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Nonlinearity tests

e Hy = {the linear model with the given assumption is adequate}
e Typically P(make a type | error) = P(reject Hy|Hy is true) < 0.05

e Hy = {the data is generated by the assumed (linear model)}, i.e.,
Hy is almost certainly false

e Find a test with good power against a specific H; like
H; = {the driving noise follows a GARCH process}

e Power of a test is P(reject Hy|H; is true)



Nonlinearity tests

e What are the statistical assumptions for the test?

e Does a rejection mean that my model is not useful for the purpose |
am working with?

e What aspect of my data lead to the test rejecting the null
hypothesis?

e Against what H; does my test have good power? What does that
suggest that | do next?

e Nonparametric and parametric tests
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Nonparametric tests

The test below has good power for testing ARMA models driven by

Z =T1IDN(0,1) versus ARMA models driven by a GARCH process as
the noise term Z. Based on the fact that the ACF of powers of IID noise
is zero.

Method (Q-statistic of squared residuals, McLeod and Li)

Apply Ljung—Box statistics to squared residuals of ARMA (p, q).

Test statistic:
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where n is the number of observations, m is "properly chosen”.
Under Hy, that the linear model is adequate, Q(m) is asymptotically

X p—qg-distributed.
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Additional assumptions: causal, E(|X}|) < oo
Hy is that Xy = p+ Y02 i Zy—y, Z ~ 1ID(0,0?)

Centered third-order moment:
c(u,v) : =E (X — p)(Xeru — 1) (KXo — 1))

=E(Z) > Oxtkrutirto

k=—oc0

for u,v € Z and arbitrary ¢t € Z due to stationary

e Fourier transform of ¢ given by
E(Z}
bg(wl, w2) = i’ﬂ‘; ) F(*(wl -+ wg))F(wl)F(wg),

with T(w) := Y07 ¥y, exp(—iwu)



Nonparametric tests

e The spectral density of a stationary time series X is
p(w) = (2m) 71 302 exp(—iwh)yx ()

e For linear time series, p(w) = §|1"(w)|2 so the bispectrum



Nonparametric tests

e The spectral density of a stationary time series X is
p(w) = (2m) 71 302 exp(—iwh)yx ()

e For linear time series, p(w) = §|1"(w)|2 so the bispectrum

|bs (w1, w2)|?

b(wr, ws) = p(w1)p(ws2)p(wr + w2)

is constant



Nonparametric tests

e The spectral density of a stationary time series X is
p(w) = (2m) 71 302 exp(—iwh)yx ()
e For linear time series, p(w) = §|1"(w)|2 so the bispectrum

|bs (w1, wa)|?
p(w1)p(w2)p(wy + w2)

b(wy, we) :=

is constant

e If Z is Gaussian, E(Z}) = 0.
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Parametric tests

e RESET test: Regression Equation Specification Error Test
e Consider (causal) AR(p) model

p
Xi = o + Z%’thj + Z;.

Jj=1

e Obtain the least-squares estimate (éo,cf)l, .. .,(ﬁp) (i.e.,
Hannan-Rissanen) and compute the fit

D
Xii=do+ Y 6 X1,
j=1
the residuals Zt = X; — Xt, and the sum of squared residuals

SSRy := zn: Z2,

t=p+1
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