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Nonlinearity tests

• H0 = {the linear model with the given assumption is adequate}

• Typically P (make a type I error) = P (reject H0|H0 is true) ≤ 0.05
• H0 = {the data is generated by the assumed (linear model)}, i.e.,
H0 is almost certainly false

• Find a test with good power against a specific H1 like
H1 = {the driving noise follows a GARCH process}

• Power of a test is P (reject H0|H1 is true)
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Nonlinearity tests

• What are the statistical assumptions for the test?
• Does a rejection mean that my model is not useful for the purpose I

am working with?
• What aspect of my data lead to the test rejecting the null

hypothesis?
• Against what H1 does my test have good power? What does that

suggest that I do next?
• Nonparametric and parametric tests
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Nonparametric tests

The test below has good power for testing ARMA models driven by
Z = IIDN (0, 1) versus ARMA models driven by a GARCH process as
the noise term Z. Based on the fact that the ACF of powers of IID noise
is zero.

Method (Q-statistic of squared residuals, McLeod and Li)
Apply Ljung–Box statistics to squared residuals of ARMA(p, q).
Test statistic:

Q(m) := n(n+ 2)
m∑
i=1

ρ̂2
i (Z2

t )
n− i

,

where n is the number of observations, m is ”properly chosen”.
Under H0, that the linear model is adequate, Q(m) is asymptotically
χ2
m−p−q-distributed.
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Nonparametric tests

• Bispectral tests are used to test for linearity or linearity+normality
• Additional assumptions: causal, E(|X3

t |) <∞

• H0 is that Xt = µ+
∑∞
i=0 ψiZt−i, Z ∼ IID(0, σ2)

• Centered third-order moment:

c(u, v) : = E ((Xt − µ)(Xt+u − µ)(Xt+v − µ))

= E(Z3
t )

∞∑
k=−∞

ψkψk+uψk+v

for u, v ∈ Z and arbitrary t ∈ Z due to stationary
• Fourier transform of c given by

b3(w1, w2) := E(Z3
t )

4π2 Γ(−(w1 + w2))Γ(w1)Γ(w2),

with Γ(w) :=
∑∞
u=0 ψu exp(−iwu)
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Nonparametric tests

• The spectral density of a stationary time series X is
p(w) = (2π)−1 ∑∞

h=−∞ exp(−iwh)γX(h)

• For linear time series, p(w) = σ2

2π |Γ(w)|2, so the bispectrum

b(w1, w2) := |b3(w1, w2)|2

p(w1)p(w2)p(w1 + w2)

is constant
• If Z is Gaussian, E(Z3

t ) = 0.
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Parametric tests

• RESET test: Regression Equation Specification Error Test
• Consider (causal) AR(p) model

Xt = φ0 +
p∑
j=1

φjXt−j + Zt.

• Obtain the least-squares estimate (φ̂0, φ̂1, . . . , φ̂p) (i.e.,
Hannan–Rissanen) and compute the fit

X̂t := φ̂0 +
p∑
j=1

φ̂jXt−j ,

the residuals Ẑt := Xt − X̂t, and the sum of squared residuals

SSR0 :=
n∑

t=p+1
Ẑ2
t ,
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Parametric tests

• Consider the linear regression

Ẑt = α10 +
p∑
j=1

α1jXt−j +
s∑
i=1

α2iX̂
1+i
t + Vt

for some s ≥ 1 and innovations (Vt, t = 1, . . . , n)

• Compute:

V̂t = Ẑt −

α̂10 +
p∑
j=1

α̂1jXt−j +
s∑
i=1

α̂2iX̂
1+i
t

 ,

SSR1 :=
n∑

t=p+1
V̂ 2
t

• If AR(p) model is adequate, all α1i and α2j should be zero
• Under H0,

F := (SSR0 − SSR1)(n− p− g)
SSR1g

∼ F (g, n− p− g),

where g := s+ p+ 1
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Ẑt = α10 +
p∑
j=1

α1jXt−j +
s∑
i=1

α2iX̂
1+i
t + Vt

for some s ≥ 1 and innovations (Vt, t = 1, . . . , n)
• Compute:

V̂t = Ẑt −
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