UNIVERSITY OF GOTHENBURG

Financial Time Series TMS088/MSA410 - LP4 2019/20

CHALMERS

PROJECT 1 : Some Takeaways

M. PEREIRA

1 Random vectors and joint distribution

A random vector $X = (X_1, \ldots, X_n)$ is a vector whose entries X_1, \ldots, X_n are random variables.

Just like we characterize the "randomness" of a random variable using its distribution function, for a random vector we use the **joint distribution function** of its entries, which is the function $F_{\mathbf{X}} : \mathbb{R}^n \to [0, 1]$ defined by

$$F_{\mathbf{X}}(x_1,\ldots,x_n) = \mathbb{P}(X_1 \le x_1,\ldots,X_n \le x_n), \quad x_1,\ldots,x_n \in \mathbb{R}.$$

In other words, $F_{\mathbf{X}}(x_1, \ldots, x_n)$ is the probability that "simultaneously" $X_1 \leq x_1, X_2 \leq x_2, \ldots$, and $X_n \leq x_n$.

In some cases, there exists a function $f_{\mathbf{X}} : \mathbb{R}^n \mapsto \mathbb{R}$ such that $\forall x_1, \ldots, x_n \in \mathbb{R}$,

$$F_{\boldsymbol{X}}(x_1,\ldots,x_n) = \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} f_{\boldsymbol{X}}(y_1,\ldots,y_n) dy_1 \ldots dy_n, \quad x_1,\ldots,x_n \in \mathbb{R},$$

Such a function is called **joint probability density function** (or simply joint density) (X_1, \ldots, X_n) . In particular, F_X and f_X are then linked by the relation:

$$f_{\boldsymbol{X}}(x_1,\ldots,x_n) = \frac{\partial^n F}{\partial x_1\ldots\partial x_n}(x_1,\ldots,x_n), \quad x_1,\ldots,x_n \in \mathbb{R}.$$

Note: In the case n = 1, the joint distribution function and the joint density introduced above correspond to the distribution function and the density of the sole entry of the vector.

2 Independence and uncorrelatedness

Two random variables X_1 and X_2 are **independent** if for any values $x_1, x_2 \in \mathbb{R}$, the probability that "simultaneously" $X_1 \leq x_1$ and $X_2 \leq x_2$ is equal to the product of the probability that $X_1 \leq x_1$ with the probability that $X_2 \leq x_2$:

$$\mathbb{P}(X_1 \le x_1, X_2 \le x_2) = \mathbb{P}(X_1 \le x_1) \cdot \mathbb{P}(X_2 \le x_2)$$

In this case, the joint distribution function of (X_1, X_2) is equal to the product of the distribution functions of X_1 and X_2 . If X_1 and X_2 are independent, then the outcome of X_1 has no effect on the outcome of X_2 (and vice-versa).

Remark: The notion of independence can be generalized to more than two variables. We say that $n \ge 2$ random variables X_1, \ldots, X_n are mutually independent if the joint distribution function of (X_1, \ldots, X_n) is equal to the product of the distribution functions of the variables X_i .

On the other hand, two random variables X_1 and X_2 are called **uncorrelated** if

$$\operatorname{Cov}(X_1, X_2) = \mathbb{E}\left[X_1 \cdot X_2\right] - \mathbb{E}\left[X_1\right] \cdot \mathbb{E}\left[X_2\right] = 0$$

Note that the covariance is just a measure of linear dependence between two random variables. When faced with two uncorrelated random variables X_1, X_2 , the only thing that we can safely say is that there is no linear dependence between X_1 and X_2 , i.e. that there is no constant $a \in \mathbb{R}$ such that $X_2 = aX_2$. It it is for instance perfectly possible that there exists some other non-linear relationship between X_1 and X_2 .

Example. Let X be a random variable following a uniform distribution on [-1,1], meaning that its probability density function is

$$f_X(x) = \begin{cases} 1/2 & \text{if } x \in [-1,1] \\ 0 & \text{otherwise} \end{cases}$$

Let Y be the random variable defined by $Y = X^2$.

$$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}[X^3] - \mathbb{E}[X]\mathbb{E}[X^2]$$

where

$$\mathbb{E}[X] := \int_{\mathbb{R}} x f_X(x) dx = \int_{-1}^1 x \cdot \frac{1}{2} dx = \frac{1}{2} \left[\frac{x^2}{2} \right]_{-1}^1 = 0$$
$$\mathbb{E}[X^3] := \int_{\mathbb{R}} x^3 f_X(x) dx = \int_{-1}^1 \frac{x^3}{2} dx = \frac{1}{2} \left[\frac{x^4}{4} \right]_{-1}^1 = 0$$

Hence Cov(X,Y) = 0, and therefore X and Y are uncorrelated. However, X and Y are clearly not independent since Y is a function of X. The covariance was not able to detect the nonlinear relation between X and Y...

Advice: You should keep in mind that independence is a much more stronger assumption than uncorrelatedness. Also:

 X_1 and X_2 are independent $\Rightarrow X_1$ and X_2 are uncorrelated

but in general,

 X_1 and X_2 are uncorrelated $\Rightarrow X_1$ and X_2 are independent

3 Gaussian variables, vectors and processes

3.1 Gaussian variables and vectors

A Gaussian variable (with mean μ and variance σ^2) is a random variable X whose probability density function f_X is the function defined by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad x \in \mathbb{R}$$

In this case, we write $X \sim \mathcal{N}(\mu, \sigma^2)$.

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then for any constants $a, b \in \mathbb{R}$, $aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Let $n \ge 2$. If $X_1 \sim \mathbb{N}(\mu_1, \sigma_1^2), \ldots, X_n \sim \mathbb{N}(\mu_n, \sigma_n^2)$ and X_1, \ldots, X_n are (mutually) independent, then for any constants $a_1, \ldots, a_n \in \mathbb{R}$

$$\sum_{i=1}^{n} a_i X_i \sim \mathcal{N}\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right)$$

A Gaussian vector is a random vector $\mathbf{X} = (X_1, \ldots, X_n)$ whose joint probability density function $f_{\mathbf{X}}$ is the function defined by

$$f_{\mathbf{X}}(y_1,\ldots,y_n) = \frac{1}{\sqrt{(2\pi)^n \det \mathbf{\Sigma}}} \exp\left(-\frac{1}{2} \begin{pmatrix} y_1 - \mu_1 \\ \vdots \\ y_n - \mu_n \end{pmatrix}^T \mathbf{\Sigma}^{-1} \begin{pmatrix} y_1 - \mu_1 \\ \vdots \\ y_n - \mu_n \end{pmatrix}\right)$$

where $\mu_i = \mathbb{E}[X_i]$ $(1 \le i \le n)$ and Σ is the covariance matrix of X, i.e. the $n \times n$ matrix defined by whose entry (i, j) is $Cov(X_i, X_j)$ $(1 \le i, j \le n)$.

For any coefficients $a_1, \ldots, a_n \in \mathbb{R}$, the random variable defined by

$$\mathbf{X} = (X_1, \dots, X_n) \text{ is a Gaussian} \iff \sum_{i=1}^n a_i X_i \tag{1}$$

is a Gaussian variable.

Remark: The entries of a Gaussian vector are Gaussian variables (just take $a_i = 1$ and setting all the other coefficients to 0 in (1)). However, the fact that a vector \boldsymbol{X} is composed of entries which are Gaussian variable is in general NOT enough to conclude that \boldsymbol{X} is Gaussian vector! You must also have that (1) is satisfied for any coefficients!

\mathbf{TIP}

To show that a random vector X is a Gaussian vector, you can show that for any choice of coefficients a_1, \ldots, a_n the random variable (1) is a Gaussian variable.

If $X = (X_1, \ldots, X_n)$ is a Gaussian vector, then for any entries X_i and X_j ,

 $\operatorname{Cov}(X_i, X_j) = 0 \Rightarrow X_i \text{ and } X_j \text{ are independent.}$

TIP

To show that two random variables X_1 and X_2 are independent, you can show that the vector (X_1, X_2) is a Gaussian vector and that $Cov(X_1, X_2) = 0$. Note: To use this tip, it is not enough to show that X_1 and X_2 are Gaussian variables! Indeed, two uncorrelated Gaussian random variables are not necessarily independent¹. But if, besides, they form a Gaussian vector, then they will be independent.

3.2 Gaussian processes

A Gaussian process is a process $(X_t, t \in \mathbb{Z})$ such that for any $n \ge 1$ times $t_1, \ldots, t_n \in \mathbb{Z}$ the vector $(X_{t_1}, \ldots, X_{t_n})$ is a Gaussian vector.

Note: For a process $(X_t, t \in \mathbb{Z})$ to be a Gaussian process it is NOT enough to only check that for any $t \in \mathbb{Z}$, X_t is a Gaussian variable.

 $(X_t, t \in \mathbb{Z})$ is a Gaussian process \iff

For any number $n \ge 1$ of arbitrary times $t_1, \ldots, t_n \in \mathbb{Z}$ and any choice of coefficients $a_1, \ldots, a_n \in \mathbb{R}$, the random variable

$$\sum_{i=1}^{n} a_i X_{t_n} \tag{2}$$

is a Gaussian variable.

 \mathbf{TIP}

To show that $(X_t, t \in \mathbb{Z})$ is a Gaussian process, you have can show that for any $n \geq 1$, any times $t_1, \ldots, t_n \in \mathbb{Z}$, and any coefficients $a_1, \ldots, a_n \in \mathbb{R}$, the random variable (2) is a Gaussian variable.

If $(X_t, t \in \mathbb{Z})$ is a Gaussian process, then for any times $t_1, t_2 \in \mathbb{Z}$,

 $\operatorname{Cov}(X_{t_1}, X_{t_2}) = 0 \Rightarrow X_{t_1} \text{ and } X_{t_2} \text{ are independent.}$

 $^{^1{}m cf.}$ https://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imply_independent