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Problem 1

Let the process X = (X;,t € Z) be given by

40 62
Xi=2; — ?Zt72 + EZt74 (1)

for all t € Z where § #0 and Z = (Z;,t € Z) ~IIDN(0,1) is a
sequence of independent identically distributed Gaussian random
variables with zero mean and unit variance.



Problem 1

(a) Show that X is weakly stationary and find vx (h), the autocovariance
function of X, for all lags h € Z.



(b) Is X strictly stationary?



Problem 1

(c) State the definition of a causal and of an invertible process. For
which 6 is X causal and/or invertible?



Problem 1

(d) Below you can find sample autocorrelation functions for 4 different
samples of time series, each of size n = 400. Based on the plots, which,
if any, of the time series would you choose to model with X7
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Problem 1

(d) Below you can find sample autocorrelation functions for 4 different
samples of time series, each of size n = 400. Based on the plots, which,
if any, of the time series would you choose to model with X7



(e) Compute b’ ;(X™), the best linear predictor of X,, 41 given
X":=(X,-3,Xn-1), n €N, when 6 = 3.



(f) Compute E[(X,,+1 — b1 (X™))?], the mean squared error of the
predictor, when 6 = 3.



(g) Compute 95% prediction bounds for bf,;(X"), when 6 = 3.



Problem 1

(h) Suppose that the time series Z in (1) is replaced by an ARCH(1)
process Z given by
Zt = 0174,

where Z = (Z;,t € Z) ~IIDN(0,1), and

2 2
O't = Qo —+ alZFl

with 0 < ap < 1 and @3 = 1 — ap, ¢ € Z. Does this change (and if so
how) your answers to Problems 1 (a) and 1 (b)? Hint: You might want
to solve Problem 2 (c) below before answering this one.
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Problem 2

The figure below contains 4 plots of time series consisting of
log-transformed daily trading volumes from stock indices of French,
American, German and Japanese markets, respectively. The data was
sampled on 700 working days between November 2016 and July 2019.
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Problem 2

(a) How many, if any, of these time series do you think can be modeled
as stationary processes? Motivate your answer.
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Problem 2

(b) During the modeling of one of the data sets, denoted by

X = (X3, t=1,...,700), it was suggested that X can be modeled by
the equation X; =Y; + s + u, where Y = (Y;,t € Z) is a weakly
stationary time series with zero mean, s = (s;,t € Z) is a seasonal
component and p € R. The researchers working with this data set
believed that s has a period of 5 days. Find a linear filter

&(B) = Z;V:O ajB7, where N € N, that you can show eliminates s and
. Show that X := {(B)X is a stationary time series and express 7,
the autocovariance function of X, in terms of 7y, the autocovariance

function of Y.
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Problem 2

(c) After further study, it was determined that X could be modeled as an
ARCH(1) process given by
Xt = 012y,
where Z = (Z;,t € Z) ~IIDN(0,1), and
of =aqp+ 041)2,5271

with ag > 0 and 0 < a1 < 1, t € Z. Recall that this implies that Xis
causal as well as strictly and weakly stationary. Find the conditional
variance Var(X;| X;_1) = E[(X; — E[X;])?|X;_1] and the unconditional
variance Var(X;) for all t € Z.

15



16



