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Nonparametric methods

• When structure is non-linear but unknown

• Highly data dependent, risk of overfitting
• No/few parameters/models =⇒ no error distribution
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General time series model

• Let X = (Xt, t ∈ Z) be given by

Xt = m(Xt−r) + Zt,

where Z ∼ IID(0, σ2) and m is an arbitrary, smooth, but unknown
function

• More generally:
Yt = m(Xt) + Zt,

for two time series X and Y
• For Y independent of Z, m(Xt) ≈ E(Yt|Xt)
• When X = x is constant and independent of Z,

yt = m(x) + Zt

and taking the sample average yields

n−1
n∑

t=1
yt = m(x) + n−1

n∑
t=1

Zt.
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Kernels

• Fine if m is smooth and Xt ≈ x almost constant

• Otherwise: use a weighted average of y,

m̂(x) :=
n∑

t=1
wt(x)yt, (1)

where wt(x) are larger for yt with xt close to x and smaller
otherwise and

∑n
t=1 wt(x) = 1.

• Kernel K : R→ R+. Typically a density function,
∫
K(z) dz = 1.

• Rescale by bandwidth:

Kh(x) = h−1K(xh−1).

Still: ∫
Kh(z) dz = 1.
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Kernel regression

Set
wt(x) := Kh(x− xt)∑n

s=1 Kh(x− xs)
.

This yields the Nadaraya–Watson kernel estimator

m̂(x) =
n∑

t=1
wt(x)yt =

∑n
t=1 Kh(x− xt)yt∑n

t=1 Kh(x− xt)
.

Example: The Gaussian kernel

Kh(x) := (2πh2)−1/2 exp(−(2h2)−1x2)

Example: The Epanechnikov kernel

Kh(x) := 0.75h−1(1− (x/h)2)I(|x/h| ≤ 1),

For the latter: m̂(xt)→ yt for h→ 0 and m̂(xt)→ ȳ for h→∞
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Bandwidth selection

Method (Bandwidth selection with MISE)
Minimize the mean integrated squared error:

MISE := E
(∫ ∞
−∞

(m̂(x)−m(x))2 dx
)
,

where m is the true function and m̂ the estimator which depends on h.

Expand this to derive an optimal bandwidth that depends on unknown
quantities. Estimate these by preliminary smoothing, i.e., computing m̂
with a reference bandwith selector. Common choices:

ĥopt =
{

1.06 s n−1/5 for the Gaussian kernel,
2.34 s n−1/5 for the Epanechnikov kernel,

where s is the sample standard error of (xt)n
t=1.
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Bandwidth selection

Method (Bandwidth selection with cross validation)
Leave-one-out cross validation omits (xj , yj). The other data points are
used to find:

m̂h,j(xj) :=
∑
t 6=j

wt(xj)yt ≈ yj .

Repeat for the remaining n− 1 points and set

CV(h) :=
n∑

j=1
(yj − m̂h,j(xj))2W (xj),

where W is a nonnegative weight function satisfying∑n
j=1 W (xj) = 1.Set hopt := arg minh CV(h).
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Local linear regression

• Idea: m̂(x) can equally be defined as

arg min
a

n∑
t=1

(yt − a)2Kh(x− xt).

• The local linear regression method:

(â, b̂) = arg min
a,b

n∑
t=1

(yt − a− b(x− xt))2Kh(x− xt)

• Beats kernel regression if m is twice continuously differentiable
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Local linear regression

A closed form solution:

â =
∑n

t=1 wt(x)yt∑n
t=1 wt(x)

and b̂ =
∑n

t=1 w̃t(x)yt∑n
t=1 wt(x)

where
wt(x) := Kh(x− xt)(sn,2(x)− (x− xt)sn,1(x)),

w̃t(x) := Kh(x− xt)((x− xt)sn,0(x)− sn,1(x)),

and

sn,j(x) :=
n∑

t=1
Kh(x− xt)(x− xt)j

for j = 0, 1, 2.
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Local linear regression

In practice:

m̂(x) :=
∑n

t=1 wt(x)yt∑n
t=1 wt(x) + n−2 .

Extend to more complex autoregressive models like

Xt = m1(Xt−1) +m2(Xt−2) + . . .+mk(Xt−k) + Zt,

where (mi)k
i=1 is a sequence of smooth functions, or

Xt = m(Xt−1, . . . , Xt−k) + Zt,

where m : Rk → R is a smooth function.
Multivariate kernels Kh : Rk → R, e.g., multivariate Gaussian density:

Kh(x) = (2πh2)−k/2(det Σ)−1/2 exp(−(2h2)−1x′Σ−1x).
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