 0$ for $j = 1, \ldots, p$.

$$\alpha(z) := \alpha_1 z + \dots + \alpha_p z^p.$$

$$\alpha(z) := \alpha_1 z + \dots + \alpha_p z^p.$$

$$\sigma_t^2 = \alpha_0 + \alpha(B)X_t^2,$$

$$\alpha(z) := \alpha_1 z + \dots + \alpha_p z^p.$$

$$\sigma_t^2 = \alpha_0 + \alpha(B)X_t^2,$$

For causal X:

$$\mathbb{E}(X_t^2) = \mathbb{E}(\sigma_t^2) = \alpha_0 + \sum_{j=1}^p \alpha_j \, \mathbb{E}(X_t^2) = \alpha_0 + \alpha(1) \, \mathbb{E}(X_t^2).$$

$$\alpha(z) := \alpha_1 z + \dots + \alpha_p z^p.$$

$$\sigma_t^2 = \alpha_0 + \alpha(B)X_t^2,$$

For causal X:

$$\mathbb{E}(X_t^2) = \mathbb{E}(\sigma_t^2) = \alpha_0 + \sum_{j=1}^p \alpha_j \, \mathbb{E}(X_t^2) = \alpha_0 + \alpha(1) \, \mathbb{E}(X_t^2).$$

$$\mathbb{E}(X_t^2) = \frac{\alpha_0}{1 - \alpha(1)}.$$

GARCH models

Definition

A stochastic process $X=(X_t,t\in\mathbb{Z})$ is called a $\mathrm{GARCH}(p,q)$ process if it is a stationary solution to the GARCH equations

$$X_t = \sigma_t Z_t,$$

where $Z \sim \text{IID}(0,1)$,

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_j X_{t-j}^2 + \sum_{i=1}^q \beta_i \sigma_{t-i}^2,$$

with $\alpha_0 > 0$, $\alpha_j \ge 0$ for $j = 1, \ldots, p$, $\beta_i \ge 0$ for $i = 1, \ldots, q$.

8

GARCH models

Definition

A stochastic process $X=(X_t,t\in\mathbb{Z})$ is called a $\mathrm{GARCH}(p,q)$ process if it is a stationary solution to the GARCH equations

$$X_t = \sigma_t Z_t$$

where $Z \sim \text{IID}(0, 1)$,

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_j X_{t-j}^2 + \sum_{i=1}^q \beta_i \sigma_{t-i}^2,$$

with $\alpha_0 > 0$, $\alpha_j \ge 0$ for $j = 1, \ldots, p$, $\beta_i \ge 0$ for $i = 1, \ldots, q$.

Usually $Z_t \sim \mathcal{N}(0,1)$ or $\sqrt{\nu/(\nu-2)}Z_t \sim t_{\nu}$ for all $t \in \mathbb{Z}$. The factor $\sqrt{\nu/(\nu-2)}$ yields $\mathrm{Var}(Z_t) = 1$, Z_t follows a generalized or non-standardized t-distribution.

Proposition

If $\alpha_1 + \beta_1 < 1$, there exists a stationary solution $X = (X_t, t \in \mathbb{Z})$ to the GARCH(1, 1) equations that is given by the equation

$$X_t = \sigma_t Z_t$$

where $Z \sim IID(0,1)$ and

$$\sigma_t^2 = \alpha_0 \left(1 + \sum_{i=1}^{\infty} (\alpha_1 Z_{t-1}^2 + \beta_1) (\alpha_1 Z_{t-2}^2 + \beta_1) \cdots (\alpha_1 Z_{t-i}^2 + \beta_1) \right). \tag{2}$$

It is unique (P-a.s.), strictly stationary and causal. Conversely, if $\alpha_1+\beta_1\geq 1$, then there no non-zero stationary solution to the $\mathrm{GARCH}(1,1)$ equations for which σ_t can be written as a deterministic function of ($Z_s,s< t$) for all $t\in \mathbb{Z}$.

9

$$\mathbb{E}(|\sigma_t^2|) = \mathbb{E}(\sigma_t^2) = \alpha_0 \left(1 + \sum_{j=1}^{\infty} \mathbb{E}\left((\alpha_1 Z_{t-1}^2 + \beta_1)(\alpha_1 Z_{t-2}^2 + \beta_1) + \cdots (\alpha_1 Z_{t-j}^2 + \beta_1) \right) \right)$$

$$\mathbb{E}(|\sigma_t^2|) = \mathbb{E}(\sigma_t^2) = \alpha_0 \left(1 + \sum_{j=1}^{\infty} \mathbb{E}\left((\alpha_1 Z_{t-1}^2 + \beta_1) (\alpha_1 Z_{t-2}^2 + \beta_1) \cdots (\alpha_1 Z_{t-j}^2 + \beta_1) \right) \right)$$

$$= \alpha_0 \left(1 + \sum_{j=1}^{\infty} (\alpha_1 + \beta_1)^j \right) = \alpha_0 \frac{1}{1 - \alpha_1 - \beta_1} < \infty$$

$$\alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = \alpha_0 + \alpha_1 \sigma_{t-1}^2 Z_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = \alpha_0 + (\alpha_1 Z_{t-1}^2 + \beta_1) \sigma_{t-1}^2$$

$$\alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = \alpha_0 + \alpha_1 \sigma_{t-1}^2 Z_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = \alpha_0 + (\alpha_1 Z_{t-1}^2 + \beta_1) \sigma_{t-1}^2$$

$$= \alpha_0 + \alpha_0 \left(\alpha_1 Z_{t-1}^2 + \beta_1 + \sum_{i=1}^{\infty} (\alpha_1 Z_{t-1}^2 + \beta_1) (\alpha_1 Z_{t-2}^2 + \beta_1) \cdots (\alpha_1 Z_{t-1-i}^2 + \beta_1) \right)$$

$$\begin{split} &\alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = \alpha_0 + \alpha_1 \sigma_{t-1}^2 Z_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = \alpha_0 + (\alpha_1 Z_{t-1}^2 + \beta_1) \sigma_{t-1}^2 \\ &= \alpha_0 + \alpha_0 \Big(\alpha_1 Z_{t-1}^2 + \beta_1 + \sum_{i=1}^{\infty} (\alpha_1 Z_{t-1}^2 + \beta_1) (\alpha_1 Z_{t-2}^2 + \beta_1) \cdots (\alpha_1 Z_{t-1-i}^2 + \beta_1) \Big) \\ &= \alpha_0 \Big(1 + \alpha_1 Z_{t-1}^2 + \beta_1 + \sum_{i=2}^{\infty} (\alpha_1 Z_{t-1}^2 + \beta_1) (\alpha_1 Z_{t-2}^2 + \beta_1) \cdots (\alpha_1 Z_{t-i}^2 + \beta_1) \Big) \end{split}$$

$$\begin{split} &\alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = \alpha_0 + \alpha_1 \sigma_{t-1}^2 Z_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = \alpha_0 + (\alpha_1 Z_{t-1}^2 + \beta_1) \sigma_{t-1}^2 \\ &= \alpha_0 + \alpha_0 \left(\alpha_1 Z_{t-1}^2 + \beta_1 + \sum_{i=1}^{\infty} (\alpha_1 Z_{t-1}^2 + \beta_1) (\alpha_1 Z_{t-2}^2 + \beta_1) \cdots (\alpha_1 Z_{t-1-i}^2 + \beta_1) \right) \\ &= \alpha_0 \left(1 + \alpha_1 Z_{t-1}^2 + \beta_1 + \sum_{i=2}^{\infty} (\alpha_1 Z_{t-1}^2 + \beta_1) (\alpha_1 Z_{t-2}^2 + \beta_1) \cdots (\alpha_1 Z_{t-i}^2 + \beta_1) \right) \\ &= \alpha_0 \left(1 + \sum_{i=1}^{\infty} (\alpha_1 Z_{t-1}^2 + \beta_1) (\alpha_1 Z_{t-2}^2 + \beta_1) \cdots (\alpha_1 Z_{t-i}^2 + \beta_1) \right) = \sigma_t^2. \end{split}$$

$$\mathbb{E}(X_t^2) = \mathbb{E}(\sigma_t^2) = \alpha_0 + \alpha_1 \, \mathbb{E}(X_{t-1}^2) + \beta_1 \, \mathbb{E}(\sigma_{t-1}^2)$$
$$= \alpha_0 + \mathbb{E}(X_t^2)(\alpha_1 + \beta_1)$$

GARCH(p,q)

$$\sigma_t^2 = \alpha_0 + \alpha(B)X_t^2 + \beta(B)\sigma_t^2$$

GARCH(p,q)

$$\sigma_t^2 = \alpha_0 + \alpha(B)X_t^2 + \beta(B)\sigma_t^2$$

Proposition (Existence of a GARCH(p, q) process)

lf

$$\alpha(1) + \beta(1) = \sum_{i=1}^{p} \alpha_i + \sum_{j=1}^{q} \beta_j < 1,$$

there exists a unique weakly and strictly stationary causal solution $X=(X_t,t\in\mathbb{Z})$ to the $\mathrm{GARCH}(p,q)$ equations and a real-valued sequence $(\psi_j)_{j=0}^\infty$ such that $\sum_{j=0}^\infty |\psi_j| < \infty$ and σ^2 can be expressed by

$$\sigma_t^2 = \psi_0 + \sum_{j=1}^{\infty} \psi_j X_{t-j}^2.$$

GARCH(p,q)

$$\sigma_t^2 = \alpha_0 + \alpha(B)X_t^2 + \beta(B)\sigma_t^2$$

Proposition (Existence of a GARCH(p, q) process)

lf

$$\alpha(1) + \beta(1) = \sum_{i=1}^{p} \alpha_i + \sum_{j=1}^{q} \beta_j < 1,$$

there exists a unique weakly and strictly stationary causal solution $X=(X_t,t\in\mathbb{Z})$ to the $\mathrm{GARCH}(p,q)$ equations and a real-valued sequence $(\psi_j)_{j=0}^\infty$ such that $\sum_{j=0}^\infty |\psi_j| < \infty$ and σ^2 can be expressed by

$$\sigma_t^2 = \psi_0 + \sum_{j=1}^{\infty} \psi_j X_{t-j}^2.$$

Conversely, if

$$\alpha(1) + \beta(1) = \sum_{i=1}^{p} \alpha_i + \sum_{j=1}^{q} \beta_j \ge 1,$$

then no stationary and causal solution to the GARCH(p,q) equations for which σ_t can be written as a deterministic function of $(Z_s,s< t)$ for all $t\in \mathbb{Z}$ exists.

As before,
$$\alpha(1)+\beta(1)<1\implies$$

$$\mathbb{E}(X_t^2)=\alpha_0+(\alpha(1)+\beta(1))\,\mathbb{E}(X_t^2)$$

As before,
$$\alpha(1)+\beta(1)<1 \implies$$

$$\mathbb{E}(X_t^2)=\alpha_0+(\alpha(1)+\beta(1))\,\mathbb{E}(X_t^2)$$
 \implies
$$\mathbb{E}(X_t^2)=\mathbb{E}(\sigma_t^2)=\frac{\alpha_0}{1-\alpha(1)-\beta(1)}.$$

As before,
$$\alpha(1) + \beta(1) < 1 \implies$$

$$\mathbb{E}(X_t^2) = \alpha_0 + (\alpha(1) + \beta(1)) \, \mathbb{E}(X_t^2)$$

 \Longrightarrow

$$\mathbb{E}(X_t^2) = \mathbb{E}(\sigma_t^2) = \frac{\alpha_0}{1 - \alpha(1) - \beta(1)}.$$

Exercise: If $\mathbb{E}(\sigma_t^4) < +\infty$, $X^2 = (X_t^2, t \in \mathbb{Z}) \sim \text{ARMA}(\max\{p,q\},q)$

with

$$\phi(z) = 1 - \alpha(z) - \beta(z),$$

$$\theta(z) = 1 - \beta(z)$$

and mean $\alpha_0(1 - \alpha(1) - \beta(1))^{-1}$.

As before,
$$\alpha(1) + \beta(1) < 1 \implies$$

$$\mathbb{E}(X_t^2) = \alpha_0 + (\alpha(1) + \beta(1)) \, \mathbb{E}(X_t^2)$$

 \Longrightarrow

$$\mathbb{E}(X_t^2) = \mathbb{E}(\sigma_t^2) = \frac{\alpha_0}{1 - \alpha(1) - \beta(1)}.$$

Exercise: If $\mathbb{E}(\sigma_t^4)<+\infty$, $X^2=(X_t^2,t\in\mathbb{Z})\sim \mathrm{ARMA}(\max\{p,q\},q)$ with

$$\phi(z) = 1 - \alpha(z) - \beta(z),$$

$$\theta(z) = 1 - \beta(z)$$

and mean $\alpha_0(1-\alpha(1)-\beta(1))^{-1}$. Alternatively:

$$X_t^2 - \sum_{i=1}^{\max\{p,q\}} (\alpha_i + \beta_i) X_{t-i}^2 = \alpha_0 + \eta_t - \sum_{j=1}^q \beta_j \eta_{t-j},$$

where $\alpha_i := 0$ for i > p, $\beta_i := 0$ for i > q and $\eta_t := X_t^2 - \sigma_t^2$ is white noise.