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PROJECT 1 : Some Takeaways

M. PEREIRA

1 Random vectors and joint distribution

A random vector X = (X1, . . . , Xn) is a vector whose entries X1, . . . , Xn are random variables.

Just like we characterize the �randomness� of a random variable using its distribution function,
for a random vector we use the joint distribution function of its entries, which is the function
FX : Rn → [0, 1] de�ned by

FX(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn), x1, . . . , xn ∈ R.

In other words, FX(x1, . . . , xn) is the probability that �simultaneously� X1 ≤ x1, X2 ≤ x2, ..., and
Xn ≤ xn.

In some cases, there exists a function fX : Rn 7→ R such that ∀x1, . . . , xn ∈ R,

FX(x1, . . . , xn) =

∫ xn

−∞
· · ·
∫ x1

−∞
fX(y1, . . . , yn)dy1 . . . dyn, x1, . . . , xn ∈ R,

Such a function is called joint probability density function (or simply joint density) (X1, . . . , Xn).
In particular, FX and fX are then linked by the relation:

fX(x1, . . . , xn) =
∂nF

∂x1 . . . ∂xn
(x1, . . . , xn), x1, . . . , xn ∈ R.

Note: In the case n = 1, the joint distribution function and the joint density introduced above
correspond to the distribution function and the density of the sole entry of the vector.

2 Independence and uncorrelatedness

Two random variables X1 and X2 are independent if for any values x1, x2 ∈ R, the probability that
�simultaneously� X1 ≤ x1 and X2 ≤ x2 is equal to the product of the probability that X1 ≤ x1 with
the probability that X2 ≤ x2:

P(X1 ≤ x1, X2 ≤ x2) = P(X1 ≤ x1) · P(X2 ≤ x2)

In this case, the joint distribution function of (X1, X2) is equal to the product of the distribution
functions of X1 and X2. If X1 and X2 are independent, then the outcome of X1 has no e�ect on the
outcome of X2 (and vice-versa).

Remark: The notion of independence can be generalized to more than two variables. We say
that n ≥ 2 random variables X1, . . . , Xn are mutually independent if the joint distribution function of
(X1, . . . , Xn) is equal to the product of the distribution functions of the variables Xi.

On the other hand, two random variables X1 and X2 are called uncorrelated if

Cov(X1, X2) = E [X1 ·X2]− E [X1] · E [X2] = 0
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Note that the covariance is just a measure of linear dependence between two random variables. When
faced with two uncorrelated random variables X1, X2, the only thing that we can safely say is that
there is no linear dependence between X1 and X2, i.e. that there is no constant a ∈ R such that
X2 = aX2. It it is for instance perfectly possible that there exists some other non-linear relationship
between X1 and X2.

Example. Let X be a random variable following a uniform distribution on [−1, 1], meaning

that its probability density function is

fX(x) =

{
1/2 if x ∈ [−1, 1]
0 otherwise

Let Y be the random variable de�ned by Y = X2.

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[X3]− E[X]E[X2]

where

E[X] :=

∫
R
xfX(x)dx =

∫ 1

−1
x · 1

2
dx =

1

2

[
x2

2

]1
−1

= 0

E[X3] :=

∫
R
x3fX(x)dx =

∫ 1

−1

x3

2
dx =

1

2

[
x4

4

]1
−1

= 0

Hence Cov(X,Y ) = 0, and therefore X and Y are uncorrelated. However, X and Y are clearly not

independent since Y is a function of X. The covariance was not able to detect the nonlinear relation

between X and Y ...

Advice: You should keep in mind that independence is a much more stronger assumption than
uncorrelatedness. Also:

X1 and X2 are independent ⇒ X1 and X2 are uncorrelated

but in general,

X1 and X2 are uncorrelated ; X1 and X2 are independent

3 Gaussian variables, vectors and processes

3.1 Gaussian variables and vectors

AGaussian variable (with mean µ and variance σ2) is a random variableX whose probability density
function fX is the function de�ned by

fX(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, x ∈ R

In this case, we write X ∼ N (µ, σ2).
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If X ∼ N (µ, σ2), then for any constants a, b ∈ R, aX + b ∼ N (aµ+ b, a2σ2).

Let n ≥ 2. If X1 ∼ N(µ1, σ21), . . . , Xn ∼ N(µn, σ2n) and X1, . . . , Xn are (mutually) indepen-

dent, then for any constants a1, . . . , an ∈ R

n∑
i=1

aiXi ∼ N

(
n∑

i=1

aiµi,
n∑

i=1

a2iσ
2
i

)

AGaussian vector is a random vector X = (X1, . . . , Xn) whose joint probability density function
fX is the function de�ned by

fX(y1, . . . , yn) =
1√

(2π)n detΣ
exp

−1

2

y1 − µ1...
yn − µn


T

Σ−1

y1 − µ1...
yn − µn




where µi = E[Xi] (1 ≤ i ≤ n) and Σ is the covariance matrix of X, i.e. the n × n matrix de�ned by
whose entry (i, j) is Cov(Xi, Xj) (1 ≤ i, j ≤ n).

X = (X1, . . . , Xn) is a Gaussian
vector

⇐⇒

For any coe�cients a1, . . . , an ∈ R, the random
variable de�ned by

n∑
i=1

aiXi (1)

is a Gaussian variable.

Remark: The entries of a Gaussian vector are Gaussian variables (just take ai = 1 and setting all
the other coe�cients to 0 in (1)). However, the fact that a vector X is composed of entries which are
Gaussian variable is in general NOT enough to conclude that X is Gaussian vector! You must also
have that (1) is satis�ed for any coe�cients!

TIP

To show that a random vector X is a Gaussian vector, you can show that for any
choice of coe�cients a1, . . . , an the random variable (1) is a Gaussian variable.

If X = (X1, . . . , Xn) is a Gaussian vector, then for any entries Xi and Xj ,

Cov(Xi, Xj) = 0⇒ Xi and Xj are independent.

TIP

To show that two random variables X1 and X2 are independent, you can show
that the vector (X1, X2) is a Gaussian vector and that Cov(X1, X2) = 0.
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Note: To use this tip, it is not enough to show that X1 and X2 are Gaussian variables! Indeed,
two uncorrelated Gaussian random variables are not necessarily independent1. But if, besides, they
form a Gaussian vector, then they will be independent.

3.2 Gaussian processes

A Gaussian process is a process (Xt, t ∈ Z) such that for any n ≥ 1 times t1, . . . , tn ∈ Z the vector
(Xt1 , . . . , Xtn) is a Gaussian vector.

Note: For a process (Xt, t ∈ Z) to be a Gaussian process it is NOT enough to only check that for
any t ∈ Z, Xt is a Gaussian variable.

(Xt, t ∈ Z) is a Gaussian process ⇐⇒

For any number n ≥ 1 of arbitrary times
t1, . . . , tn ∈ Z and any choice of coe�cients

a1, . . . , an ∈ R, the random variable

n∑
i=1

aiXtn (2)

is a Gaussian variable.

TIP

To show that (Xt, t ∈ Z) is a Gaussian process, you have can show that for any
n ≥ 1, any times t1, . . . , tn ∈ Z, and any coe�cients a1, . . . , an ∈ R, the random

variable (2) is a Gaussian variable.

If (Xt, t ∈ Z) is a Gaussian process, then for any times t1, t2 ∈ Z,

Cov(Xt1 , Xt2) = 0⇒ Xt1 and Xt2 are independent.

1
cf. https://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imply_independent
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