CHALMERS

UNIVERSITY OF GOTHENBURG

Financial Time Series TMS088/MSA410 - LP4 2019/20

PROJECT 1: Some Takeaways

M. PEREIRA

1 Random vectors and joint distribution

A random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ is a vector whose entries X_{1}, \ldots, X_{n} are random variables.
Just like we characterize the "randomness" of a random variable using its distribution function, for a random vector we use the joint distribution function of its entries, which is the function $F_{\boldsymbol{X}}: \mathbb{R}^{n} \rightarrow[0,1]$ defined by

$$
F_{\boldsymbol{X}}\left(x_{1}, \ldots, x_{n}\right)=\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right), \quad x_{1}, \ldots, x_{n} \in \mathbb{R} .
$$

In other words, $F_{\boldsymbol{X}}\left(x_{1}, \ldots, x_{n}\right)$ is the probability that "simultaneously" $X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots$, and $X_{n} \leq x_{n}$.

In some cases, there exists a function $f_{\boldsymbol{X}}: \mathbb{R}^{n} \mapsto \mathbb{R}$ such that $\forall x_{1}, \ldots, x_{n} \in \mathbb{R}$,

$$
F_{\boldsymbol{X}}\left(x_{1}, \ldots, x_{n}\right)=\int_{-\infty}^{x_{n}} \cdots \int_{-\infty}^{x_{1}} f_{\boldsymbol{X}}\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n}, \quad x_{1}, \ldots, x_{n} \in \mathbb{R}
$$

Such a function is called joint probability density function (or simply joint density) (X_{1}, \ldots, X_{n}). In particular, $F_{\boldsymbol{X}}$ and $f_{\boldsymbol{X}}$ are then linked by the relation:

$$
f_{\boldsymbol{X}}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial^{n} F}{\partial x_{1} \ldots \partial x_{n}}\left(x_{1}, \ldots, x_{n}\right), \quad x_{1}, \ldots, x_{n} \in \mathbb{R}
$$

Note: In the case $n=1$, the joint distribution function and the joint density introduced above correspond to the distribution function and the density of the sole entry of the vector.

2 Independence and uncorrelatedness

Two random variables X_{1} and X_{2} are independent if for any values $x_{1}, x_{2} \in \mathbb{R}$, the probability that "simultaneously" $X_{1} \leq x_{1}$ and $X_{2} \leq x_{2}$ is equal to the product of the probability that $X_{1} \leq x_{1}$ with the probability that $X_{2} \leq x_{2}$:

$$
\mathbb{P}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)=\mathbb{P}\left(X_{1} \leq x_{1}\right) \cdot \mathbb{P}\left(X_{2} \leq x_{2}\right)
$$

In this case, the joint distribution function of $\left(X_{1}, X_{2}\right)$ is equal to the product of the distribution functions of X_{1} and X_{2}. If X_{1} and X_{2} are independent, then the outcome of X_{1} has no effect on the outcome of X_{2} (and vice-versa).

Remark: The notion of independence can be generalized to more than two variables. We say that $n \geq 2$ random variables X_{1}, \ldots, X_{n} are mutually independent if the joint distribution function of $\left(X_{1}, \ldots, X_{n}\right)$ is equal to the product of the distribution functions of the variables X_{i}.

On the other hand, two random variables X_{1} and X_{2} are called uncorrelated if

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=\mathbb{E}\left[X_{1} \cdot X_{2}\right]-\mathbb{E}\left[X_{1}\right] \cdot \mathbb{E}\left[X_{2}\right]=0
$$

Note that the covariance is just a measure of linear dependence between two random variables. When faced with two uncorrelated random variables X_{1}, X_{2}, the only thing that we can safely say is that there is no linear dependence between X_{1} and X_{2}, i.e. that there is no constant $a \in \mathbb{R}$ such that $X_{2}=a X_{2}$. It it is for instance perfectly possible that there exists some other non-linear relationship between X_{1} and X_{2}.

Example. Let X be a random variable following a uniform distribution on $[-1,1]$, meaning that its probability density function is

$$
f_{X}(x)= \begin{cases}1 / 2 & \text { if } x \in[-1,1] \\ 0 & \text { otherwise }\end{cases}
$$

Let Y be the random variable defined by $Y=X^{2}$.

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=\mathbb{E}\left[X^{3}\right]-\mathbb{E}[X] \mathbb{E}\left[X^{2}\right]
$$

where

$$
\begin{aligned}
& \mathbb{E}[X]:=\int_{\mathbb{R}} x f_{X}(x) d x=\int_{-1}^{1} x \cdot \frac{1}{2} d x=\frac{1}{2}\left[\frac{x^{2}}{2}\right]_{-1}^{1}=0 \\
& \mathbb{E}\left[X^{3}\right]:=\int_{\mathbb{R}} x^{3} f_{X}(x) d x=\int_{-1}^{1} \frac{x^{3}}{2} d x=\frac{1}{2}\left[\frac{x^{4}}{4}\right]_{-1}^{1}=0
\end{aligned}
$$

Hence $\operatorname{Cov}(X, Y)=0$, and therefore X and Y are uncorrelated. However, X and Y are clearly not independent since Y is a function of X. The covariance was not able to detect the nonlinear relation between X and $Y \ldots$

Advice: You should keep in mind that independence is a much more stronger assumption than uncorrelatedness. Also:

$$
X_{1} \text { and } X_{2} \text { are independent } \Rightarrow X_{1} \text { and } X_{2} \text { are uncorrelated }
$$

but in general,

$$
X_{1} \text { and } X_{2} \text { are uncorrelated } \nRightarrow X_{1} \text { and } X_{2} \text { are independent }
$$

3 Gaussian variables, vectors and processes

3.1 Gaussian variables and vectors

A Gaussian variable (with mean μ and variance σ^{2}) is a random variable X whose probability density function f_{X} is the function defined by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right), \quad x \in \mathbb{R}
$$

In this case, we write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

】 If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then for any constants $a, b \in \mathbb{R}, a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$.

Let $n \geq 2$. If $X_{1} \sim \mathbb{N}\left(\mu_{1}, \sigma_{1}^{2}\right), \ldots, X_{n} \sim \mathbb{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$ and X_{1}, \ldots, X_{n} are (mutually) indepen$\boldsymbol{d e n t}$, then for any constants $a_{1}, \ldots, a_{n} \in \mathbb{R}$

$$
\sum_{i=1}^{n} a_{i} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)
$$

A Gaussian vector is a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ whose joint probability density function $f_{\boldsymbol{X}}$ is the function defined by

$$
f_{\boldsymbol{X}}\left(y_{1}, \ldots, y_{n}\right)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}\left(\begin{array}{c}
y_{1}-\mu_{1} \\
\vdots \\
y_{n}-\mu_{n}
\end{array}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\begin{array}{c}
y_{1}-\mu_{1} \\
\vdots \\
y_{n}-\mu_{n}
\end{array}\right)\right)
$$

where $\mu_{i}=\mathbb{E}\left[X_{i}\right](1 \leq i \leq n)$ and $\boldsymbol{\Sigma}$ is the covariance matrix of \boldsymbol{X}, i.e. the $n \times n$ matrix defined by whose entry (i, j) is $\operatorname{Cov}\left(X_{i}, X_{j}\right)(1 \leq i, j \leq n)$.

For any coefficients $a_{1}, \ldots, a_{n} \in \mathbb{R}$, the random variable defined by

$$
\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right) \text { is a Gaussian } \quad \Longleftrightarrow \quad \sum_{i=1}^{n} a_{i} X_{i}
$$

is a Gaussian variable.

Remark: The entries of a Gaussian vector are Gaussian variables (just take $a_{i}=1$ and setting all the other coefficients to 0 in (11). However, the fact that a vector \boldsymbol{X} is composed of entries which are Gaussian variable is in general NOT enough to conclude that \boldsymbol{X} is Gaussian vector! You must also have that (1) is satisfied for any coefficients!

TIP

To show that a random vector \boldsymbol{X} is a Gaussian vector, you can show that for any choice of coefficients a_{1}, \ldots, a_{n} the random variable (1) is a Gaussian variable.

If $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ is a Gaussian vector, then for any entries X_{i} and X_{j},

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=0 \Rightarrow X_{i} \text { and } X_{j} \text { are independent. }
$$

TIP

To show that two random variables X_{1} and X_{2} are independent, you can show that the vector $\left(X_{1}, X_{2}\right)$ is a Gaussian vector and that $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$.

Note: To use this tip, it is not enough to show that X_{1} and X_{2} are Gaussian variables! Indeed, two uncorrelated Gaussian random variables are not necessarily independent 1 . But if, besides, they form a Gaussian vector, then they will be independent.

3.2 Gaussian processes

A Gaussian process is a process $\left(X_{t}, t \in \mathbb{Z}\right)$ such that for any $n \geq 1$ times $t_{1}, \ldots, t_{n} \in \mathbb{Z}$ the vector $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is a Gaussian vector.

Note: For a process $\left(X_{t}, t \in \mathbb{Z}\right)$ to be a Gaussian process it is NOT enough to only check that for any $t \in \mathbb{Z}, X_{t}$ is a Gaussian variable.

For any number $n \geq 1$ of arbitrary times
$t_{1}, \ldots, t_{n} \in \mathbb{Z}$ and any choice of coefficients $a_{1}, \ldots, a_{n} \in \mathbb{R}$, the random variable

$$
\left(X_{t}, t \in \mathbb{Z}\right) \text { is a Gaussian process } \Longleftrightarrow
$$

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} X_{t_{n}} \tag{2}
\end{equation*}
$$

is a Gaussian variable.

TIP

To show that $\left(X_{t}, t \in \mathbb{Z}\right)$ is a Gaussian process, you have can show that for any $n \geq 1$, any times $t_{1}, \ldots, t_{n} \in \mathbb{Z}$, and any coefficients $a_{1}, \ldots, a_{n} \in \mathbb{R}$, the random variable (2) is a Gaussian variable.

If $\left(X_{t}, t \in \mathbb{Z}\right)$ is a Gaussian process, then for any times $t_{1}, t_{2} \in \mathbb{Z}$,

$$
\operatorname{Cov}\left(X_{t_{1}}, X_{t_{2}}\right)=0 \Rightarrow X_{t_{1}} \text { and } X_{t_{2}} \text { are independent. }
$$

[^0]
[^0]: ${ }^{1}$ cf. https://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imply_independent

