Financial Time Series - Nonparametric methods in time series

Andreas Petersson
TMS088/MSA410 - May 2020

CHALMERS
UNIVERSITY OF TECHNOLOGY

Mathematical Sciences, Chalmers University of Technology \& University of Gothenburg, Sweden

Nonparametric methods

- When structure is non-linear but unknown

Nonparametric methods

- When structure is non-linear but unknown
- Highly data dependent, risk of overfitting

Nonparametric methods

- When structure is non-linear but unknown
- Highly data dependent, risk of overfitting
- No/few parameters/models \Longrightarrow no error distribution

General time series model

- Let $X=\left(X_{t}, t \in \mathbb{Z}\right)$ be given by

$$
X_{t}=m\left(X_{t-r}\right)+Z_{t}
$$

where $Z \sim I I D\left(0, \sigma^{2}\right)$ and m is an arbitrary, smooth, but unknown function

General time series model

- Let $X=\left(X_{t}, t \in \mathbb{Z}\right)$ be given by

$$
X_{t}=m\left(X_{t-r}\right)+Z_{t}
$$

where $Z \sim I I D\left(0, \sigma^{2}\right)$ and m is an arbitrary, smooth, but unknown function

- More generally:

$$
Y_{t}=m\left(X_{t}\right)+Z_{t}
$$

for two time series X and Y

General time series model

- Let $X=\left(X_{t}, t \in \mathbb{Z}\right)$ be given by

$$
X_{t}=m\left(X_{t-r}\right)+Z_{t}
$$

where $Z \sim I I D\left(0, \sigma^{2}\right)$ and m is an arbitrary, smooth, but unknown function

- More generally:

$$
Y_{t}=m\left(X_{t}\right)+Z_{t}
$$

for two time series X and Y

- For Y independent of $Z, m\left(X_{t}\right) \approx \mathbb{E}\left(Y_{t} \mid X_{t}\right)$

General time series model

- Let $X=\left(X_{t}, t \in \mathbb{Z}\right)$ be given by

$$
X_{t}=m\left(X_{t-r}\right)+Z_{t}
$$

where $Z \sim I I D\left(0, \sigma^{2}\right)$ and m is an arbitrary, smooth, but unknown function

- More generally:

$$
Y_{t}=m\left(X_{t}\right)+Z_{t}
$$

for two time series X and Y

- For Y independent of $Z, m\left(X_{t}\right) \approx \mathbb{E}\left(Y_{t} \mid X_{t}\right)$
- When $X=x$ is constant and independent of Z,

$$
y_{t}=m(x)+Z_{t}
$$

and taking the sample average yields

$$
n^{-1} \sum_{t=1}^{n} y_{t}=m(x)+n^{-1} \sum_{t=1}^{n} Z_{t} .
$$

Kernels

- Fine if m is smooth and $X_{t} \approx x$ almost constant

Kernels

- Fine if m is smooth and $X_{t} \approx x$ almost constant
- Otherwise: use a weighted average of y,

$$
\begin{equation*}
\hat{m}(x):=\sum_{t=1}^{n} w_{t}(x) y_{t}, \tag{1}
\end{equation*}
$$

where $w_{t}(x)$ are larger for y_{t} with x_{t} close to x and smaller otherwise and $\sum_{t=1}^{n} w_{t}(x)=1$.

Kernels

- Fine if m is smooth and $X_{t} \approx x$ almost constant
- Otherwise: use a weighted average of y,

$$
\begin{equation*}
\hat{m}(x):=\sum_{t=1}^{n} w_{t}(x) y_{t}, \tag{1}
\end{equation*}
$$

where $w_{t}(x)$ are larger for y_{t} with x_{t} close to x and smaller otherwise and $\sum_{t=1}^{n} w_{t}(x)=1$.

- Kernel $K: \mathbb{R} \rightarrow \mathbb{R}^{+}$. Typically a density function, $\int K(z) \mathrm{d} z=1$.
- Rescale by bandwidth:

$$
K_{h}(x)=h^{-1} K\left(x h^{-1}\right)
$$

Still:

$$
\int K_{h}(z) \mathrm{d} z=1
$$

Kernel regression

Set

$$
w_{t}(x):=\frac{K_{h}\left(x-x_{t}\right)}{\sum_{s=1}^{n} K_{h}\left(x-x_{s}\right)}
$$

Kernel regression

Set

$$
w_{t}(x):=\frac{K_{h}\left(x-x_{t}\right)}{\sum_{s=1}^{n} K_{h}\left(x-x_{s}\right)} .
$$

This yields the Nadaraya-Watson kernel estimator

$$
\hat{m}(x)=\sum_{t=1}^{n} w_{t}(x) y_{t}=\frac{\sum_{t=1}^{n} K_{h}\left(x-x_{t}\right) y_{t}}{\sum_{t=1}^{n} K_{h}\left(x-x_{t}\right)}
$$

Kernel regression

Set

$$
w_{t}(x):=\frac{K_{h}\left(x-x_{t}\right)}{\sum_{s=1}^{n} K_{h}\left(x-x_{s}\right)} .
$$

This yields the Nadaraya-Watson kernel estimator

$$
\hat{m}(x)=\sum_{t=1}^{n} w_{t}(x) y_{t}=\frac{\sum_{t=1}^{n} K_{h}\left(x-x_{t}\right) y_{t}}{\sum_{t=1}^{n} K_{h}\left(x-x_{t}\right)} .
$$

Example: The Gaussian kernel

$$
K_{h}(x):=\left(2 \pi h^{2}\right)^{-1 / 2} \exp \left(-\left(2 h^{2}\right)^{-1} x^{2}\right)
$$

Kernel regression

Set

$$
w_{t}(x):=\frac{K_{h}\left(x-x_{t}\right)}{\sum_{s=1}^{n} K_{h}\left(x-x_{s}\right)} .
$$

This yields the Nadaraya-Watson kernel estimator

$$
\hat{m}(x)=\sum_{t=1}^{n} w_{t}(x) y_{t}=\frac{\sum_{t=1}^{n} K_{h}\left(x-x_{t}\right) y_{t}}{\sum_{t=1}^{n} K_{h}\left(x-x_{t}\right)} .
$$

Example: The Gaussian kernel

$$
K_{h}(x):=\left(2 \pi h^{2}\right)^{-1 / 2} \exp \left(-\left(2 h^{2}\right)^{-1} x^{2}\right)
$$

Example: The Epanechnikov kernel

$$
K_{h}(x):=0.75 h^{-1}\left(1-(x / h)^{2}\right) I(|x / h| \leq 1),
$$

Kernel regression

Set

$$
w_{t}(x):=\frac{K_{h}\left(x-x_{t}\right)}{\sum_{s=1}^{n} K_{h}\left(x-x_{s}\right)} .
$$

This yields the Nadaraya-Watson kernel estimator

$$
\hat{m}(x)=\sum_{t=1}^{n} w_{t}(x) y_{t}=\frac{\sum_{t=1}^{n} K_{h}\left(x-x_{t}\right) y_{t}}{\sum_{t=1}^{n} K_{h}\left(x-x_{t}\right)} .
$$

Example: The Gaussian kernel

$$
K_{h}(x):=\left(2 \pi h^{2}\right)^{-1 / 2} \exp \left(-\left(2 h^{2}\right)^{-1} x^{2}\right)
$$

Example: The Epanechnikov kernel

$$
K_{h}(x):=0.75 h^{-1}\left(1-(x / h)^{2}\right) I(|x / h| \leq 1),
$$

For the latter: $\hat{m}\left(x_{t}\right) \rightarrow y_{t}$ for $h \rightarrow 0$ and $\hat{m}\left(x_{t}\right) \rightarrow \bar{y}$ for $h \rightarrow \infty$

Bandwidth selection

Method (Bandwidth selection with MISE)

Minimize the mean integrated squared error.

$$
\operatorname{MISE}:=\mathbb{E}\left(\int_{-\infty}^{\infty}(\hat{m}(x)-m(x))^{2} \mathrm{~d} x\right)
$$

where m is the true function and \hat{m} the estimator which depends on h.

Bandwidth selection

Method (Bandwidth selection with MISE)

Minimize the mean integrated squared error.

$$
\operatorname{MISE}:=\mathbb{E}\left(\int_{-\infty}^{\infty}(\hat{m}(x)-m(x))^{2} \mathrm{~d} x\right),
$$

where m is the true function and \hat{m} the estimator which depends on h. Expand this to derive an optimal bandwidth that depends on unknown quantities.

Bandwidth selection

Method (Bandwidth selection with MISE)

Minimize the mean integrated squared error.

$$
\operatorname{MISE}:=\mathbb{E}\left(\int_{-\infty}^{\infty}(\hat{m}(x)-m(x))^{2} \mathrm{~d} x\right),
$$

where m is the true function and \hat{m} the estimator which depends on h. Expand this to derive an optimal bandwidth that depends on unknown quantities. Estimate these by preliminary smoothing, i.e., computing \hat{m} with a reference bandwith selector. Common choices:

$$
\hat{h}_{\mathrm{opt}}= \begin{cases}1.06 s n^{-1 / 5} & \text { for the Gaussian kernel, } \\ 2.34 s n^{-1 / 5} & \text { for the Epanechnikov kernel, }\end{cases}
$$

where s is the sample standard error of $\left(x_{t}\right)_{t=1}^{n}$.

Bandwidth selection

Method (Bandwidth selection with cross validation)

Leave-one-out cross validation omits $\left(x_{j}, y_{j}\right)$. The other data points are used to find:

$$
\hat{m}_{h, j}\left(x_{j}\right):=\sum_{t \neq j} w_{t}\left(x_{j}\right) y_{t} \approx y_{j}
$$

Bandwidth selection

Method (Bandwidth selection with cross validation)

Leave-one-out cross validation omits $\left(x_{j}, y_{j}\right)$. The other data points are used to find:

$$
\hat{m}_{h, j}\left(x_{j}\right):=\sum_{t \neq j} w_{t}\left(x_{j}\right) y_{t} \approx y_{j}
$$

Repeat for the remaining $n-1$ points and set

$$
\mathrm{CV}(h):=\sum_{j=1}^{n}\left(y_{j}-\hat{m}_{h, j}\left(x_{j}\right)\right)^{2} W\left(x_{j}\right),
$$

where W is a nonnegative weight function satisfying
$\sum_{j=1}^{n} W\left(x_{j}\right)=1$.

Bandwidth selection

Method (Bandwidth selection with cross validation)

Leave-one-out cross validation omits $\left(x_{j}, y_{j}\right)$. The other data points are used to find:

$$
\hat{m}_{h, j}\left(x_{j}\right):=\sum_{t \neq j} w_{t}\left(x_{j}\right) y_{t} \approx y_{j}
$$

Repeat for the remaining $n-1$ points and set

$$
\mathrm{CV}(h):=\sum_{j=1}^{n}\left(y_{j}-\hat{m}_{h, j}\left(x_{j}\right)\right)^{2} W\left(x_{j}\right),
$$

where W is a nonnegative weight function satisfying
$\sum_{j=1}^{n} W\left(x_{j}\right)=1$.Set $h_{\mathrm{opt}}:=\arg \min _{h} \mathrm{CV}(h)$.

Local linear regression

- Idea: $\hat{m}(x)$ can equally be defined as

$$
\underset{a}{\arg \min } \sum_{t=1}^{n}\left(y_{t}-a\right)^{2} K_{h}\left(x-x_{t}\right)
$$

Local linear regression

- Idea: $\hat{m}(x)$ can equally be defined as

$$
\underset{a}{\arg \min } \sum_{t=1}^{n}\left(y_{t}-a\right)^{2} K_{h}\left(x-x_{t}\right)
$$

- The local linear regression method:

$$
(\hat{a}, \hat{b})=\underset{a, b}{\arg \min } \sum_{t=1}^{n}\left(y_{t}-a-b\left(x-x_{t}\right)\right)^{2} K_{h}\left(x-x_{t}\right)
$$

- Beats kernel regression if m is twice continuously differentiable

Local linear regression

A closed form solution:

$$
\hat{a}=\frac{\sum_{t=1}^{n} w_{t}(x) y_{t}}{\sum_{t=1}^{n} w_{t}(x)} \text { and } \hat{b}=\frac{\sum_{t=1}^{n} \tilde{w}_{t}(x) y_{t}}{\sum_{t=1}^{n} w_{t}(x)}
$$

where

$$
\begin{aligned}
& w_{t}(x):=K_{h}\left(x-x_{t}\right)\left(s_{n, 2}(x)-\left(x-x_{t}\right) s_{n, 1}(x)\right), \\
& \tilde{w}_{t}(x):=K_{h}\left(x-x_{t}\right)\left(\left(x-x_{t}\right) s_{n, 0}(x)-s_{n, 1}(x)\right),
\end{aligned}
$$

and

$$
s_{n, j}(x):=\sum_{t=1}^{n} K_{h}\left(x-x_{t}\right)\left(x-x_{t}\right)^{j}
$$

for $j=0,1,2$.

Local linear regression

In practice:

$$
\hat{m}(x):=\frac{\sum_{t=1}^{n} w_{t}(x) y_{t}}{\sum_{t=1}^{n} w_{t}(x)+n^{-2}}
$$

Local linear regression

In practice:

$$
\hat{m}(x):=\frac{\sum_{t=1}^{n} w_{t}(x) y_{t}}{\sum_{t=1}^{n} w_{t}(x)+n^{-2}}
$$

Extend to more complex autoregressive models like

$$
X_{t}=m_{1}\left(X_{t-1}\right)+m_{2}\left(X_{t-2}\right)+\ldots+m_{k}\left(X_{t-k}\right)+Z_{t}
$$

where $\left(m_{i}\right)_{i=1}^{k}$ is a sequence of smooth functions, or

$$
X_{t}=m\left(X_{t-1}, \ldots, X_{t-k}\right)+Z_{t}
$$

where $m: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a smooth function.

Local linear regression

In practice:

$$
\hat{m}(x):=\frac{\sum_{t=1}^{n} w_{t}(x) y_{t}}{\sum_{t=1}^{n} w_{t}(x)+n^{-2}}
$$

Extend to more complex autoregressive models like

$$
X_{t}=m_{1}\left(X_{t-1}\right)+m_{2}\left(X_{t-2}\right)+\ldots+m_{k}\left(X_{t-k}\right)+Z_{t}
$$

where $\left(m_{i}\right)_{i=1}^{k}$ is a sequence of smooth functions, or

$$
X_{t}=m\left(X_{t-1}, \ldots, X_{t-k}\right)+Z_{t}
$$

where $m: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a smooth function.
Multivariate kernels $K_{h}: \mathbb{R}^{k} \rightarrow \mathbb{R}$, e.g., multivariate Gaussian density:

$$
K_{h}(\mathbf{x})=\left(2 \pi h^{2}\right)^{-k / 2}(\operatorname{det} \Sigma)^{-1 / 2} \exp \left(-\left(2 h^{2}\right)^{-1} \mathbf{x}^{\prime} \Sigma^{-1} \mathbf{x}\right)
$$

