Financial Time Series – Nonlinear models

Andreas Petersson

TMS088/MSA410 - May 2020

Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Sweden

Nonlinear models

• Linear model: $X_t = \sum_{j \in \mathbb{Z}} \psi_j Z_{t-j}$, where $Z \sim WN(0, \sigma^2)$ and $(\psi_j, j \in \mathbb{Z})$ is a sequence of real numbers

Nonlinear models

- Linear model: $X_t = \sum_{j \in \mathbb{Z}} \psi_j Z_{t-j}$, where $Z \sim WN(0, \sigma^2)$ and $(\psi_j, j \in \mathbb{Z})$ is a sequence of real numbers
- General case:

$$X_t = f(Z_s, s \le t),$$

Nonlinear models

- Linear model: $X_t = \sum_{j \in \mathbb{Z}} \psi_j Z_{t-j}$, where $Z \sim WN(0, \sigma^2)$ and $(\psi_j, j \in \mathbb{Z})$ is a sequence of real numbers
- General case:

$$X_t = f(Z_s, s \le t),$$

• Conditional mean/variance models:

$$X_t = g(\mathcal{F}_{t-1}) + \sqrt{h(\mathcal{F}_{t-1})}Z_t,$$

where $(\mathcal{F}_t, t \in \mathbb{Z})$ is a *filtration*

$$\mu_t = \mathbb{E}(X_t | \mathcal{F}_{t-1}) =: g(\mathcal{F}_{t-1})$$

and

$$\sigma_t^2 = \operatorname{Var}(X_t | \mathcal{F}_{t-1}) = \mathbb{E}\left(\left(X_t - \mathbb{E}(X_t | \mathcal{F}_{t-1}) \right)^2 | \mathcal{F}_{t-1} \right) =: h(\mathcal{F}_{t-1}).$$

• \mathcal{F}_{t-1} represents the information available at time t-1, e.g, all linear combinations of $(Z_s,s\leq t)$

- Idea: Second-order Taylor expansions of $f(Z_s, X_s, s \leq t)$
- Introduced by Grander and Andersen in 1978
- Let $X = (X_t, t \in \mathbb{Z})$ be given by

$$X_{t} = c + \sum_{i=1}^{p} \phi_{i} X_{t-i} - \sum_{j=1}^{q} \theta_{j} Z_{t-j} + \sum_{i=1}^{m} \sum_{j=1}^{s} \beta_{ij} X_{t-i} Z_{t-j} + Z_{t},$$

where p, q, m, and s are nonnegative integers, the other parameters are real-valued, and Z is a white noise

Example: SETAR model

A time series $X = (X_t, t \in \mathbb{Z})$ follows a *k*-regime self-exciting threshold autoregressive (SETAR) model if it satisfies

$$X_{t} = c_{j} + \sum_{i=1}^{p} \phi_{ji} X_{t-i} + Z_{jt} \text{ if } X_{t-d} \in [\gamma_{j-1}, \gamma_{j}),$$

where $d \in \mathbb{N}$ and the parameters $c_j, \phi_{ji}, \gamma_{j-1}, \gamma_j$ are real valued with $i = 1, \ldots, p, \ j = 1, \ldots, k$ and the series Z_1, \ldots, Z_k with $Z_j = (Z_{jt}, t \in \mathbb{Z})$ are mutually independent $\mathrm{IID}(0, \sigma_j^2)$ noises.

Example: SETAR model

A time series $X = (X_t, t \in \mathbb{Z})$ follows a *k*-regime self-exciting threshold autoregressive (SETAR) model if it satisfies

$$X_{t} = c_{j} + \sum_{i=1}^{p} \phi_{ji} X_{t-i} + Z_{jt} \text{ if } X_{t-d} \in [\gamma_{j-1}, \gamma_{j}),$$

where $d \in \mathbb{N}$ and the parameters $c_j, \phi_{ji}, \gamma_{j-1}, \gamma_j$ are real valued with $i = 1, \ldots, p, \ j = 1, \ldots, k$ and the series Z_1, \ldots, Z_k with $Z_j = (Z_{jt}, t \in \mathbb{Z})$ are mutually independent $\mathrm{IID}(0, \sigma_j^2)$ noises. Estimate by minimizing

$$S(\theta) := \sum_{t=p+1}^{n} \left(X_t - \mathbb{E}_{\theta}(X_t | \mathcal{F}_{t-1}) \right)^2$$

where the conditional expectation is computed with respect to $\theta := c_j, \phi_{ji}, \gamma_{j-1}, \gamma_j$

Definition

A stochastic process $X = (X_t, t \in \mathbb{T})$ on some index set \mathbb{T} is a *Markov* process if its conditional distribution function satisfies

$$P(X_h|X_s, s \le t) = P(X_h|X_t)$$

for arbitrary h > t. If X is a discrete-time stochastic process, i.e., $\mathbb{T} = \mathbb{N}$ or \mathbb{Z} , then the property becomes

$$P(X_h|X_t, X_{t-1}, \ldots) = P(X_h|X_t)$$

for arbitrary h > t and the process is also known as (first-order) *Markov* chain.

Example: Markov switching AR(p) model

Let S be a Markov chain taking values in $\{1,2\}$ with

$$P(S_t = 2 | S_{t-1} = 1) = w_1,$$

$$P(S_t = 1 | S_{t-1} = 2) = w_2$$

with $w_1, w_2 \in [0, 1]$. $X = (X_t, t \in \mathbb{Z})$ follows a *Markov switching* autoregressive model (MSA) with two states if

$$X_t = \begin{cases} c_1 + \sum_{i=1}^p \phi_{1i} X_{t-i} + Z_{1t} & \text{if } S_t = 1, \\ c_2 + \sum_{i=1}^p \phi_{2i} X_{t-i} + Z_{2t} & \text{if } S_t = 2. \end{cases}$$

Here $Z_1 = (Z_{1t}, t \in \mathbb{Z})$ and $Z_2 = (Z_{2t}, t \in \mathbb{Z})$ are $IID(0, \sigma^2)$ noises for finite σ^2 and independent of each other.