Financial Time Series - Testing for nonlinearities

Andreas Petersson

TMS088/MSA410 - May 2020

Mathematical Sciences, Chalmers University of Technology \& University of Gothenburg, Sweden

Nonlinearity tests

- $H_{0}=\{$ the linear model with the given assumption is adequate $\}$

Nonlinearity tests

- $H_{0}=\{$ the linear model with the given assumption is adequate $\}$
- Typically $P($ make a type I error $)=P\left(\right.$ reject $H_{0} \mid H_{0}$ is true $) \leq 0.05$

Nonlinearity tests

- $H_{0}=\{$ the linear model with the given assumption is adequate $\}$
- Typically P (make a type I error $)=P\left(\right.$ reject $H_{0} \mid H_{0}$ is true $) \leq 0.05$
- $H_{0}=\{$ the data is generated by the assumed (linear model) $\}$, i.e., H_{0} is almost certainly false

Nonlinearity tests

- $H_{0}=\{$ the linear model with the given assumption is adequate $\}$
- Typically P (make a type I error $)=P\left(\right.$ reject $H_{0} \mid H_{0}$ is true $) \leq 0.05$
- $H_{0}=\{$ the data is generated by the assumed (linear model) $\}$, i.e., H_{0} is almost certainly false
- Find a test with good power against a specific H_{1} like $H_{1}=\{$ the driving noise follows a GARCH process $\}$
- Power of a test is P (reject $H_{0} \mid H_{1}$ is true)

Nonlinearity tests

- What are the statistical assumptions for the test?
- Does a rejection mean that my model is not useful for the purpose I am working with?
- What aspect of my data lead to the test rejecting the null hypothesis?
- Against what H_{1} does my test have good power? What does that suggest that I do next?
- Nonparametric and parametric tests

Nonparametric tests

The test below has good power for testing ARMA models driven by $Z=\operatorname{IID} \mathcal{N}(0,1)$ versus ARMA models driven by a GARCH process as the noise term Z. Based on the fact that the ACF of powers of IID noise is zero.

Nonparametric tests

The test below has good power for testing ARMA models driven by $Z=\operatorname{IID} \mathcal{N}(0,1)$ versus ARMA models driven by a GARCH process as the noise term Z. Based on the fact that the ACF of powers of IID noise is zero.

Method (Q-statistic of squared residuals, McLeod and Li)
Apply Ljung-Box statistics to squared residuals of $\operatorname{ARMA}(p, q)$.

Nonparametric tests

The test below has good power for testing ARMA models driven by $Z=\operatorname{IID} \mathcal{N}(0,1)$ versus ARMA models driven by a GARCH process as the noise term Z. Based on the fact that the ACF of powers of IID noise is zero.

Method (Q-statistic of squared residuals, McLeod and $\mathbf{L i}$)

Apply Ljung-Box statistics to squared residuals of $\operatorname{ARMA}(p, q)$. Test statistic:

$$
Q(m):=n(n+2) \sum_{i=1}^{m} \frac{\hat{\rho}_{i}^{2}\left(Z_{t}^{2}\right)}{n-i},
$$

where n is the number of observations, m is "properly chosen".

Nonparametric tests

The test below has good power for testing ARMA models driven by $Z=\operatorname{IID} \mathcal{N}(0,1)$ versus ARMA models driven by a GARCH process as the noise term Z. Based on the fact that the ACF of powers of IID noise is zero.

Method (Q-statistic of squared residuals, McLeod and $\mathbf{L i}$)

Apply Ljung-Box statistics to squared residuals of $\operatorname{ARMA}(p, q)$. Test statistic:

$$
Q(m):=n(n+2) \sum_{i=1}^{m} \frac{\hat{\rho}_{i}^{2}\left(Z_{t}^{2}\right)}{n-i},
$$

where n is the number of observations, m is "properly chosen".
Under H_{0}, that the linear model is adequate, $Q(m)$ is asymptotically χ_{m-p-q}^{2}-distributed.

Nonparametric tests

- Bispectral tests are used to test for linearity or linearity+normality
- Additional assumptions: causal, $\mathbb{E}\left(\left|X_{t}^{3}\right|\right)<\infty$

Nonparametric tests

- Bispectral tests are used to test for linearity or linearity+normality
- Additional assumptions: causal, $\mathbb{E}\left(\left|X_{t}^{3}\right|\right)<\infty$
- H_{0} is that $X_{t}=\mu+\sum_{i=0}^{\infty} \psi_{i} Z_{t-i}, Z \sim \operatorname{IID}\left(0, \sigma^{2}\right)$

Nonparametric tests

- Bispectral tests are used to test for linearity or linearity+normality
- Additional assumptions: causal, $\mathbb{E}\left(\left|X_{t}^{3}\right|\right)<\infty$
- H_{0} is that $X_{t}=\mu+\sum_{i=0}^{\infty} \psi_{i} Z_{t-i}, Z \sim \operatorname{IID}\left(0, \sigma^{2}\right)$
- Centered third-order moment:

$$
\begin{aligned}
c(u, v): & =\mathbb{E}\left(\left(X_{t}-\mu\right)\left(X_{t+u}-\mu\right)\left(X_{t+v}-\mu\right)\right) \\
& =\mathbb{E}\left(Z_{t}^{3}\right) \sum_{k=-\infty}^{\infty} \psi_{k} \psi_{k+u} \psi_{k+v}
\end{aligned}
$$

for $u, v \in \mathbb{Z}$ and arbitrary $t \in \mathbb{Z}$ due to stationary

Nonparametric tests

- Bispectral tests are used to test for linearity or linearity+normality
- Additional assumptions: causal, $\mathbb{E}\left(\left|X_{t}^{3}\right|\right)<\infty$
- H_{0} is that $X_{t}=\mu+\sum_{i=0}^{\infty} \psi_{i} Z_{t-i}, Z \sim \operatorname{IID}\left(0, \sigma^{2}\right)$
- Centered third-order moment:

$$
\begin{aligned}
c(u, v): & =\mathbb{E}\left(\left(X_{t}-\mu\right)\left(X_{t+u}-\mu\right)\left(X_{t+v}-\mu\right)\right) \\
& =\mathbb{E}\left(Z_{t}^{3}\right) \sum_{k=-\infty}^{\infty} \psi_{k} \psi_{k+u} \psi_{k+v}
\end{aligned}
$$

for $u, v \in \mathbb{Z}$ and arbitrary $t \in \mathbb{Z}$ due to stationary

- Fourier transform of c given by

$$
b_{3}\left(w_{1}, w_{2}\right):=\frac{\mathbb{E}\left(Z_{t}^{3}\right)}{4 \pi^{2}} \Gamma\left(-\left(w_{1}+w_{2}\right)\right) \Gamma\left(w_{1}\right) \Gamma\left(w_{2}\right),
$$

with $\Gamma(w):=\sum_{u=0}^{\infty} \psi_{u} \exp (-i w u)$

Nonparametric tests

- The spectral density of a stationary time series X is $p(w)=(2 \pi)^{-1} \sum_{h=-\infty}^{\infty} \exp (-i w h) \gamma_{X}(h)$
- For linear time series, $p(w)=\frac{\sigma^{2}}{2 \pi}|\Gamma(w)|^{2}$, so the bispectrum

Nonparametric tests

- The spectral density of a stationary time series X is $p(w)=(2 \pi)^{-1} \sum_{h=-\infty}^{\infty} \exp (-i w h) \gamma_{X}(h)$
- For linear time series, $p(w)=\frac{\sigma^{2}}{2 \pi}|\Gamma(w)|^{2}$, so the bispectrum

$$
b\left(w_{1}, w_{2}\right):=\frac{\left|b_{3}\left(w_{1}, w_{2}\right)\right|^{2}}{p\left(w_{1}\right) p\left(w_{2}\right) p\left(w_{1}+w_{2}\right)}
$$

is constant

Nonparametric tests

- The spectral density of a stationary time series X is $p(w)=(2 \pi)^{-1} \sum_{h=-\infty}^{\infty} \exp (-i w h) \gamma_{X}(h)$
- For linear time series, $p(w)=\frac{\sigma^{2}}{2 \pi}|\Gamma(w)|^{2}$, so the bispectrum

$$
b\left(w_{1}, w_{2}\right):=\frac{\left|b_{3}\left(w_{1}, w_{2}\right)\right|^{2}}{p\left(w_{1}\right) p\left(w_{2}\right) p\left(w_{1}+w_{2}\right)}
$$

is constant

- If Z is Gaussian, $\mathbb{E}\left(Z_{t}^{3}\right)=0$.

Parametric tests

- RESET test: Regression Equation Specification Error Test
- Consider (causal) AR (p) model

$$
X_{t}=\phi_{0}+\sum_{j=1}^{p} \phi_{j} X_{t-j}+Z_{t} .
$$

Parametric tests

- RESET test: Regression Equation Specification Error Test
- Consider (causal) AR (p) model

$$
X_{t}=\phi_{0}+\sum_{j=1}^{p} \phi_{j} X_{t-j}+Z_{t} .
$$

- Obtain the least-squares estimate $\left(\hat{\phi}_{0}, \hat{\phi}_{1}, \ldots, \hat{\phi}_{p}\right)$ (i.e., Hannan-Rissanen) and compute the fit

$$
\hat{X}_{t}:=\hat{\phi}_{0}+\sum_{j=1}^{p} \hat{\phi}_{j} X_{t-j}
$$

the residuals $\hat{Z}_{t}:=X_{t}-\hat{X}_{t}$, and the sum of squared residuals

$$
\mathrm{SSR}_{0}:=\sum_{t=p+1}^{n} \hat{Z}_{t}^{2}
$$

Parametric tests

- Consider the linear regression

$$
\hat{Z}_{t}=\alpha_{10}+\sum_{j=1}^{p} \alpha_{1 j} X_{t-j}+\sum_{i=1}^{s} \alpha_{2 i} \hat{X}_{t}^{1+i}+V_{t}
$$

for some $s \geq 1$ and innovations $\left(V_{t}, t=1, \ldots, n\right)$

Parametric tests

- Consider the linear regression

$$
\hat{Z}_{t}=\alpha_{10}+\sum_{j=1}^{p} \alpha_{1 j} X_{t-j}+\sum_{i=1}^{s} \alpha_{2 i} \hat{X}_{t}^{1+i}+V_{t}
$$

for some $s \geq 1$ and innovations $\left(V_{t}, t=1, \ldots, n\right)$

- Compute:

$$
\begin{gathered}
\hat{V}_{t}=\hat{Z}_{t}-\left(\hat{\alpha}_{10}+\sum_{j=1}^{p} \hat{\alpha}_{1 j} X_{t-j}+\sum_{i=1}^{s} \hat{\alpha}_{2 i} \hat{X}_{t}^{1+i}\right), \\
\mathrm{SSR}_{1}:=\sum_{t=p+1}^{n} \hat{V}_{t}^{2}
\end{gathered}
$$

Parametric tests

- Consider the linear regression

$$
\hat{Z}_{t}=\alpha_{10}+\sum_{j=1}^{p} \alpha_{1 j} X_{t-j}+\sum_{i=1}^{s} \alpha_{2 i} \hat{X}_{t}^{1+i}+V_{t}
$$

for some $s \geq 1$ and innovations $\left(V_{t}, t=1, \ldots, n\right)$

- Compute:

$$
\begin{gathered}
\hat{V}_{t}=\hat{Z}_{t}-\left(\hat{\alpha}_{10}+\sum_{j=1}^{p} \hat{\alpha}_{1 j} X_{t-j}+\sum_{i=1}^{s} \hat{\alpha}_{2 i} \hat{X}_{t}^{1+i}\right) \\
\mathrm{SSR}_{1}:=\sum_{t=p+1}^{n} \hat{V}_{t}^{2}
\end{gathered}
$$

- If $\operatorname{AR}(p)$ model is adequate, all $\alpha_{1 i}$ and $\alpha_{2 j}$ should be zero
- Under H_{0},

$$
F:=\frac{\left(\mathrm{SSR}_{0}-\mathrm{SSR}_{1}\right)(n-p-g)}{\mathrm{SSR}_{1} g} \sim F(g, n-p-g)
$$

where $g:=s+p+1$

Parametric tests

- Consider the linear regression

$$
\hat{Z}_{t}=\alpha_{10}+\sum_{j=1}^{p} \alpha_{1 j} X_{t-j}+\sum_{i=1}^{s} \alpha_{2 i} \hat{X}_{t}^{1+i}+V_{t}
$$

for some $s \geq 1$ and innovations $\left(V_{t}, t=1, \ldots, n\right)$

- Compute:

$$
\begin{gathered}
\hat{V}_{t}=\hat{Z}_{t}-\left(\hat{\alpha}_{10}+\sum_{j=1}^{p} \hat{\alpha}_{1 j} X_{t-j}+\sum_{i=1}^{s} \hat{\alpha}_{2 i} \hat{X}_{t}^{1+i}\right) \\
\mathrm{SSR}_{1}:=\sum_{t=p+1}^{n} \hat{V}_{t}^{2}
\end{gathered}
$$

- If $\operatorname{AR}(p)$ model is adequate, all $\alpha_{1 i}$ and $\alpha_{2 j}$ should be zero
- Under H_{0},

$$
F:=\frac{\left(\mathrm{SSR}_{0}-\mathrm{SSR}_{1}\right)(n-p-g)}{\mathrm{SSR}_{1} g} \sim F(g, n-p-g)
$$

where $g:=s+p+1$

